// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 20013 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // This unit test cannot be easily written to work with EIGEN_DEFAULT_TO_ROW_MAJOR #ifdef EIGEN_DEFAULT_TO_ROW_MAJOR #undef EIGEN_DEFAULT_TO_ROW_MAJOR #endif static int nb_temporaries; inline void on_temporary_creation(int) { // here's a great place to set a breakpoint when debugging failures in this test! nb_temporaries++; } #define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); } #include "main.h" #define VERIFY_EVALUATION_COUNT(XPR,N) {\ nb_temporaries = 0; \ XPR; \ if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ VERIFY( (#XPR) && nb_temporaries==N ); \ } // test Ref.h template<typename MatrixType> void ref_matrix(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef Matrix<Scalar,Dynamic,Dynamic,MatrixType::Options> DynMatrixType; typedef Matrix<RealScalar,Dynamic,Dynamic,MatrixType::Options> RealDynMatrixType; typedef Ref<MatrixType> RefMat; typedef Ref<DynMatrixType> RefDynMat; typedef Ref<const DynMatrixType> ConstRefDynMat; typedef Ref<RealDynMatrixType , 0, Stride<Dynamic,Dynamic> > RefRealMatWithStride; Index rows = m.rows(), cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = m1; Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1); Index brows = internal::random<Index>(1,rows-i); Index bcols = internal::random<Index>(1,cols-j); RefMat rm0 = m1; VERIFY_IS_EQUAL(rm0, m1); RefDynMat rm1 = m1; VERIFY_IS_EQUAL(rm1, m1); RefDynMat rm2 = m1.block(i,j,brows,bcols); VERIFY_IS_EQUAL(rm2, m1.block(i,j,brows,bcols)); rm2.setOnes(); m2.block(i,j,brows,bcols).setOnes(); VERIFY_IS_EQUAL(m1, m2); m2.block(i,j,brows,bcols).setRandom(); rm2 = m2.block(i,j,brows,bcols); VERIFY_IS_EQUAL(m1, m2); ConstRefDynMat rm3 = m1.block(i,j,brows,bcols); m1.block(i,j,brows,bcols) *= 2; m2.block(i,j,brows,bcols) *= 2; VERIFY_IS_EQUAL(rm3, m2.block(i,j,brows,bcols)); RefRealMatWithStride rm4 = m1.real(); VERIFY_IS_EQUAL(rm4, m2.real()); rm4.array() += 1; m2.real().array() += 1; VERIFY_IS_EQUAL(m1, m2); } template<typename VectorType> void ref_vector(const VectorType& m) { typedef typename VectorType::Index Index; typedef typename VectorType::Scalar Scalar; typedef typename VectorType::RealScalar RealScalar; typedef Matrix<Scalar,Dynamic,1,VectorType::Options> DynMatrixType; typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> MatrixType; typedef Matrix<RealScalar,Dynamic,1,VectorType::Options> RealDynMatrixType; typedef Ref<VectorType> RefMat; typedef Ref<DynMatrixType> RefDynMat; typedef Ref<const DynMatrixType> ConstRefDynMat; typedef Ref<RealDynMatrixType , 0, InnerStride<> > RefRealMatWithStride; typedef Ref<DynMatrixType , 0, InnerStride<> > RefMatWithStride; Index size = m.size(); VectorType v1 = VectorType::Random(size), v2 = v1; MatrixType mat1 = MatrixType::Random(size,size), mat2 = mat1, mat3 = MatrixType::Random(size,size); Index i = internal::random<Index>(0,size-1); Index bsize = internal::random<Index>(1,size-i); RefMat rm0 = v1; VERIFY_IS_EQUAL(rm0, v1); RefDynMat rv1 = v1; VERIFY_IS_EQUAL(rv1, v1); RefDynMat rv2 = v1.segment(i,bsize); VERIFY_IS_EQUAL(rv2, v1.segment(i,bsize)); rv2.setOnes(); v2.segment(i,bsize).setOnes(); VERIFY_IS_EQUAL(v1, v2); v2.segment(i,bsize).setRandom(); rv2 = v2.segment(i,bsize); VERIFY_IS_EQUAL(v1, v2); ConstRefDynMat rm3 = v1.segment(i,bsize); v1.segment(i,bsize) *= 2; v2.segment(i,bsize) *= 2; VERIFY_IS_EQUAL(rm3, v2.segment(i,bsize)); RefRealMatWithStride rm4 = v1.real(); VERIFY_IS_EQUAL(rm4, v2.real()); rm4.array() += 1; v2.real().array() += 1; VERIFY_IS_EQUAL(v1, v2); RefMatWithStride rm5 = mat1.row(i).transpose(); VERIFY_IS_EQUAL(rm5, mat1.row(i).transpose()); rm5.array() += 1; mat2.row(i).array() += 1; VERIFY_IS_EQUAL(mat1, mat2); rm5.noalias() = rm4.transpose() * mat3; mat2.row(i) = v2.real().transpose() * mat3; VERIFY_IS_APPROX(mat1, mat2); } template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) { // verify that ref-to-const don't have LvalueBit typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; VERIFY( !(internal::traits<Ref<ConstPlainObjectType> >::Flags & LvalueBit) ); VERIFY( !(internal::traits<Ref<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); VERIFY( !(Ref<ConstPlainObjectType>::Flags & LvalueBit) ); VERIFY( !(Ref<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); } template<typename B> EIGEN_DONT_INLINE void call_ref_1(Ref<VectorXf> a, const B &b) { VERIFY_IS_EQUAL(a,b); } template<typename B> EIGEN_DONT_INLINE void call_ref_2(const Ref<const VectorXf>& a, const B &b) { VERIFY_IS_EQUAL(a,b); } template<typename B> EIGEN_DONT_INLINE void call_ref_3(Ref<VectorXf,0,InnerStride<> > a, const B &b) { VERIFY_IS_EQUAL(a,b); } template<typename B> EIGEN_DONT_INLINE void call_ref_4(const Ref<const VectorXf,0,InnerStride<> >& a, const B &b) { VERIFY_IS_EQUAL(a,b); } template<typename B> EIGEN_DONT_INLINE void call_ref_5(Ref<MatrixXf,0,OuterStride<> > a, const B &b) { VERIFY_IS_EQUAL(a,b); } template<typename B> EIGEN_DONT_INLINE void call_ref_6(const Ref<const MatrixXf,0,OuterStride<> >& a, const B &b) { VERIFY_IS_EQUAL(a,b); } template<typename B> EIGEN_DONT_INLINE void call_ref_7(Ref<Matrix<float,Dynamic,3> > a, const B &b) { VERIFY_IS_EQUAL(a,b); } void call_ref() { VectorXcf ca = VectorXcf::Random(10); VectorXf a = VectorXf::Random(10); RowVectorXf b = RowVectorXf::Random(10); MatrixXf A = MatrixXf::Random(10,10); RowVector3f c = RowVector3f::Random(); const VectorXf& ac(a); VectorBlock<VectorXf> ab(a,0,3); const VectorBlock<VectorXf> abc(a,0,3); VERIFY_EVALUATION_COUNT( call_ref_1(a,a), 0); VERIFY_EVALUATION_COUNT( call_ref_1(b,b.transpose()), 0); // call_ref_1(ac); // does not compile because ac is const VERIFY_EVALUATION_COUNT( call_ref_1(ab,ab), 0); VERIFY_EVALUATION_COUNT( call_ref_1(a.head(4),a.head(4)), 0); VERIFY_EVALUATION_COUNT( call_ref_1(abc,abc), 0); VERIFY_EVALUATION_COUNT( call_ref_1(A.col(3),A.col(3)), 0); // call_ref_1(A.row(3)); // does not compile because innerstride!=1 VERIFY_EVALUATION_COUNT( call_ref_3(A.row(3),A.row(3).transpose()), 0); VERIFY_EVALUATION_COUNT( call_ref_4(A.row(3),A.row(3).transpose()), 0); // call_ref_1(a+a); // does not compile for obvious reason MatrixXf tmp = A*A.col(1); VERIFY_EVALUATION_COUNT( call_ref_2(A*A.col(1), tmp), 1); // evaluated into a temp VERIFY_EVALUATION_COUNT( call_ref_2(ac.head(5),ac.head(5)), 0); VERIFY_EVALUATION_COUNT( call_ref_2(ac,ac), 0); VERIFY_EVALUATION_COUNT( call_ref_2(a,a), 0); VERIFY_EVALUATION_COUNT( call_ref_2(ab,ab), 0); VERIFY_EVALUATION_COUNT( call_ref_2(a.head(4),a.head(4)), 0); tmp = a+a; VERIFY_EVALUATION_COUNT( call_ref_2(a+a,tmp), 1); // evaluated into a temp VERIFY_EVALUATION_COUNT( call_ref_2(ca.imag(),ca.imag()), 1); // evaluated into a temp VERIFY_EVALUATION_COUNT( call_ref_4(ac.head(5),ac.head(5)), 0); tmp = a+a; VERIFY_EVALUATION_COUNT( call_ref_4(a+a,tmp), 1); // evaluated into a temp VERIFY_EVALUATION_COUNT( call_ref_4(ca.imag(),ca.imag()), 0); VERIFY_EVALUATION_COUNT( call_ref_5(a,a), 0); VERIFY_EVALUATION_COUNT( call_ref_5(a.head(3),a.head(3)), 0); VERIFY_EVALUATION_COUNT( call_ref_5(A,A), 0); // call_ref_5(A.transpose()); // does not compile VERIFY_EVALUATION_COUNT( call_ref_5(A.block(1,1,2,2),A.block(1,1,2,2)), 0); VERIFY_EVALUATION_COUNT( call_ref_5(b,b), 0); // storage order do not match, but this is a degenerate case that should work VERIFY_EVALUATION_COUNT( call_ref_5(a.row(3),a.row(3)), 0); VERIFY_EVALUATION_COUNT( call_ref_6(a,a), 0); VERIFY_EVALUATION_COUNT( call_ref_6(a.head(3),a.head(3)), 0); VERIFY_EVALUATION_COUNT( call_ref_6(A.row(3),A.row(3)), 1); // evaluated into a temp thouth it could be avoided by viewing it as a 1xn matrix tmp = A+A; VERIFY_EVALUATION_COUNT( call_ref_6(A+A,tmp), 1); // evaluated into a temp VERIFY_EVALUATION_COUNT( call_ref_6(A,A), 0); VERIFY_EVALUATION_COUNT( call_ref_6(A.transpose(),A.transpose()), 1); // evaluated into a temp because the storage orders do not match VERIFY_EVALUATION_COUNT( call_ref_6(A.block(1,1,2,2),A.block(1,1,2,2)), 0); VERIFY_EVALUATION_COUNT( call_ref_7(c,c), 0); } void test_ref() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( ref_vector(Matrix<float, 1, 1>()) ); CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( ref_vector(Vector4d()) ); CALL_SUBTEST_2( check_const_correctness(Matrix4d()) ); CALL_SUBTEST_3( ref_vector(Vector4cf()) ); CALL_SUBTEST_4( ref_vector(VectorXcf(8)) ); CALL_SUBTEST_5( ref_vector(VectorXi(12)) ); CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) ); CALL_SUBTEST_1( ref_matrix(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( ref_matrix(Matrix4d()) ); CALL_SUBTEST_1( ref_matrix(Matrix<float,3,5>()) ); CALL_SUBTEST_4( ref_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) ); CALL_SUBTEST_4( ref_matrix(Matrix<std::complex<double>,10,15>()) ); CALL_SUBTEST_5( ref_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) ); CALL_SUBTEST_6( call_ref() ); } }