/** * mount.c * * Copyright (c) 2013 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "fsck.h" void print_inode_info(struct f2fs_inode *inode) { unsigned int i = 0; int namelen = le32_to_cpu(inode->i_namelen); DISP_u32(inode, i_mode); DISP_u32(inode, i_uid); DISP_u32(inode, i_gid); DISP_u32(inode, i_links); DISP_u64(inode, i_size); DISP_u64(inode, i_blocks); DISP_u64(inode, i_atime); DISP_u32(inode, i_atime_nsec); DISP_u64(inode, i_ctime); DISP_u32(inode, i_ctime_nsec); DISP_u64(inode, i_mtime); DISP_u32(inode, i_mtime_nsec); DISP_u32(inode, i_generation); DISP_u32(inode, i_current_depth); DISP_u32(inode, i_xattr_nid); DISP_u32(inode, i_flags); DISP_u32(inode, i_inline); DISP_u32(inode, i_pino); if (namelen) { DISP_u32(inode, i_namelen); inode->i_name[namelen] = '\0'; DISP_utf(inode, i_name); } printf("i_ext: fofs:%x blkaddr:%x len:%x\n", inode->i_ext.fofs, inode->i_ext.blk_addr, inode->i_ext.len); DISP_u32(inode, i_addr[0]); /* Pointers to data blocks */ DISP_u32(inode, i_addr[1]); /* Pointers to data blocks */ DISP_u32(inode, i_addr[2]); /* Pointers to data blocks */ DISP_u32(inode, i_addr[3]); /* Pointers to data blocks */ for (i = 4; i < ADDRS_PER_INODE(inode); i++) { if (inode->i_addr[i] != 0x0) { printf("i_addr[0x%x] points data block\r\t\t[0x%4x]\n", i, inode->i_addr[i]); break; } } DISP_u32(inode, i_nid[0]); /* direct */ DISP_u32(inode, i_nid[1]); /* direct */ DISP_u32(inode, i_nid[2]); /* indirect */ DISP_u32(inode, i_nid[3]); /* indirect */ DISP_u32(inode, i_nid[4]); /* double indirect */ printf("\n"); } void print_node_info(struct f2fs_node *node_block) { nid_t ino = le32_to_cpu(node_block->footer.ino); nid_t nid = le32_to_cpu(node_block->footer.nid); /* Is this inode? */ if (ino == nid) { DBG(0, "Node ID [0x%x:%u] is inode\n", nid, nid); print_inode_info(&node_block->i); } else { int i; u32 *dump_blk = (u32 *)node_block; DBG(0, "Node ID [0x%x:%u] is direct node or indirect node.\n", nid, nid); for (i = 0; i <= 10; i++) MSG(0, "[%d]\t\t\t[0x%8x : %d]\n", i, dump_blk[i], dump_blk[i]); } } void print_raw_sb_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi); if (!config.dbg_lv) return; printf("\n"); printf("+--------------------------------------------------------+\n"); printf("| Super block |\n"); printf("+--------------------------------------------------------+\n"); DISP_u32(sb, magic); DISP_u32(sb, major_ver); DISP_u32(sb, minor_ver); DISP_u32(sb, log_sectorsize); DISP_u32(sb, log_sectors_per_block); DISP_u32(sb, log_blocksize); DISP_u32(sb, log_blocks_per_seg); DISP_u32(sb, segs_per_sec); DISP_u32(sb, secs_per_zone); DISP_u32(sb, checksum_offset); DISP_u64(sb, block_count); DISP_u32(sb, section_count); DISP_u32(sb, segment_count); DISP_u32(sb, segment_count_ckpt); DISP_u32(sb, segment_count_sit); DISP_u32(sb, segment_count_nat); DISP_u32(sb, segment_count_ssa); DISP_u32(sb, segment_count_main); DISP_u32(sb, segment0_blkaddr); DISP_u32(sb, cp_blkaddr); DISP_u32(sb, sit_blkaddr); DISP_u32(sb, nat_blkaddr); DISP_u32(sb, ssa_blkaddr); DISP_u32(sb, main_blkaddr); DISP_u32(sb, root_ino); DISP_u32(sb, node_ino); DISP_u32(sb, meta_ino); DISP_u32(sb, cp_payload); printf("\n"); } void print_ckpt_info(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); if (!config.dbg_lv) return; printf("\n"); printf("+--------------------------------------------------------+\n"); printf("| Checkpoint |\n"); printf("+--------------------------------------------------------+\n"); DISP_u64(cp, checkpoint_ver); DISP_u64(cp, user_block_count); DISP_u64(cp, valid_block_count); DISP_u32(cp, rsvd_segment_count); DISP_u32(cp, overprov_segment_count); DISP_u32(cp, free_segment_count); DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]); DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]); DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]); DISP_u32(cp, cur_node_segno[0]); DISP_u32(cp, cur_node_segno[1]); DISP_u32(cp, cur_node_segno[2]); DISP_u32(cp, cur_node_blkoff[0]); DISP_u32(cp, cur_node_blkoff[1]); DISP_u32(cp, cur_node_blkoff[2]); DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]); DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]); DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]); DISP_u32(cp, cur_data_segno[0]); DISP_u32(cp, cur_data_segno[1]); DISP_u32(cp, cur_data_segno[2]); DISP_u32(cp, cur_data_blkoff[0]); DISP_u32(cp, cur_data_blkoff[1]); DISP_u32(cp, cur_data_blkoff[2]); DISP_u32(cp, ckpt_flags); DISP_u32(cp, cp_pack_total_block_count); DISP_u32(cp, cp_pack_start_sum); DISP_u32(cp, valid_node_count); DISP_u32(cp, valid_inode_count); DISP_u32(cp, next_free_nid); DISP_u32(cp, sit_ver_bitmap_bytesize); DISP_u32(cp, nat_ver_bitmap_bytesize); DISP_u32(cp, checksum_offset); DISP_u64(cp, elapsed_time); DISP_u32(cp, sit_nat_version_bitmap[0]); printf("\n\n"); } int sanity_check_raw_super(struct f2fs_super_block *raw_super) { unsigned int blocksize; if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { return -1; } if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { return -1; } blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); if (F2FS_BLKSIZE != blocksize) { return -1; } if (F2FS_LOG_SECTOR_SIZE != le32_to_cpu(raw_super->log_sectorsize)) { return -1; } if (F2FS_LOG_SECTORS_PER_BLOCK != le32_to_cpu(raw_super->log_sectors_per_block)) { return -1; } return 0; } int validate_super_block(struct f2fs_sb_info *sbi, int block) { u64 offset; sbi->raw_super = malloc(sizeof(struct f2fs_super_block)); if (block == 0) offset = F2FS_SUPER_OFFSET; else offset = F2FS_BLKSIZE + F2FS_SUPER_OFFSET; if (dev_read(sbi->raw_super, offset, sizeof(struct f2fs_super_block))) return -1; if (!sanity_check_raw_super(sbi->raw_super)) return 0; free(sbi->raw_super); MSG(0, "\tCan't find a valid F2FS superblock at 0x%x\n", block); return -EINVAL; } int init_sb_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = sbi->raw_super; sbi->log_sectors_per_block = le32_to_cpu(raw_super->log_sectors_per_block); sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); sbi->blocksize = 1 << sbi->log_blocksize; sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); sbi->total_sections = le32_to_cpu(raw_super->section_count); sbi->total_node_count = (le32_to_cpu(raw_super->segment_count_nat) / 2) * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); sbi->cur_victim_sec = NULL_SEGNO; return 0; } void *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr, unsigned long long *version) { void *cp_page_1, *cp_page_2; struct f2fs_checkpoint *cp_block; unsigned long blk_size = sbi->blocksize; unsigned long long cur_version = 0, pre_version = 0; unsigned int crc = 0; size_t crc_offset; /* Read the 1st cp block in this CP pack */ cp_page_1 = malloc(PAGE_SIZE); if (dev_read_block(cp_page_1, cp_addr) < 0) return NULL; cp_block = (struct f2fs_checkpoint *)cp_page_1; crc_offset = le32_to_cpu(cp_block->checksum_offset); if (crc_offset >= blk_size) goto invalid_cp1; crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); if (f2fs_crc_valid(crc, cp_block, crc_offset)) goto invalid_cp1; pre_version = le64_to_cpu(cp_block->checkpoint_ver); /* Read the 2nd cp block in this CP pack */ cp_page_2 = malloc(PAGE_SIZE); cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; if (dev_read_block(cp_page_2, cp_addr) < 0) goto invalid_cp2; cp_block = (struct f2fs_checkpoint *)cp_page_2; crc_offset = le32_to_cpu(cp_block->checksum_offset); if (crc_offset >= blk_size) goto invalid_cp2; crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); if (f2fs_crc_valid(crc, cp_block, crc_offset)) goto invalid_cp2; cur_version = le64_to_cpu(cp_block->checkpoint_ver); if (cur_version == pre_version) { *version = cur_version; free(cp_page_2); return cp_page_1; } invalid_cp2: free(cp_page_2); invalid_cp1: free(cp_page_1); return NULL; } int get_valid_checkpoint(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_sb = sbi->raw_super; void *cp1, *cp2, *cur_page; unsigned long blk_size = sbi->blocksize; unsigned long long cp1_version = 0, cp2_version = 0; unsigned long long cp_start_blk_no; unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); int ret; sbi->ckpt = malloc(cp_blks * blk_size); if (!sbi->ckpt) return -ENOMEM; /* * Finding out valid cp block involves read both * sets( cp pack1 and cp pack 2) */ cp_start_blk_no = le32_to_cpu(raw_sb->cp_blkaddr); cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); /* The second checkpoint pack should start at the next segment */ cp_start_blk_no += 1 << le32_to_cpu(raw_sb->log_blocks_per_seg); cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); if (cp1 && cp2) { if (ver_after(cp2_version, cp1_version)) { cur_page = cp2; sbi->cur_cp = 2; } else { cur_page = cp1; sbi->cur_cp = 1; } } else if (cp1) { cur_page = cp1; sbi->cur_cp = 1; } else if (cp2) { cur_page = cp2; sbi->cur_cp = 2; } else { free(cp1); free(cp2); goto fail_no_cp; } memcpy(sbi->ckpt, cur_page, blk_size); if (cp_blks > 1) { unsigned int i; unsigned long long cp_blk_no; cp_blk_no = le32_to_cpu(raw_sb->cp_blkaddr); if (cur_page == cp2) cp_blk_no += 1 << le32_to_cpu(raw_sb->log_blocks_per_seg); /* copy sit bitmap */ for (i = 1; i < cp_blks; i++) { unsigned char *ckpt = (unsigned char *)sbi->ckpt; ret = dev_read_block(cur_page, cp_blk_no + i); ASSERT(ret >= 0); memcpy(ckpt + i * blk_size, cur_page, blk_size); } } free(cp1); free(cp2); return 0; fail_no_cp: free(sbi->ckpt); return -EINVAL; } int sanity_check_ckpt(struct f2fs_sb_info *sbi) { unsigned int total, fsmeta; struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); total = le32_to_cpu(raw_super->segment_count); fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); fsmeta += le32_to_cpu(raw_super->segment_count_sit); fsmeta += le32_to_cpu(raw_super->segment_count_nat); fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); fsmeta += le32_to_cpu(raw_super->segment_count_ssa); if (fsmeta >= total) return 1; return 0; } int init_node_manager(struct f2fs_sb_info *sbi) { struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); struct f2fs_nm_info *nm_i = NM_I(sbi); unsigned char *version_bitmap; unsigned int nat_segs, nat_blocks; nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); /* segment_count_nat includes pair segment so divide to 2. */ nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; nm_i->fcnt = 0; nm_i->nat_cnt = 0; nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); nm_i->nat_bitmap = malloc(nm_i->bitmap_size); if (!nm_i->nat_bitmap) return -ENOMEM; version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); if (!version_bitmap) return -EFAULT; /* copy version bitmap */ memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size); return 0; } int build_node_manager(struct f2fs_sb_info *sbi) { int err; sbi->nm_info = malloc(sizeof(struct f2fs_nm_info)); if (!sbi->nm_info) return -ENOMEM; err = init_node_manager(sbi); if (err) return err; return 0; } int build_sit_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct sit_info *sit_i; unsigned int sit_segs, start; char *src_bitmap, *dst_bitmap; unsigned int bitmap_size; sit_i = malloc(sizeof(struct sit_info)); if (!sit_i) return -ENOMEM; SM_I(sbi)->sit_info = sit_i; sit_i->sentries = calloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry), 1); for (start = 0; start < TOTAL_SEGS(sbi); start++) { sit_i->sentries[start].cur_valid_map = calloc(SIT_VBLOCK_MAP_SIZE, 1); sit_i->sentries[start].ckpt_valid_map = calloc(SIT_VBLOCK_MAP_SIZE, 1); if (!sit_i->sentries[start].cur_valid_map || !sit_i->sentries[start].ckpt_valid_map) return -ENOMEM; } sit_segs = le32_to_cpu(raw_sb->segment_count_sit) >> 1; bitmap_size = __bitmap_size(sbi, SIT_BITMAP); src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); dst_bitmap = malloc(bitmap_size); memcpy(dst_bitmap, src_bitmap, bitmap_size); sit_i->sit_base_addr = le32_to_cpu(raw_sb->sit_blkaddr); sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); sit_i->sit_bitmap = dst_bitmap; sit_i->bitmap_size = bitmap_size; sit_i->dirty_sentries = 0; sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; sit_i->elapsed_time = le64_to_cpu(ckpt->elapsed_time); return 0; } void reset_curseg(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); struct summary_footer *sum_footer; struct seg_entry *se; sum_footer = &(curseg->sum_blk->footer); memset(sum_footer, 0, sizeof(struct summary_footer)); if (IS_DATASEG(type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); if (IS_NODESEG(type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); se = get_seg_entry(sbi, curseg->segno); se->type = type; } static void read_compacted_summaries(struct f2fs_sb_info *sbi) { struct curseg_info *curseg; unsigned int i, j, offset; block_t start; char *kaddr; int ret; start = start_sum_block(sbi); kaddr = (char *)malloc(PAGE_SIZE); ret = dev_read_block(kaddr, start++); ASSERT(ret >= 0); curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); memcpy(&curseg->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); memcpy(&curseg->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); offset = 2 * SUM_JOURNAL_SIZE; for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { unsigned short blk_off; struct curseg_info *curseg = CURSEG_I(sbi, i); reset_curseg(sbi, i); if (curseg->alloc_type == SSR) blk_off = sbi->blocks_per_seg; else blk_off = curseg->next_blkoff; for (j = 0; j < blk_off; j++) { struct f2fs_summary *s; s = (struct f2fs_summary *)(kaddr + offset); curseg->sum_blk->entries[j] = *s; offset += SUMMARY_SIZE; if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) continue; memset(kaddr, 0, PAGE_SIZE); ret = dev_read_block(kaddr, start++); ASSERT(ret >= 0); offset = 0; } } free(kaddr); } static void restore_node_summary(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_summary_block *sum_blk) { struct f2fs_node *node_blk; struct f2fs_summary *sum_entry; block_t addr; unsigned int i; int ret; node_blk = malloc(F2FS_BLKSIZE); ASSERT(node_blk); /* scan the node segment */ addr = START_BLOCK(sbi, segno); sum_entry = &sum_blk->entries[0]; for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) { ret = dev_read_block(node_blk, addr); ASSERT(ret >= 0); sum_entry->nid = node_blk->footer.nid; addr++; } free(node_blk); } static void read_normal_summaries(struct f2fs_sb_info *sbi, int type) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_summary_block *sum_blk; struct curseg_info *curseg; unsigned int segno = 0; block_t blk_addr = 0; int ret; if (IS_DATASEG(type)) { segno = le32_to_cpu(ckpt->cur_data_segno[type]); if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); else blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); } else { segno = le32_to_cpu(ckpt->cur_node_segno[type - CURSEG_HOT_NODE]); if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, type - CURSEG_HOT_NODE); else blk_addr = GET_SUM_BLKADDR(sbi, segno); } sum_blk = (struct f2fs_summary_block *)malloc(PAGE_SIZE); ret = dev_read_block(sum_blk, blk_addr); ASSERT(ret >= 0); if (IS_NODESEG(type) && !is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) restore_node_summary(sbi, segno, sum_blk); curseg = CURSEG_I(sbi, type); memcpy(curseg->sum_blk, sum_blk, PAGE_CACHE_SIZE); reset_curseg(sbi, type); free(sum_blk); } static void restore_curseg_summaries(struct f2fs_sb_info *sbi) { int type = CURSEG_HOT_DATA; if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { read_compacted_summaries(sbi); type = CURSEG_HOT_NODE; } for (; type <= CURSEG_COLD_NODE; type++) read_normal_summaries(sbi, type); } static void build_curseg(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct curseg_info *array; unsigned short blk_off; unsigned int segno; int i; array = malloc(sizeof(*array) * NR_CURSEG_TYPE); ASSERT(array); SM_I(sbi)->curseg_array = array; for (i = 0; i < NR_CURSEG_TYPE; i++) { array[i].sum_blk = malloc(PAGE_CACHE_SIZE); ASSERT(array[i].sum_blk); if (i <= CURSEG_COLD_DATA) { blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); segno = le32_to_cpu(ckpt->cur_data_segno[i]); } if (i > CURSEG_COLD_DATA) { blk_off = le16_to_cpu(ckpt->cur_node_blkoff[i - CURSEG_HOT_NODE]); segno = le32_to_cpu(ckpt->cur_node_segno[i - CURSEG_HOT_NODE]); } array[i].segno = segno; array[i].zone = GET_ZONENO_FROM_SEGNO(sbi, segno); array[i].next_segno = NULL_SEGNO; array[i].next_blkoff = blk_off; array[i].alloc_type = ckpt->alloc_type[i]; } restore_curseg_summaries(sbi); } inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) { unsigned int end_segno = SM_I(sbi)->segment_count - 1; ASSERT(segno <= end_segno); } static struct f2fs_sit_block *get_current_sit_page(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); block_t blk_addr = sit_i->sit_base_addr + offset; struct f2fs_sit_block *sit_blk = calloc(BLOCK_SZ, 1); int ret; check_seg_range(sbi, segno); /* calculate sit block address */ if (f2fs_test_bit(offset, sit_i->sit_bitmap)) blk_addr += sit_i->sit_blocks; ret = dev_read_block(sit_blk, blk_addr); ASSERT(ret >= 0); return sit_blk; } void rewrite_current_sit_page(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_sit_block *sit_blk) { struct sit_info *sit_i = SIT_I(sbi); unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); block_t blk_addr = sit_i->sit_base_addr + offset; int ret; /* calculate sit block address */ if (f2fs_test_bit(offset, sit_i->sit_bitmap)) blk_addr += sit_i->sit_blocks; ret = dev_write_block(sit_blk, blk_addr); ASSERT(ret >= 0); } void check_block_count(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_sit_entry *raw_sit) { struct f2fs_sm_info *sm_info = SM_I(sbi); unsigned int end_segno = sm_info->segment_count - 1; int valid_blocks = 0; unsigned int i; /* check segment usage */ if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg) ASSERT_MSG("Invalid SIT vblocks: segno=0x%x, %u", segno, GET_SIT_VBLOCKS(raw_sit)); /* check boundary of a given segment number */ if (segno > end_segno) ASSERT_MSG("Invalid SEGNO: 0x%x", segno); /* check bitmap with valid block count */ for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++) valid_blocks += get_bits_in_byte(raw_sit->valid_map[i]); if (GET_SIT_VBLOCKS(raw_sit) != valid_blocks) ASSERT_MSG("Wrong SIT valid blocks: segno=0x%x, %u vs. %u", segno, GET_SIT_VBLOCKS(raw_sit), valid_blocks); if (GET_SIT_TYPE(raw_sit) >= NO_CHECK_TYPE) ASSERT_MSG("Wrong SIT type: segno=0x%x, %u", segno, GET_SIT_TYPE(raw_sit)); } void seg_info_from_raw_sit(struct seg_entry *se, struct f2fs_sit_entry *raw_sit) { se->valid_blocks = GET_SIT_VBLOCKS(raw_sit); se->ckpt_valid_blocks = GET_SIT_VBLOCKS(raw_sit); memcpy(se->cur_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE); memcpy(se->ckpt_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE); se->type = GET_SIT_TYPE(raw_sit); se->mtime = le64_to_cpu(raw_sit->mtime); } struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); return &sit_i->sentries[segno]; } int get_sum_block(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_summary_block *sum_blk) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct curseg_info *curseg; int type, ret; u64 ssa_blk; ssa_blk = GET_SUM_BLKADDR(sbi, segno); for (type = 0; type < NR_CURSEG_NODE_TYPE; type++) { if (segno == ckpt->cur_node_segno[type]) { curseg = CURSEG_I(sbi, CURSEG_HOT_NODE + type); if (!IS_SUM_NODE_SEG(curseg->sum_blk->footer)) { ASSERT_MSG("segno [0x%x] indicates a data " "segment, but should be node", segno); return -EINVAL; } memcpy(sum_blk, curseg->sum_blk, BLOCK_SZ); return SEG_TYPE_CUR_NODE; } } for (type = 0; type < NR_CURSEG_DATA_TYPE; type++) { if (segno == ckpt->cur_data_segno[type]) { curseg = CURSEG_I(sbi, type); if (IS_SUM_NODE_SEG(curseg->sum_blk->footer)) { ASSERT_MSG("segno [0x%x] indicates a node " "segment, but should be data", segno); return -EINVAL; } DBG(2, "segno [0x%x] is current data seg[0x%x]\n", segno, type); memcpy(sum_blk, curseg->sum_blk, BLOCK_SZ); return SEG_TYPE_CUR_DATA; } } ret = dev_read_block(sum_blk, ssa_blk); ASSERT(ret >= 0); if (IS_SUM_NODE_SEG(sum_blk->footer)) return SEG_TYPE_NODE; else return SEG_TYPE_DATA; } int get_sum_entry(struct f2fs_sb_info *sbi, u32 blk_addr, struct f2fs_summary *sum_entry) { struct f2fs_summary_block *sum_blk; u32 segno, offset; int ret; segno = GET_SEGNO(sbi, blk_addr); offset = OFFSET_IN_SEG(sbi, blk_addr); sum_blk = calloc(BLOCK_SZ, 1); ret = get_sum_block(sbi, segno, sum_blk); memcpy(sum_entry, &(sum_blk->entries[offset]), sizeof(struct f2fs_summary)); free(sum_blk); return ret; } static void get_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, struct f2fs_nat_entry *raw_nat) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct f2fs_nat_block *nat_block; pgoff_t block_off; pgoff_t block_addr; int seg_off, entry_off; int ret; if (lookup_nat_in_journal(sbi, nid, raw_nat) >= 0) return; nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1); block_off = nid / NAT_ENTRY_PER_BLOCK; entry_off = nid % NAT_ENTRY_PER_BLOCK; seg_off = block_off >> sbi->log_blocks_per_seg; block_addr = (pgoff_t)(nm_i->nat_blkaddr + (seg_off << sbi->log_blocks_per_seg << 1) + (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) block_addr += sbi->blocks_per_seg; ret = dev_read_block(nat_block, block_addr); ASSERT(ret >= 0); memcpy(raw_nat, &nat_block->entries[entry_off], sizeof(struct f2fs_nat_entry)); free(nat_block); } void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) { struct f2fs_nat_entry raw_nat; get_nat_entry(sbi, nid, &raw_nat); ni->nid = nid; node_info_from_raw_nat(ni, &raw_nat); } void build_sit_entries(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; unsigned int segno; for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) { struct seg_entry *se = &sit_i->sentries[segno]; struct f2fs_sit_block *sit_blk; struct f2fs_sit_entry sit; int i; for (i = 0; i < sits_in_cursum(sum); i++) { if (le32_to_cpu(segno_in_journal(sum, i)) == segno) { sit = sit_in_journal(sum, i); goto got_it; } } sit_blk = get_current_sit_page(sbi, segno); sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)]; free(sit_blk); got_it: check_block_count(sbi, segno, &sit); seg_info_from_raw_sit(se, &sit); } } int build_segment_manager(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_sm_info *sm_info; sm_info = malloc(sizeof(struct f2fs_sm_info)); if (!sm_info) return -ENOMEM; /* init sm info */ sbi->sm_info = sm_info; sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); sm_info->segment_count = le32_to_cpu(raw_super->segment_count); sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); build_sit_info(sbi); build_curseg(sbi); build_sit_entries(sbi); return 0; } void build_sit_area_bitmap(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_sm_info *sm_i = SM_I(sbi); unsigned int segno = 0; char *ptr = NULL; u32 sum_vblocks = 0; u32 free_segs = 0; struct seg_entry *se; fsck->sit_area_bitmap_sz = sm_i->main_segments * SIT_VBLOCK_MAP_SIZE; fsck->sit_area_bitmap = calloc(1, fsck->sit_area_bitmap_sz); ptr = fsck->sit_area_bitmap; ASSERT(fsck->sit_area_bitmap_sz == fsck->main_area_bitmap_sz); for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) { se = get_seg_entry(sbi, segno); memcpy(ptr, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); ptr += SIT_VBLOCK_MAP_SIZE; if (se->valid_blocks == 0x0) { if (sbi->ckpt->cur_node_segno[0] == segno || sbi->ckpt->cur_data_segno[0] == segno || sbi->ckpt->cur_node_segno[1] == segno || sbi->ckpt->cur_data_segno[1] == segno || sbi->ckpt->cur_node_segno[2] == segno || sbi->ckpt->cur_data_segno[2] == segno) { continue; } else { free_segs++; } } else { sum_vblocks += se->valid_blocks; } } fsck->chk.sit_valid_blocks = sum_vblocks; fsck->chk.sit_free_segs = free_segs; DBG(1, "Blocks [0x%x : %d] Free Segs [0x%x : %d]\n\n", sum_vblocks, sum_vblocks, free_segs, free_segs); } void rewrite_sit_area_bitmap(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct sit_info *sit_i = SIT_I(sbi); unsigned int segno = 0; struct f2fs_summary_block *sum = curseg->sum_blk; char *ptr = NULL; /* remove sit journal */ sum->n_sits = 0; fsck->chk.free_segs = 0; ptr = fsck->main_area_bitmap; for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) { struct f2fs_sit_block *sit_blk; struct f2fs_sit_entry *sit; struct seg_entry *se; u16 valid_blocks = 0; u16 type; int i; sit_blk = get_current_sit_page(sbi, segno); sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)]; memcpy(sit->valid_map, ptr, SIT_VBLOCK_MAP_SIZE); /* update valid block count */ for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++) valid_blocks += get_bits_in_byte(sit->valid_map[i]); se = get_seg_entry(sbi, segno); type = se->type; if (type >= NO_CHECK_TYPE) { ASSERT(valid_blocks); type = 0; } sit->vblocks = cpu_to_le16((type << SIT_VBLOCKS_SHIFT) | valid_blocks); rewrite_current_sit_page(sbi, segno, sit_blk); free(sit_blk); if (valid_blocks == 0 && sbi->ckpt->cur_node_segno[0] != segno && sbi->ckpt->cur_data_segno[0] != segno && sbi->ckpt->cur_node_segno[1] != segno && sbi->ckpt->cur_data_segno[1] != segno && sbi->ckpt->cur_node_segno[2] != segno && sbi->ckpt->cur_data_segno[2] != segno) fsck->chk.free_segs++; ptr += SIT_VBLOCK_MAP_SIZE; } } int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *raw_nat) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; int i = 0; for (i = 0; i < nats_in_cursum(sum); i++) { if (le32_to_cpu(nid_in_journal(sum, i)) == nid) { memcpy(raw_nat, &nat_in_journal(sum, i), sizeof(struct f2fs_nat_entry)); DBG(3, "==> Found nid [0x%x] in nat cache\n", nid); return i; } } return -1; } void nullify_nat_entry(struct f2fs_sb_info *sbi, u32 nid) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; struct f2fs_nm_info *nm_i = NM_I(sbi); struct f2fs_nat_block *nat_block; pgoff_t block_off; pgoff_t block_addr; int seg_off, entry_off; int ret; int i = 0; /* check in journal */ for (i = 0; i < nats_in_cursum(sum); i++) { if (le32_to_cpu(nid_in_journal(sum, i)) == nid) { memset(&nat_in_journal(sum, i), 0, sizeof(struct f2fs_nat_entry)); FIX_MSG("Remove nid [0x%x] in nat journal\n", nid); return; } } nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1); block_off = nid / NAT_ENTRY_PER_BLOCK; entry_off = nid % NAT_ENTRY_PER_BLOCK; seg_off = block_off >> sbi->log_blocks_per_seg; block_addr = (pgoff_t)(nm_i->nat_blkaddr + (seg_off << sbi->log_blocks_per_seg << 1) + (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) block_addr += sbi->blocks_per_seg; ret = dev_read_block(nat_block, block_addr); ASSERT(ret >= 0); memset(&nat_block->entries[entry_off], 0, sizeof(struct f2fs_nat_entry)); ret = dev_write_block(nat_block, block_addr); ASSERT(ret >= 0); free(nat_block); } void build_nat_area_bitmap(struct f2fs_sb_info *sbi) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); struct f2fs_nm_info *nm_i = NM_I(sbi); struct f2fs_nat_block *nat_block; u32 nid, nr_nat_blks; pgoff_t block_off; pgoff_t block_addr; int seg_off; int ret; unsigned int i; nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1); ASSERT(nat_block); /* Alloc & build nat entry bitmap */ nr_nat_blks = (le32_to_cpu(raw_sb->segment_count_nat) / 2) << sbi->log_blocks_per_seg; fsck->nr_nat_entries = nr_nat_blks * NAT_ENTRY_PER_BLOCK; fsck->nat_area_bitmap_sz = (fsck->nr_nat_entries + 7) / 8; fsck->nat_area_bitmap = calloc(fsck->nat_area_bitmap_sz, 1); ASSERT(fsck->nat_area_bitmap != NULL); for (block_off = 0; block_off < nr_nat_blks; block_off++) { seg_off = block_off >> sbi->log_blocks_per_seg; block_addr = (pgoff_t)(nm_i->nat_blkaddr + (seg_off << sbi->log_blocks_per_seg << 1) + (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) block_addr += sbi->blocks_per_seg; ret = dev_read_block(nat_block, block_addr); ASSERT(ret >= 0); nid = block_off * NAT_ENTRY_PER_BLOCK; for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) { struct f2fs_nat_entry raw_nat; struct node_info ni; ni.nid = nid + i; if ((nid + i) == F2FS_NODE_INO(sbi) || (nid + i) == F2FS_META_INO(sbi)) { ASSERT(nat_block->entries[i].block_addr != 0x0); continue; } if (lookup_nat_in_journal(sbi, nid + i, &raw_nat) >= 0) { node_info_from_raw_nat(&ni, &raw_nat); if (ni.blk_addr != 0x0) { f2fs_set_bit(nid + i, fsck->nat_area_bitmap); fsck->chk.valid_nat_entry_cnt++; DBG(3, "nid[0x%x] in nat cache\n", nid + i); } } else { node_info_from_raw_nat(&ni, &nat_block->entries[i]); if (ni.blk_addr == 0) continue; ASSERT(nid + i != 0x0); DBG(3, "nid[0x%8x] addr[0x%16x] ino[0x%8x]\n", nid + i, ni.blk_addr, ni.ino); f2fs_set_bit(nid + i, fsck->nat_area_bitmap); fsck->chk.valid_nat_entry_cnt++; } } } free(nat_block); DBG(1, "valid nat entries (block_addr != 0x0) [0x%8x : %u]\n", fsck->chk.valid_nat_entry_cnt, fsck->chk.valid_nat_entry_cnt); } int f2fs_do_mount(struct f2fs_sb_info *sbi) { int ret; sbi->active_logs = NR_CURSEG_TYPE; ret = validate_super_block(sbi, 0); if (ret) { ret = validate_super_block(sbi, 1); if (ret) return -1; } print_raw_sb_info(sbi); init_sb_info(sbi); ret = get_valid_checkpoint(sbi); if (ret) { ERR_MSG("Can't find valid checkpoint\n"); return -1; } if (sanity_check_ckpt(sbi)) { ERR_MSG("Checkpoint is polluted\n"); return -1; } print_ckpt_info(sbi); if (config.auto_fix) { u32 flag = le32_to_cpu(sbi->ckpt->ckpt_flags); if (flag & CP_FSCK_FLAG) config.fix_on = 1; else return 1; } config.bug_on = 0; sbi->total_valid_node_count = le32_to_cpu(sbi->ckpt->valid_node_count); sbi->total_valid_inode_count = le32_to_cpu(sbi->ckpt->valid_inode_count); sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); sbi->total_valid_block_count = le64_to_cpu(sbi->ckpt->valid_block_count); sbi->last_valid_block_count = sbi->total_valid_block_count; sbi->alloc_valid_block_count = 0; if (build_segment_manager(sbi)) { ERR_MSG("build_segment_manager failed\n"); return -1; } if (build_node_manager(sbi)) { ERR_MSG("build_segment_manager failed\n"); return -1; } return 0; } void f2fs_do_umount(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); struct f2fs_sm_info *sm_i = SM_I(sbi); struct f2fs_nm_info *nm_i = NM_I(sbi); unsigned int i; /* free nm_info */ free(nm_i->nat_bitmap); free(sbi->nm_info); /* free sit_info */ for (i = 0; i < TOTAL_SEGS(sbi); i++) { free(sit_i->sentries[i].cur_valid_map); free(sit_i->sentries[i].ckpt_valid_map); } free(sit_i->sit_bitmap); free(sm_i->sit_info); /* free sm_info */ for (i = 0; i < NR_CURSEG_TYPE; i++) free(sm_i->curseg_array[i].sum_blk); free(sm_i->curseg_array); free(sbi->sm_info); free(sbi->ckpt); free(sbi->raw_super); }