//===-- DNBArchImplX86_64.cpp -----------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Created by Greg Clayton on 6/25/07. // //===----------------------------------------------------------------------===// #if defined (__i386__) || defined (__x86_64__) #include <sys/cdefs.h> #include <sys/types.h> #include <sys/sysctl.h> #include "MacOSX/x86_64/DNBArchImplX86_64.h" #include "DNBLog.h" #include "MachThread.h" #include "MachProcess.h" #include <mach/mach.h> #include <stdlib.h> #if defined (LLDB_DEBUGSERVER_RELEASE) || defined (LLDB_DEBUGSERVER_DEBUG) enum debugState { debugStateUnknown, debugStateOff, debugStateOn }; static debugState sFPUDebugState = debugStateUnknown; static debugState sAVXForceState = debugStateUnknown; static bool DebugFPURegs () { if (sFPUDebugState == debugStateUnknown) { if (getenv("DNB_DEBUG_FPU_REGS")) sFPUDebugState = debugStateOn; else sFPUDebugState = debugStateOff; } return (sFPUDebugState == debugStateOn); } static bool ForceAVXRegs () { if (sFPUDebugState == debugStateUnknown) { if (getenv("DNB_DEBUG_X86_FORCE_AVX_REGS")) sAVXForceState = debugStateOn; else sAVXForceState = debugStateOff; } return (sAVXForceState == debugStateOn); } #define DEBUG_FPU_REGS (DebugFPURegs()) #define FORCE_AVX_REGS (ForceAVXRegs()) #else #define DEBUG_FPU_REGS (0) #define FORCE_AVX_REGS (0) #endif extern "C" bool CPUHasAVX() { enum AVXPresence { eAVXUnknown = -1, eAVXNotPresent = 0, eAVXPresent = 1 }; static AVXPresence g_has_avx = eAVXUnknown; if (g_has_avx == eAVXUnknown) { g_has_avx = eAVXNotPresent; // Only xnu-2020 or later has AVX support, any versions before // this have a busted thread_get_state RPC where it would truncate // the thread state buffer (<rdar://problem/10122874>). So we need to // verify the kernel version number manually or disable AVX support. int mib[2]; char buffer[1024]; size_t length = sizeof(buffer); uint64_t xnu_version = 0; mib[0] = CTL_KERN; mib[1] = KERN_VERSION; int err = ::sysctl(mib, 2, &buffer, &length, NULL, 0); if (err == 0) { const char *xnu = strstr (buffer, "xnu-"); if (xnu) { const char *xnu_version_cstr = xnu + 4; xnu_version = strtoull (xnu_version_cstr, NULL, 0); if (xnu_version >= 2020 && xnu_version != ULLONG_MAX) { if (::HasAVX()) { g_has_avx = eAVXPresent; } } } } DNBLogThreadedIf (LOG_THREAD, "CPUHasAVX(): g_has_avx = %i (err = %i, errno = %i, xnu_version = %llu)", g_has_avx, err, errno, xnu_version); } return (g_has_avx == eAVXPresent); } uint64_t DNBArchImplX86_64::GetPC(uint64_t failValue) { // Get program counter if (GetGPRState(false) == KERN_SUCCESS) return m_state.context.gpr.__rip; return failValue; } kern_return_t DNBArchImplX86_64::SetPC(uint64_t value) { // Get program counter kern_return_t err = GetGPRState(false); if (err == KERN_SUCCESS) { m_state.context.gpr.__rip = value; err = SetGPRState(); } return err == KERN_SUCCESS; } uint64_t DNBArchImplX86_64::GetSP(uint64_t failValue) { // Get stack pointer if (GetGPRState(false) == KERN_SUCCESS) return m_state.context.gpr.__rsp; return failValue; } // Uncomment the value below to verify the values in the debugger. //#define DEBUG_GPR_VALUES 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED kern_return_t DNBArchImplX86_64::GetGPRState(bool force) { if (force || m_state.GetError(e_regSetGPR, Read)) { #if DEBUG_GPR_VALUES m_state.context.gpr.__rax = ('a' << 8) + 'x'; m_state.context.gpr.__rbx = ('b' << 8) + 'x'; m_state.context.gpr.__rcx = ('c' << 8) + 'x'; m_state.context.gpr.__rdx = ('d' << 8) + 'x'; m_state.context.gpr.__rdi = ('d' << 8) + 'i'; m_state.context.gpr.__rsi = ('s' << 8) + 'i'; m_state.context.gpr.__rbp = ('b' << 8) + 'p'; m_state.context.gpr.__rsp = ('s' << 8) + 'p'; m_state.context.gpr.__r8 = ('r' << 8) + '8'; m_state.context.gpr.__r9 = ('r' << 8) + '9'; m_state.context.gpr.__r10 = ('r' << 8) + 'a'; m_state.context.gpr.__r11 = ('r' << 8) + 'b'; m_state.context.gpr.__r12 = ('r' << 8) + 'c'; m_state.context.gpr.__r13 = ('r' << 8) + 'd'; m_state.context.gpr.__r14 = ('r' << 8) + 'e'; m_state.context.gpr.__r15 = ('r' << 8) + 'f'; m_state.context.gpr.__rip = ('i' << 8) + 'p'; m_state.context.gpr.__rflags = ('f' << 8) + 'l'; m_state.context.gpr.__cs = ('c' << 8) + 's'; m_state.context.gpr.__fs = ('f' << 8) + 's'; m_state.context.gpr.__gs = ('g' << 8) + 's'; m_state.SetError(e_regSetGPR, Read, 0); #else mach_msg_type_number_t count = e_regSetWordSizeGPR; m_state.SetError(e_regSetGPR, Read, ::thread_get_state(m_thread->MachPortNumber(), __x86_64_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count)); DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &gpr, %u) => 0x%8.8x" "\n\trax = %16.16llx rbx = %16.16llx rcx = %16.16llx rdx = %16.16llx" "\n\trdi = %16.16llx rsi = %16.16llx rbp = %16.16llx rsp = %16.16llx" "\n\t r8 = %16.16llx r9 = %16.16llx r10 = %16.16llx r11 = %16.16llx" "\n\tr12 = %16.16llx r13 = %16.16llx r14 = %16.16llx r15 = %16.16llx" "\n\trip = %16.16llx" "\n\tflg = %16.16llx cs = %16.16llx fs = %16.16llx gs = %16.16llx", m_thread->MachPortNumber(), x86_THREAD_STATE64, x86_THREAD_STATE64_COUNT, m_state.GetError(e_regSetGPR, Read), m_state.context.gpr.__rax,m_state.context.gpr.__rbx,m_state.context.gpr.__rcx, m_state.context.gpr.__rdx,m_state.context.gpr.__rdi,m_state.context.gpr.__rsi, m_state.context.gpr.__rbp,m_state.context.gpr.__rsp,m_state.context.gpr.__r8, m_state.context.gpr.__r9, m_state.context.gpr.__r10,m_state.context.gpr.__r11, m_state.context.gpr.__r12,m_state.context.gpr.__r13,m_state.context.gpr.__r14, m_state.context.gpr.__r15,m_state.context.gpr.__rip,m_state.context.gpr.__rflags, m_state.context.gpr.__cs,m_state.context.gpr.__fs, m_state.context.gpr.__gs); // DNBLogThreadedIf (LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x" // "\n\trax = %16.16llx" // "\n\trbx = %16.16llx" // "\n\trcx = %16.16llx" // "\n\trdx = %16.16llx" // "\n\trdi = %16.16llx" // "\n\trsi = %16.16llx" // "\n\trbp = %16.16llx" // "\n\trsp = %16.16llx" // "\n\t r8 = %16.16llx" // "\n\t r9 = %16.16llx" // "\n\tr10 = %16.16llx" // "\n\tr11 = %16.16llx" // "\n\tr12 = %16.16llx" // "\n\tr13 = %16.16llx" // "\n\tr14 = %16.16llx" // "\n\tr15 = %16.16llx" // "\n\trip = %16.16llx" // "\n\tflg = %16.16llx" // "\n\t cs = %16.16llx" // "\n\t fs = %16.16llx" // "\n\t gs = %16.16llx", // m_thread->MachPortNumber(), // x86_THREAD_STATE64, // x86_THREAD_STATE64_COUNT, // m_state.GetError(e_regSetGPR, Read), // m_state.context.gpr.__rax, // m_state.context.gpr.__rbx, // m_state.context.gpr.__rcx, // m_state.context.gpr.__rdx, // m_state.context.gpr.__rdi, // m_state.context.gpr.__rsi, // m_state.context.gpr.__rbp, // m_state.context.gpr.__rsp, // m_state.context.gpr.__r8, // m_state.context.gpr.__r9, // m_state.context.gpr.__r10, // m_state.context.gpr.__r11, // m_state.context.gpr.__r12, // m_state.context.gpr.__r13, // m_state.context.gpr.__r14, // m_state.context.gpr.__r15, // m_state.context.gpr.__rip, // m_state.context.gpr.__rflags, // m_state.context.gpr.__cs, // m_state.context.gpr.__fs, // m_state.context.gpr.__gs); #endif } return m_state.GetError(e_regSetGPR, Read); } // Uncomment the value below to verify the values in the debugger. //#define DEBUG_FPU_REGS 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED kern_return_t DNBArchImplX86_64::GetFPUState(bool force) { if (force || m_state.GetError(e_regSetFPU, Read)) { if (DEBUG_FPU_REGS) { if (CPUHasAVX() || FORCE_AVX_REGS) { m_state.context.fpu.avx.__fpu_reserved[0] = -1; m_state.context.fpu.avx.__fpu_reserved[1] = -1; *(uint16_t *)&(m_state.context.fpu.avx.__fpu_fcw) = 0x1234; *(uint16_t *)&(m_state.context.fpu.avx.__fpu_fsw) = 0x5678; m_state.context.fpu.avx.__fpu_ftw = 1; m_state.context.fpu.avx.__fpu_rsrv1 = UINT8_MAX; m_state.context.fpu.avx.__fpu_fop = 2; m_state.context.fpu.avx.__fpu_ip = 3; m_state.context.fpu.avx.__fpu_cs = 4; m_state.context.fpu.avx.__fpu_rsrv2 = 5; m_state.context.fpu.avx.__fpu_dp = 6; m_state.context.fpu.avx.__fpu_ds = 7; m_state.context.fpu.avx.__fpu_rsrv3 = UINT16_MAX; m_state.context.fpu.avx.__fpu_mxcsr = 8; m_state.context.fpu.avx.__fpu_mxcsrmask = 9; int i; for (i=0; i<16; ++i) { if (i<10) { m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg[i] = 'a'; m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg[i] = 'b'; m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg[i] = 'c'; m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg[i] = 'd'; m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg[i] = 'e'; m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg[i] = 'f'; m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg[i] = 'g'; m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg[i] = 'h'; } else { m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg[i] = INT8_MIN; } m_state.context.fpu.avx.__fpu_xmm0.__xmm_reg[i] = '0'; m_state.context.fpu.avx.__fpu_xmm1.__xmm_reg[i] = '1'; m_state.context.fpu.avx.__fpu_xmm2.__xmm_reg[i] = '2'; m_state.context.fpu.avx.__fpu_xmm3.__xmm_reg[i] = '3'; m_state.context.fpu.avx.__fpu_xmm4.__xmm_reg[i] = '4'; m_state.context.fpu.avx.__fpu_xmm5.__xmm_reg[i] = '5'; m_state.context.fpu.avx.__fpu_xmm6.__xmm_reg[i] = '6'; m_state.context.fpu.avx.__fpu_xmm7.__xmm_reg[i] = '7'; m_state.context.fpu.avx.__fpu_xmm8.__xmm_reg[i] = '8'; m_state.context.fpu.avx.__fpu_xmm9.__xmm_reg[i] = '9'; m_state.context.fpu.avx.__fpu_xmm10.__xmm_reg[i] = 'A'; m_state.context.fpu.avx.__fpu_xmm11.__xmm_reg[i] = 'B'; m_state.context.fpu.avx.__fpu_xmm12.__xmm_reg[i] = 'C'; m_state.context.fpu.avx.__fpu_xmm13.__xmm_reg[i] = 'D'; m_state.context.fpu.avx.__fpu_xmm14.__xmm_reg[i] = 'E'; m_state.context.fpu.avx.__fpu_xmm15.__xmm_reg[i] = 'F'; m_state.context.fpu.avx.__fpu_ymmh0.__xmm_reg[i] = '0'; m_state.context.fpu.avx.__fpu_ymmh1.__xmm_reg[i] = '1'; m_state.context.fpu.avx.__fpu_ymmh2.__xmm_reg[i] = '2'; m_state.context.fpu.avx.__fpu_ymmh3.__xmm_reg[i] = '3'; m_state.context.fpu.avx.__fpu_ymmh4.__xmm_reg[i] = '4'; m_state.context.fpu.avx.__fpu_ymmh5.__xmm_reg[i] = '5'; m_state.context.fpu.avx.__fpu_ymmh6.__xmm_reg[i] = '6'; m_state.context.fpu.avx.__fpu_ymmh7.__xmm_reg[i] = '7'; m_state.context.fpu.avx.__fpu_ymmh8.__xmm_reg[i] = '8'; m_state.context.fpu.avx.__fpu_ymmh9.__xmm_reg[i] = '9'; m_state.context.fpu.avx.__fpu_ymmh10.__xmm_reg[i] = 'A'; m_state.context.fpu.avx.__fpu_ymmh11.__xmm_reg[i] = 'B'; m_state.context.fpu.avx.__fpu_ymmh12.__xmm_reg[i] = 'C'; m_state.context.fpu.avx.__fpu_ymmh13.__xmm_reg[i] = 'D'; m_state.context.fpu.avx.__fpu_ymmh14.__xmm_reg[i] = 'E'; m_state.context.fpu.avx.__fpu_ymmh15.__xmm_reg[i] = 'F'; } for (i=0; i<sizeof(m_state.context.fpu.avx.__fpu_rsrv4); ++i) m_state.context.fpu.avx.__fpu_rsrv4[i] = INT8_MIN; m_state.context.fpu.avx.__fpu_reserved1 = -1; for (i=0; i<sizeof(m_state.context.fpu.avx.__avx_reserved1); ++i) m_state.context.fpu.avx.__avx_reserved1[i] = INT8_MIN; m_state.SetError(e_regSetFPU, Read, 0); } else { m_state.context.fpu.no_avx.__fpu_reserved[0] = -1; m_state.context.fpu.no_avx.__fpu_reserved[1] = -1; *(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fcw) = 0x1234; *(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fsw) = 0x5678; m_state.context.fpu.no_avx.__fpu_ftw = 1; m_state.context.fpu.no_avx.__fpu_rsrv1 = UINT8_MAX; m_state.context.fpu.no_avx.__fpu_fop = 2; m_state.context.fpu.no_avx.__fpu_ip = 3; m_state.context.fpu.no_avx.__fpu_cs = 4; m_state.context.fpu.no_avx.__fpu_rsrv2 = 5; m_state.context.fpu.no_avx.__fpu_dp = 6; m_state.context.fpu.no_avx.__fpu_ds = 7; m_state.context.fpu.no_avx.__fpu_rsrv3 = UINT16_MAX; m_state.context.fpu.no_avx.__fpu_mxcsr = 8; m_state.context.fpu.no_avx.__fpu_mxcsrmask = 9; int i; for (i=0; i<16; ++i) { if (i<10) { m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = 'a'; m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = 'b'; m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = 'c'; m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = 'd'; m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = 'e'; m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = 'f'; m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = 'g'; m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = 'h'; } else { m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = INT8_MIN; m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = INT8_MIN; } m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg[i] = '0'; m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg[i] = '1'; m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg[i] = '2'; m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg[i] = '3'; m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg[i] = '4'; m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg[i] = '5'; m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg[i] = '6'; m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg[i] = '7'; m_state.context.fpu.no_avx.__fpu_xmm8.__xmm_reg[i] = '8'; m_state.context.fpu.no_avx.__fpu_xmm9.__xmm_reg[i] = '9'; m_state.context.fpu.no_avx.__fpu_xmm10.__xmm_reg[i] = 'A'; m_state.context.fpu.no_avx.__fpu_xmm11.__xmm_reg[i] = 'B'; m_state.context.fpu.no_avx.__fpu_xmm12.__xmm_reg[i] = 'C'; m_state.context.fpu.no_avx.__fpu_xmm13.__xmm_reg[i] = 'D'; m_state.context.fpu.no_avx.__fpu_xmm14.__xmm_reg[i] = 'E'; m_state.context.fpu.no_avx.__fpu_xmm15.__xmm_reg[i] = 'F'; } for (i=0; i<sizeof(m_state.context.fpu.no_avx.__fpu_rsrv4); ++i) m_state.context.fpu.no_avx.__fpu_rsrv4[i] = INT8_MIN; m_state.context.fpu.no_avx.__fpu_reserved1 = -1; m_state.SetError(e_regSetFPU, Read, 0); } } else { if (CPUHasAVX() || FORCE_AVX_REGS) { mach_msg_type_number_t count = e_regSetWordSizeAVX; m_state.SetError(e_regSetFPU, Read, ::thread_get_state(m_thread->MachPortNumber(), __x86_64_AVX_STATE, (thread_state_t)&m_state.context.fpu.avx, &count)); DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &avx, %u (%u passed in) carp) => 0x%8.8x", m_thread->MachPortNumber(), __x86_64_AVX_STATE, (uint32_t)count, e_regSetWordSizeAVX, m_state.GetError(e_regSetFPU, Read)); } else { mach_msg_type_number_t count = e_regSetWordSizeFPU; m_state.SetError(e_regSetFPU, Read, ::thread_get_state(m_thread->MachPortNumber(), __x86_64_FLOAT_STATE, (thread_state_t)&m_state.context.fpu.no_avx, &count)); DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &fpu, %u (%u passed in) => 0x%8.8x", m_thread->MachPortNumber(), __x86_64_FLOAT_STATE, (uint32_t)count, e_regSetWordSizeFPU, m_state.GetError(e_regSetFPU, Read)); } } } return m_state.GetError(e_regSetFPU, Read); } kern_return_t DNBArchImplX86_64::GetEXCState(bool force) { if (force || m_state.GetError(e_regSetEXC, Read)) { mach_msg_type_number_t count = e_regSetWordSizeEXC; m_state.SetError(e_regSetEXC, Read, ::thread_get_state(m_thread->MachPortNumber(), __x86_64_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count)); } return m_state.GetError(e_regSetEXC, Read); } kern_return_t DNBArchImplX86_64::SetGPRState() { kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber()); DNBLogThreadedIf (LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u (SetGPRState() for stop_count = %u)", m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount()); m_state.SetError(e_regSetGPR, Write, ::thread_set_state(m_thread->MachPortNumber(), __x86_64_THREAD_STATE, (thread_state_t)&m_state.context.gpr, e_regSetWordSizeGPR)); DNBLogThreadedIf (LOG_THREAD, "::thread_set_state (0x%4.4x, %u, &gpr, %u) => 0x%8.8x" "\n\trax = %16.16llx rbx = %16.16llx rcx = %16.16llx rdx = %16.16llx" "\n\trdi = %16.16llx rsi = %16.16llx rbp = %16.16llx rsp = %16.16llx" "\n\t r8 = %16.16llx r9 = %16.16llx r10 = %16.16llx r11 = %16.16llx" "\n\tr12 = %16.16llx r13 = %16.16llx r14 = %16.16llx r15 = %16.16llx" "\n\trip = %16.16llx" "\n\tflg = %16.16llx cs = %16.16llx fs = %16.16llx gs = %16.16llx", m_thread->MachPortNumber(), __x86_64_THREAD_STATE, e_regSetWordSizeGPR, m_state.GetError(e_regSetGPR, Write), m_state.context.gpr.__rax,m_state.context.gpr.__rbx,m_state.context.gpr.__rcx, m_state.context.gpr.__rdx,m_state.context.gpr.__rdi,m_state.context.gpr.__rsi, m_state.context.gpr.__rbp,m_state.context.gpr.__rsp,m_state.context.gpr.__r8, m_state.context.gpr.__r9, m_state.context.gpr.__r10,m_state.context.gpr.__r11, m_state.context.gpr.__r12,m_state.context.gpr.__r13,m_state.context.gpr.__r14, m_state.context.gpr.__r15,m_state.context.gpr.__rip,m_state.context.gpr.__rflags, m_state.context.gpr.__cs, m_state.context.gpr.__fs, m_state.context.gpr.__gs); return m_state.GetError(e_regSetGPR, Write); } kern_return_t DNBArchImplX86_64::SetFPUState() { if (DEBUG_FPU_REGS) { m_state.SetError(e_regSetFPU, Write, 0); return m_state.GetError(e_regSetFPU, Write); } else { if (CPUHasAVX() || FORCE_AVX_REGS) { m_state.SetError(e_regSetFPU, Write, ::thread_set_state(m_thread->MachPortNumber(), __x86_64_AVX_STATE, (thread_state_t)&m_state.context.fpu.avx, e_regSetWordSizeAVX)); return m_state.GetError(e_regSetFPU, Write); } else { m_state.SetError(e_regSetFPU, Write, ::thread_set_state(m_thread->MachPortNumber(), __x86_64_FLOAT_STATE, (thread_state_t)&m_state.context.fpu.no_avx, e_regSetWordSizeFPU)); return m_state.GetError(e_regSetFPU, Write); } } } kern_return_t DNBArchImplX86_64::SetEXCState() { m_state.SetError(e_regSetEXC, Write, ::thread_set_state(m_thread->MachPortNumber(), __x86_64_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, e_regSetWordSizeEXC)); return m_state.GetError(e_regSetEXC, Write); } kern_return_t DNBArchImplX86_64::GetDBGState(bool force) { if (force || m_state.GetError(e_regSetDBG, Read)) { mach_msg_type_number_t count = e_regSetWordSizeDBG; m_state.SetError(e_regSetDBG, Read, ::thread_get_state(m_thread->MachPortNumber(), __x86_64_DEBUG_STATE, (thread_state_t)&m_state.context.dbg, &count)); } return m_state.GetError(e_regSetDBG, Read); } kern_return_t DNBArchImplX86_64::SetDBGState(bool also_set_on_task) { m_state.SetError(e_regSetDBG, Write, ::thread_set_state(m_thread->MachPortNumber(), __x86_64_DEBUG_STATE, (thread_state_t)&m_state.context.dbg, e_regSetWordSizeDBG)); if (also_set_on_task) { kern_return_t kret = ::task_set_state(m_thread->Process()->Task().TaskPort(), __x86_64_DEBUG_STATE, (thread_state_t)&m_state.context.dbg, e_regSetWordSizeDBG); if (kret != KERN_SUCCESS) DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::SetDBGState failed to set debug control register state: 0x%8.8x.", kret); } return m_state.GetError(e_regSetDBG, Write); } void DNBArchImplX86_64::ThreadWillResume() { // Do we need to step this thread? If so, let the mach thread tell us so. if (m_thread->IsStepping()) { // This is the primary thread, let the arch do anything it needs EnableHardwareSingleStep(true); } // Reset the debug status register, if necessary, before we resume. kern_return_t kret = GetDBGState(false); DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::ThreadWillResume() GetDBGState() => 0x%8.8x.", kret); if (kret != KERN_SUCCESS) return; DBG &debug_state = m_state.context.dbg; bool need_reset = false; uint32_t i, num = NumSupportedHardwareWatchpoints(); for (i = 0; i < num; ++i) if (IsWatchpointHit(debug_state, i)) need_reset = true; if (need_reset) { ClearWatchpointHits(debug_state); kret = SetDBGState(false); DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::ThreadWillResume() SetDBGState() => 0x%8.8x.", kret); } } bool DNBArchImplX86_64::ThreadDidStop() { bool success = true; m_state.InvalidateAllRegisterStates(); // Are we stepping a single instruction? if (GetGPRState(true) == KERN_SUCCESS) { // We are single stepping, was this the primary thread? if (m_thread->IsStepping()) { // This was the primary thread, we need to clear the trace // bit if so. success = EnableHardwareSingleStep(false) == KERN_SUCCESS; } else { // The MachThread will automatically restore the suspend count // in ThreadDidStop(), so we don't need to do anything here if // we weren't the primary thread the last time } } return success; } bool DNBArchImplX86_64::NotifyException(MachException::Data& exc) { switch (exc.exc_type) { case EXC_BAD_ACCESS: break; case EXC_BAD_INSTRUCTION: break; case EXC_ARITHMETIC: break; case EXC_EMULATION: break; case EXC_SOFTWARE: break; case EXC_BREAKPOINT: if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 2) { // exc_code = EXC_I386_BPT // nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS); if (pc != INVALID_NUB_ADDRESS && pc > 0) { pc -= 1; // Check for a breakpoint at one byte prior to the current PC value // since the PC will be just past the trap. DNBBreakpoint *bp = m_thread->Process()->Breakpoints().FindByAddress(pc); if (bp) { // Backup the PC for i386 since the trap was taken and the PC // is at the address following the single byte trap instruction. if (m_state.context.gpr.__rip > 0) { m_state.context.gpr.__rip = pc; // Write the new PC back out SetGPRState (); } } return true; } } else if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 1) { // exc_code = EXC_I386_SGL // // Check whether this corresponds to a watchpoint hit event. // If yes, set the exc_sub_code to the data break address. nub_addr_t addr = 0; uint32_t hw_index = GetHardwareWatchpointHit(addr); if (hw_index != INVALID_NUB_HW_INDEX) { exc.exc_data[1] = addr; // Piggyback the hw_index in the exc.data. exc.exc_data.push_back(hw_index); } return true; } break; case EXC_SYSCALL: break; case EXC_MACH_SYSCALL: break; case EXC_RPC_ALERT: break; } return false; } uint32_t DNBArchImplX86_64::NumSupportedHardwareWatchpoints() { // Available debug address registers: dr0, dr1, dr2, dr3. return 4; } static uint32_t size_and_rw_bits(nub_size_t size, bool read, bool write) { uint32_t rw; if (read) { rw = 0x3; // READ or READ/WRITE } else if (write) { rw = 0x1; // WRITE } else { assert(0 && "read and write cannot both be false"); } switch (size) { case 1: return rw; case 2: return (0x1 << 2) | rw; case 4: return (0x3 << 2) | rw; case 8: return (0x2 << 2) | rw; default: assert(0 && "invalid size, must be one of 1, 2, 4, or 8"); } } void DNBArchImplX86_64::SetWatchpoint(DBG &debug_state, uint32_t hw_index, nub_addr_t addr, nub_size_t size, bool read, bool write) { // Set both dr7 (debug control register) and dri (debug address register). // dr7{7-0} encodes the local/gloabl enable bits: // global enable --. .-- local enable // | | // v v // dr0 -> bits{1-0} // dr1 -> bits{3-2} // dr2 -> bits{5-4} // dr3 -> bits{7-6} // // dr7{31-16} encodes the rw/len bits: // b_x+3, b_x+2, b_x+1, b_x // where bits{x+1, x} => rw // 0b00: execute, 0b01: write, 0b11: read-or-write, 0b10: io read-or-write (unused) // and bits{x+3, x+2} => len // 0b00: 1-byte, 0b01: 2-byte, 0b11: 4-byte, 0b10: 8-byte // // dr0 -> bits{19-16} // dr1 -> bits{23-20} // dr2 -> bits{27-24} // dr3 -> bits{31-28} debug_state.__dr7 |= (1 << (2*hw_index) | size_and_rw_bits(size, read, write) << (16+4*hw_index)); switch (hw_index) { case 0: debug_state.__dr0 = addr; break; case 1: debug_state.__dr1 = addr; break; case 2: debug_state.__dr2 = addr; break; case 3: debug_state.__dr3 = addr; break; default: assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3"); } return; } void DNBArchImplX86_64::ClearWatchpoint(DBG &debug_state, uint32_t hw_index) { debug_state.__dr7 &= ~(3 << (2*hw_index)); switch (hw_index) { case 0: debug_state.__dr0 = 0; break; case 1: debug_state.__dr1 = 0; break; case 2: debug_state.__dr2 = 0; break; case 3: debug_state.__dr3 = 0; break; default: assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3"); } return; } bool DNBArchImplX86_64::IsWatchpointVacant(const DBG &debug_state, uint32_t hw_index) { // Check dr7 (debug control register) for local/global enable bits: // global enable --. .-- local enable // | | // v v // dr0 -> bits{1-0} // dr1 -> bits{3-2} // dr2 -> bits{5-4} // dr3 -> bits{7-6} return (debug_state.__dr7 & (3 << (2*hw_index))) == 0; } // Resets local copy of debug status register to wait for the next debug excpetion. void DNBArchImplX86_64::ClearWatchpointHits(DBG &debug_state) { // See also IsWatchpointHit(). debug_state.__dr6 = 0; return; } bool DNBArchImplX86_64::IsWatchpointHit(const DBG &debug_state, uint32_t hw_index) { // Check dr6 (debug status register) whether a watchpoint hits: // is watchpoint hit? // | // v // dr0 -> bits{0} // dr1 -> bits{1} // dr2 -> bits{2} // dr3 -> bits{3} return (debug_state.__dr6 & (1 << hw_index)); } nub_addr_t DNBArchImplX86_64::GetWatchAddress(const DBG &debug_state, uint32_t hw_index) { switch (hw_index) { case 0: return debug_state.__dr0; case 1: return debug_state.__dr1; case 2: return debug_state.__dr2; case 3: return debug_state.__dr3; default: assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3"); } } bool DNBArchImplX86_64::StartTransForHWP() { if (m_2pc_trans_state != Trans_Done && m_2pc_trans_state != Trans_Rolled_Back) DNBLogError ("%s inconsistent state detected, expected %d or %d, got: %d", __FUNCTION__, Trans_Done, Trans_Rolled_Back, m_2pc_trans_state); m_2pc_dbg_checkpoint = m_state.context.dbg; m_2pc_trans_state = Trans_Pending; return true; } bool DNBArchImplX86_64::RollbackTransForHWP() { m_state.context.dbg = m_2pc_dbg_checkpoint; if (m_2pc_trans_state != Trans_Pending) DNBLogError ("%s inconsistent state detected, expected %d, got: %d", __FUNCTION__, Trans_Pending, m_2pc_trans_state); m_2pc_trans_state = Trans_Rolled_Back; kern_return_t kret = SetDBGState(false); DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::RollbackTransForHWP() SetDBGState() => 0x%8.8x.", kret); if (kret == KERN_SUCCESS) return true; else return false; } bool DNBArchImplX86_64::FinishTransForHWP() { m_2pc_trans_state = Trans_Done; return true; } DNBArchImplX86_64::DBG DNBArchImplX86_64::GetDBGCheckpoint() { return m_2pc_dbg_checkpoint; } uint32_t DNBArchImplX86_64::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write, bool also_set_on_task) { DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::EnableHardwareWatchpoint(addr = 0x%llx, size = %llu, read = %u, write = %u)", (uint64_t)addr, (uint64_t)size, read, write); const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); // Can only watch 1, 2, 4, or 8 bytes. if (!(size == 1 || size == 2 || size == 4 || size == 8)) return INVALID_NUB_HW_INDEX; // We must watch for either read or write if (read == false && write == false) return INVALID_NUB_HW_INDEX; // Read the debug state kern_return_t kret = GetDBGState(false); if (kret == KERN_SUCCESS) { // Check to make sure we have the needed hardware support uint32_t i = 0; DBG &debug_state = m_state.context.dbg; for (i = 0; i < num_hw_watchpoints; ++i) { if (IsWatchpointVacant(debug_state, i)) break; } // See if we found an available hw breakpoint slot above if (i < num_hw_watchpoints) { StartTransForHWP(); // Modify our local copy of the debug state, first. SetWatchpoint(debug_state, i, addr, size, read, write); // Now set the watch point in the inferior. kret = SetDBGState(also_set_on_task); DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret); if (kret == KERN_SUCCESS) return i; else // Revert to the previous debug state voluntarily. The transaction coordinator knows that we have failed. m_state.context.dbg = GetDBGCheckpoint(); } else { DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints); } } return INVALID_NUB_HW_INDEX; } bool DNBArchImplX86_64::DisableHardwareWatchpoint (uint32_t hw_index, bool also_set_on_task) { kern_return_t kret = GetDBGState(false); const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); if (kret == KERN_SUCCESS) { DBG &debug_state = m_state.context.dbg; if (hw_index < num_hw_points && !IsWatchpointVacant(debug_state, hw_index)) { StartTransForHWP(); // Modify our local copy of the debug state, first. ClearWatchpoint(debug_state, hw_index); // Now disable the watch point in the inferior. kret = SetDBGState(also_set_on_task); DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::DisableHardwareWatchpoint( %u )", hw_index); if (kret == KERN_SUCCESS) return true; else // Revert to the previous debug state voluntarily. The transaction coordinator knows that we have failed. m_state.context.dbg = GetDBGCheckpoint(); } } return false; } // Iterate through the debug status register; return the index of the first hit. uint32_t DNBArchImplX86_64::GetHardwareWatchpointHit(nub_addr_t &addr) { // Read the debug state kern_return_t kret = GetDBGState(true); DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret); if (kret == KERN_SUCCESS) { DBG &debug_state = m_state.context.dbg; uint32_t i, num = NumSupportedHardwareWatchpoints(); for (i = 0; i < num; ++i) { if (IsWatchpointHit(debug_state, i)) { addr = GetWatchAddress(debug_state, i); DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::GetHardwareWatchpointHit() found => %u (addr = 0x%llx).", i, (uint64_t)addr); return i; } } } return INVALID_NUB_HW_INDEX; } // Set the single step bit in the processor status register. kern_return_t DNBArchImplX86_64::EnableHardwareSingleStep (bool enable) { if (GetGPRState(false) == KERN_SUCCESS) { const uint32_t trace_bit = 0x100u; if (enable) m_state.context.gpr.__rflags |= trace_bit; else m_state.context.gpr.__rflags &= ~trace_bit; return SetGPRState(); } return m_state.GetError(e_regSetGPR, Read); } //---------------------------------------------------------------------- // Register information defintions //---------------------------------------------------------------------- enum { gpr_rax = 0, gpr_rbx, gpr_rcx, gpr_rdx, gpr_rdi, gpr_rsi, gpr_rbp, gpr_rsp, gpr_r8, gpr_r9, gpr_r10, gpr_r11, gpr_r12, gpr_r13, gpr_r14, gpr_r15, gpr_rip, gpr_rflags, gpr_cs, gpr_fs, gpr_gs, gpr_eax, gpr_ebx, gpr_ecx, gpr_edx, gpr_edi, gpr_esi, gpr_ebp, gpr_esp, gpr_r8d, // Low 32 bits or r8 gpr_r9d, // Low 32 bits or r9 gpr_r10d, // Low 32 bits or r10 gpr_r11d, // Low 32 bits or r11 gpr_r12d, // Low 32 bits or r12 gpr_r13d, // Low 32 bits or r13 gpr_r14d, // Low 32 bits or r14 gpr_r15d, // Low 32 bits or r15 gpr_ax , gpr_bx , gpr_cx , gpr_dx , gpr_di , gpr_si , gpr_bp , gpr_sp , gpr_r8w, // Low 16 bits or r8 gpr_r9w, // Low 16 bits or r9 gpr_r10w, // Low 16 bits or r10 gpr_r11w, // Low 16 bits or r11 gpr_r12w, // Low 16 bits or r12 gpr_r13w, // Low 16 bits or r13 gpr_r14w, // Low 16 bits or r14 gpr_r15w, // Low 16 bits or r15 gpr_ah , gpr_bh , gpr_ch , gpr_dh , gpr_al , gpr_bl , gpr_cl , gpr_dl , gpr_dil, gpr_sil, gpr_bpl, gpr_spl, gpr_r8l, // Low 8 bits or r8 gpr_r9l, // Low 8 bits or r9 gpr_r10l, // Low 8 bits or r10 gpr_r11l, // Low 8 bits or r11 gpr_r12l, // Low 8 bits or r12 gpr_r13l, // Low 8 bits or r13 gpr_r14l, // Low 8 bits or r14 gpr_r15l, // Low 8 bits or r15 k_num_gpr_regs }; enum { fpu_fcw, fpu_fsw, fpu_ftw, fpu_fop, fpu_ip, fpu_cs, fpu_dp, fpu_ds, fpu_mxcsr, fpu_mxcsrmask, fpu_stmm0, fpu_stmm1, fpu_stmm2, fpu_stmm3, fpu_stmm4, fpu_stmm5, fpu_stmm6, fpu_stmm7, fpu_xmm0, fpu_xmm1, fpu_xmm2, fpu_xmm3, fpu_xmm4, fpu_xmm5, fpu_xmm6, fpu_xmm7, fpu_xmm8, fpu_xmm9, fpu_xmm10, fpu_xmm11, fpu_xmm12, fpu_xmm13, fpu_xmm14, fpu_xmm15, fpu_ymm0, fpu_ymm1, fpu_ymm2, fpu_ymm3, fpu_ymm4, fpu_ymm5, fpu_ymm6, fpu_ymm7, fpu_ymm8, fpu_ymm9, fpu_ymm10, fpu_ymm11, fpu_ymm12, fpu_ymm13, fpu_ymm14, fpu_ymm15, k_num_fpu_regs, // Aliases fpu_fctrl = fpu_fcw, fpu_fstat = fpu_fsw, fpu_ftag = fpu_ftw, fpu_fiseg = fpu_cs, fpu_fioff = fpu_ip, fpu_foseg = fpu_ds, fpu_fooff = fpu_dp }; enum { exc_trapno, exc_err, exc_faultvaddr, k_num_exc_regs, }; enum gcc_dwarf_regnums { gcc_dwarf_rax = 0, gcc_dwarf_rdx = 1, gcc_dwarf_rcx = 2, gcc_dwarf_rbx = 3, gcc_dwarf_rsi = 4, gcc_dwarf_rdi = 5, gcc_dwarf_rbp = 6, gcc_dwarf_rsp = 7, gcc_dwarf_r8, gcc_dwarf_r9, gcc_dwarf_r10, gcc_dwarf_r11, gcc_dwarf_r12, gcc_dwarf_r13, gcc_dwarf_r14, gcc_dwarf_r15, gcc_dwarf_rip, gcc_dwarf_xmm0, gcc_dwarf_xmm1, gcc_dwarf_xmm2, gcc_dwarf_xmm3, gcc_dwarf_xmm4, gcc_dwarf_xmm5, gcc_dwarf_xmm6, gcc_dwarf_xmm7, gcc_dwarf_xmm8, gcc_dwarf_xmm9, gcc_dwarf_xmm10, gcc_dwarf_xmm11, gcc_dwarf_xmm12, gcc_dwarf_xmm13, gcc_dwarf_xmm14, gcc_dwarf_xmm15, gcc_dwarf_stmm0, gcc_dwarf_stmm1, gcc_dwarf_stmm2, gcc_dwarf_stmm3, gcc_dwarf_stmm4, gcc_dwarf_stmm5, gcc_dwarf_stmm6, gcc_dwarf_stmm7, gcc_dwarf_ymm0 = gcc_dwarf_xmm0, gcc_dwarf_ymm1 = gcc_dwarf_xmm1, gcc_dwarf_ymm2 = gcc_dwarf_xmm2, gcc_dwarf_ymm3 = gcc_dwarf_xmm3, gcc_dwarf_ymm4 = gcc_dwarf_xmm4, gcc_dwarf_ymm5 = gcc_dwarf_xmm5, gcc_dwarf_ymm6 = gcc_dwarf_xmm6, gcc_dwarf_ymm7 = gcc_dwarf_xmm7, gcc_dwarf_ymm8 = gcc_dwarf_xmm8, gcc_dwarf_ymm9 = gcc_dwarf_xmm9, gcc_dwarf_ymm10 = gcc_dwarf_xmm10, gcc_dwarf_ymm11 = gcc_dwarf_xmm11, gcc_dwarf_ymm12 = gcc_dwarf_xmm12, gcc_dwarf_ymm13 = gcc_dwarf_xmm13, gcc_dwarf_ymm14 = gcc_dwarf_xmm14, gcc_dwarf_ymm15 = gcc_dwarf_xmm15 }; enum gdb_regnums { gdb_rax = 0, gdb_rbx = 1, gdb_rcx = 2, gdb_rdx = 3, gdb_rsi = 4, gdb_rdi = 5, gdb_rbp = 6, gdb_rsp = 7, gdb_r8 = 8, gdb_r9 = 9, gdb_r10 = 10, gdb_r11 = 11, gdb_r12 = 12, gdb_r13 = 13, gdb_r14 = 14, gdb_r15 = 15, gdb_rip = 16, gdb_rflags = 17, gdb_cs = 18, gdb_ss = 19, gdb_ds = 20, gdb_es = 21, gdb_fs = 22, gdb_gs = 23, gdb_stmm0 = 24, gdb_stmm1 = 25, gdb_stmm2 = 26, gdb_stmm3 = 27, gdb_stmm4 = 28, gdb_stmm5 = 29, gdb_stmm6 = 30, gdb_stmm7 = 31, gdb_fctrl = 32, gdb_fcw = gdb_fctrl, gdb_fstat = 33, gdb_fsw = gdb_fstat, gdb_ftag = 34, gdb_ftw = gdb_ftag, gdb_fiseg = 35, gdb_fpu_cs = gdb_fiseg, gdb_fioff = 36, gdb_ip = gdb_fioff, gdb_foseg = 37, gdb_fpu_ds = gdb_foseg, gdb_fooff = 38, gdb_dp = gdb_fooff, gdb_fop = 39, gdb_xmm0 = 40, gdb_xmm1 = 41, gdb_xmm2 = 42, gdb_xmm3 = 43, gdb_xmm4 = 44, gdb_xmm5 = 45, gdb_xmm6 = 46, gdb_xmm7 = 47, gdb_xmm8 = 48, gdb_xmm9 = 49, gdb_xmm10 = 50, gdb_xmm11 = 51, gdb_xmm12 = 52, gdb_xmm13 = 53, gdb_xmm14 = 54, gdb_xmm15 = 55, gdb_mxcsr = 56, gdb_ymm0 = gdb_xmm0, gdb_ymm1 = gdb_xmm1, gdb_ymm2 = gdb_xmm2, gdb_ymm3 = gdb_xmm3, gdb_ymm4 = gdb_xmm4, gdb_ymm5 = gdb_xmm5, gdb_ymm6 = gdb_xmm6, gdb_ymm7 = gdb_xmm7, gdb_ymm8 = gdb_xmm8, gdb_ymm9 = gdb_xmm9, gdb_ymm10 = gdb_xmm10, gdb_ymm11 = gdb_xmm11, gdb_ymm12 = gdb_xmm12, gdb_ymm13 = gdb_xmm13, gdb_ymm14 = gdb_xmm14, gdb_ymm15 = gdb_xmm15 }; #define GPR_OFFSET(reg) (offsetof (DNBArchImplX86_64::GPR, __##reg)) #define FPU_OFFSET(reg) (offsetof (DNBArchImplX86_64::FPU, __fpu_##reg) + offsetof (DNBArchImplX86_64::Context, fpu.no_avx)) #define AVX_OFFSET(reg) (offsetof (DNBArchImplX86_64::AVX, __fpu_##reg) + offsetof (DNBArchImplX86_64::Context, fpu.avx)) #define EXC_OFFSET(reg) (offsetof (DNBArchImplX86_64::EXC, __##reg) + offsetof (DNBArchImplX86_64::Context, exc)) // This does not accurately identify the location of ymm0...7 in // Context.fpu.avx. That is because there is a bunch of padding // in Context.fpu.avx that we don't need. Offset macros lay out // the register state that Debugserver transmits to the debugger // -- not to interpret the thread_get_state info. #define AVX_OFFSET_YMM(n) (AVX_OFFSET(xmm7) + FPU_SIZE_XMM(xmm7) + (32 * n)) #define GPR_SIZE(reg) (sizeof(((DNBArchImplX86_64::GPR *)NULL)->__##reg)) #define FPU_SIZE_UINT(reg) (sizeof(((DNBArchImplX86_64::FPU *)NULL)->__fpu_##reg)) #define FPU_SIZE_MMST(reg) (sizeof(((DNBArchImplX86_64::FPU *)NULL)->__fpu_##reg.__mmst_reg)) #define FPU_SIZE_XMM(reg) (sizeof(((DNBArchImplX86_64::FPU *)NULL)->__fpu_##reg.__xmm_reg)) #define FPU_SIZE_YMM(reg) (32) #define EXC_SIZE(reg) (sizeof(((DNBArchImplX86_64::EXC *)NULL)->__##reg)) // These macros will auto define the register name, alt name, register size, // register offset, encoding, format and native register. This ensures that // the register state structures are defined correctly and have the correct // sizes and offsets. #define DEFINE_GPR(reg) { e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), gcc_dwarf_##reg, gcc_dwarf_##reg, INVALID_NUB_REGNUM, gdb_##reg, NULL, g_invalidate_##reg } #define DEFINE_GPR_ALT(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), gcc_dwarf_##reg, gcc_dwarf_##reg, gen, gdb_##reg, NULL, g_invalidate_##reg } #define DEFINE_GPR_ALT2(reg, alt) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, gdb_##reg, NULL, NULL } #define DEFINE_GPR_ALT3(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, gen, gdb_##reg, NULL, NULL } #define DEFINE_GPR_ALT4(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, GPR_SIZE(reg), GPR_OFFSET(reg), gcc_dwarf_##reg, gcc_dwarf_##reg, gen, gdb_##reg, NULL, NULL } #define DEFINE_GPR_PSEUDO_32(reg32,reg64) { e_regSetGPR, gpr_##reg32, #reg32, NULL, Uint, Hex, 4, GPR_OFFSET(reg64) ,INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_##reg64, g_invalidate_##reg64 } #define DEFINE_GPR_PSEUDO_16(reg16,reg64) { e_regSetGPR, gpr_##reg16, #reg16, NULL, Uint, Hex, 2, GPR_OFFSET(reg64) ,INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_##reg64, g_invalidate_##reg64 } #define DEFINE_GPR_PSEUDO_8H(reg8,reg64) { e_regSetGPR, gpr_##reg8 , #reg8 , NULL, Uint, Hex, 1, GPR_OFFSET(reg64)+1,INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_##reg64, g_invalidate_##reg64 } #define DEFINE_GPR_PSEUDO_8L(reg8,reg64) { e_regSetGPR, gpr_##reg8 , #reg8 , NULL, Uint, Hex, 1, GPR_OFFSET(reg64) ,INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, g_contained_##reg64, g_invalidate_##reg64 } // General purpose registers for 64 bit uint32_t g_contained_rax[] = { gpr_rax, INVALID_NUB_REGNUM }; uint32_t g_contained_rbx[] = { gpr_rbx, INVALID_NUB_REGNUM }; uint32_t g_contained_rcx[] = { gpr_rcx, INVALID_NUB_REGNUM }; uint32_t g_contained_rdx[] = { gpr_rdx, INVALID_NUB_REGNUM }; uint32_t g_contained_rdi[] = { gpr_rdi, INVALID_NUB_REGNUM }; uint32_t g_contained_rsi[] = { gpr_rsi, INVALID_NUB_REGNUM }; uint32_t g_contained_rbp[] = { gpr_rbp, INVALID_NUB_REGNUM }; uint32_t g_contained_rsp[] = { gpr_rsp, INVALID_NUB_REGNUM }; uint32_t g_contained_r8[] = { gpr_r8 , INVALID_NUB_REGNUM }; uint32_t g_contained_r9[] = { gpr_r9 , INVALID_NUB_REGNUM }; uint32_t g_contained_r10[] = { gpr_r10, INVALID_NUB_REGNUM }; uint32_t g_contained_r11[] = { gpr_r11, INVALID_NUB_REGNUM }; uint32_t g_contained_r12[] = { gpr_r12, INVALID_NUB_REGNUM }; uint32_t g_contained_r13[] = { gpr_r13, INVALID_NUB_REGNUM }; uint32_t g_contained_r14[] = { gpr_r14, INVALID_NUB_REGNUM }; uint32_t g_contained_r15[] = { gpr_r15, INVALID_NUB_REGNUM }; uint32_t g_invalidate_rax[] = { gpr_rax, gpr_eax , gpr_ax , gpr_ah , gpr_al, INVALID_NUB_REGNUM }; uint32_t g_invalidate_rbx[] = { gpr_rbx, gpr_ebx , gpr_bx , gpr_bh , gpr_bl, INVALID_NUB_REGNUM }; uint32_t g_invalidate_rcx[] = { gpr_rcx, gpr_ecx , gpr_cx , gpr_ch , gpr_cl, INVALID_NUB_REGNUM }; uint32_t g_invalidate_rdx[] = { gpr_rdx, gpr_edx , gpr_dx , gpr_dh , gpr_dl, INVALID_NUB_REGNUM }; uint32_t g_invalidate_rdi[] = { gpr_rdi, gpr_edi , gpr_di , gpr_dil , INVALID_NUB_REGNUM }; uint32_t g_invalidate_rsi[] = { gpr_rsi, gpr_esi , gpr_si , gpr_sil , INVALID_NUB_REGNUM }; uint32_t g_invalidate_rbp[] = { gpr_rbp, gpr_ebp , gpr_bp , gpr_bpl , INVALID_NUB_REGNUM }; uint32_t g_invalidate_rsp[] = { gpr_rsp, gpr_esp , gpr_sp , gpr_spl , INVALID_NUB_REGNUM }; uint32_t g_invalidate_r8 [] = { gpr_r8 , gpr_r8d , gpr_r8w , gpr_r8l , INVALID_NUB_REGNUM }; uint32_t g_invalidate_r9 [] = { gpr_r9 , gpr_r9d , gpr_r9w , gpr_r9l , INVALID_NUB_REGNUM }; uint32_t g_invalidate_r10[] = { gpr_r10, gpr_r10d, gpr_r10w, gpr_r10l, INVALID_NUB_REGNUM }; uint32_t g_invalidate_r11[] = { gpr_r11, gpr_r11d, gpr_r11w, gpr_r11l, INVALID_NUB_REGNUM }; uint32_t g_invalidate_r12[] = { gpr_r12, gpr_r12d, gpr_r12w, gpr_r12l, INVALID_NUB_REGNUM }; uint32_t g_invalidate_r13[] = { gpr_r13, gpr_r13d, gpr_r13w, gpr_r13l, INVALID_NUB_REGNUM }; uint32_t g_invalidate_r14[] = { gpr_r14, gpr_r14d, gpr_r14w, gpr_r14l, INVALID_NUB_REGNUM }; uint32_t g_invalidate_r15[] = { gpr_r15, gpr_r15d, gpr_r15w, gpr_r15l, INVALID_NUB_REGNUM }; const DNBRegisterInfo DNBArchImplX86_64::g_gpr_registers[] = { DEFINE_GPR (rax), DEFINE_GPR (rbx), DEFINE_GPR_ALT (rcx , "arg4", GENERIC_REGNUM_ARG4), DEFINE_GPR_ALT (rdx , "arg3", GENERIC_REGNUM_ARG3), DEFINE_GPR_ALT (rdi , "arg1", GENERIC_REGNUM_ARG1), DEFINE_GPR_ALT (rsi , "arg2", GENERIC_REGNUM_ARG2), DEFINE_GPR_ALT (rbp , "fp" , GENERIC_REGNUM_FP), DEFINE_GPR_ALT (rsp , "sp" , GENERIC_REGNUM_SP), DEFINE_GPR_ALT (r8 , "arg5", GENERIC_REGNUM_ARG5), DEFINE_GPR_ALT (r9 , "arg6", GENERIC_REGNUM_ARG6), DEFINE_GPR (r10), DEFINE_GPR (r11), DEFINE_GPR (r12), DEFINE_GPR (r13), DEFINE_GPR (r14), DEFINE_GPR (r15), DEFINE_GPR_ALT4 (rip , "pc", GENERIC_REGNUM_PC), DEFINE_GPR_ALT3 (rflags, "flags", GENERIC_REGNUM_FLAGS), DEFINE_GPR_ALT2 (cs, NULL), DEFINE_GPR_ALT2 (fs, NULL), DEFINE_GPR_ALT2 (gs, NULL), DEFINE_GPR_PSEUDO_32 (eax, rax), DEFINE_GPR_PSEUDO_32 (ebx, rbx), DEFINE_GPR_PSEUDO_32 (ecx, rcx), DEFINE_GPR_PSEUDO_32 (edx, rdx), DEFINE_GPR_PSEUDO_32 (edi, rdi), DEFINE_GPR_PSEUDO_32 (esi, rsi), DEFINE_GPR_PSEUDO_32 (ebp, rbp), DEFINE_GPR_PSEUDO_32 (esp, rsp), DEFINE_GPR_PSEUDO_32 (r8d, r8), DEFINE_GPR_PSEUDO_32 (r9d, r9), DEFINE_GPR_PSEUDO_32 (r10d, r10), DEFINE_GPR_PSEUDO_32 (r11d, r11), DEFINE_GPR_PSEUDO_32 (r12d, r12), DEFINE_GPR_PSEUDO_32 (r13d, r13), DEFINE_GPR_PSEUDO_32 (r14d, r14), DEFINE_GPR_PSEUDO_32 (r15d, r15), DEFINE_GPR_PSEUDO_16 (ax , rax), DEFINE_GPR_PSEUDO_16 (bx , rbx), DEFINE_GPR_PSEUDO_16 (cx , rcx), DEFINE_GPR_PSEUDO_16 (dx , rdx), DEFINE_GPR_PSEUDO_16 (di , rdi), DEFINE_GPR_PSEUDO_16 (si , rsi), DEFINE_GPR_PSEUDO_16 (bp , rbp), DEFINE_GPR_PSEUDO_16 (sp , rsp), DEFINE_GPR_PSEUDO_16 (r8w, r8), DEFINE_GPR_PSEUDO_16 (r9w, r9), DEFINE_GPR_PSEUDO_16 (r10w, r10), DEFINE_GPR_PSEUDO_16 (r11w, r11), DEFINE_GPR_PSEUDO_16 (r12w, r12), DEFINE_GPR_PSEUDO_16 (r13w, r13), DEFINE_GPR_PSEUDO_16 (r14w, r14), DEFINE_GPR_PSEUDO_16 (r15w, r15), DEFINE_GPR_PSEUDO_8H (ah , rax), DEFINE_GPR_PSEUDO_8H (bh , rbx), DEFINE_GPR_PSEUDO_8H (ch , rcx), DEFINE_GPR_PSEUDO_8H (dh , rdx), DEFINE_GPR_PSEUDO_8L (al , rax), DEFINE_GPR_PSEUDO_8L (bl , rbx), DEFINE_GPR_PSEUDO_8L (cl , rcx), DEFINE_GPR_PSEUDO_8L (dl , rdx), DEFINE_GPR_PSEUDO_8L (dil, rdi), DEFINE_GPR_PSEUDO_8L (sil, rsi), DEFINE_GPR_PSEUDO_8L (bpl, rbp), DEFINE_GPR_PSEUDO_8L (spl, rsp), DEFINE_GPR_PSEUDO_8L (r8l, r8), DEFINE_GPR_PSEUDO_8L (r9l, r9), DEFINE_GPR_PSEUDO_8L (r10l, r10), DEFINE_GPR_PSEUDO_8L (r11l, r11), DEFINE_GPR_PSEUDO_8L (r12l, r12), DEFINE_GPR_PSEUDO_8L (r13l, r13), DEFINE_GPR_PSEUDO_8L (r14l, r14), DEFINE_GPR_PSEUDO_8L (r15l, r15) }; // Floating point registers 64 bit const DNBRegisterInfo DNBArchImplX86_64::g_fpu_registers_no_avx[] = { { e_regSetFPU, fpu_fcw , "fctrl" , NULL, Uint, Hex, FPU_SIZE_UINT(fcw) , FPU_OFFSET(fcw) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_fsw , "fstat" , NULL, Uint, Hex, FPU_SIZE_UINT(fsw) , FPU_OFFSET(fsw) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_ftw , "ftag" , NULL, Uint, Hex, FPU_SIZE_UINT(ftw) , FPU_OFFSET(ftw) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_fop , "fop" , NULL, Uint, Hex, FPU_SIZE_UINT(fop) , FPU_OFFSET(fop) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_ip , "fioff" , NULL, Uint, Hex, FPU_SIZE_UINT(ip) , FPU_OFFSET(ip) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_cs , "fiseg" , NULL, Uint, Hex, FPU_SIZE_UINT(cs) , FPU_OFFSET(cs) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_dp , "fooff" , NULL, Uint, Hex, FPU_SIZE_UINT(dp) , FPU_OFFSET(dp) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_ds , "foseg" , NULL, Uint, Hex, FPU_SIZE_UINT(ds) , FPU_OFFSET(ds) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_mxcsr , "mxcsr" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr) , FPU_OFFSET(mxcsr) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_mxcsrmask, "mxcsrmask" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsrmask) , FPU_OFFSET(mxcsrmask) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm0), FPU_OFFSET(stmm0), gcc_dwarf_stmm0, gcc_dwarf_stmm0, -1U, gdb_stmm0, NULL, NULL }, { e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm1), FPU_OFFSET(stmm1), gcc_dwarf_stmm1, gcc_dwarf_stmm1, -1U, gdb_stmm1, NULL, NULL }, { e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm2), FPU_OFFSET(stmm2), gcc_dwarf_stmm2, gcc_dwarf_stmm2, -1U, gdb_stmm2, NULL, NULL }, { e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm3), FPU_OFFSET(stmm3), gcc_dwarf_stmm3, gcc_dwarf_stmm3, -1U, gdb_stmm3, NULL, NULL }, { e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm4), FPU_OFFSET(stmm4), gcc_dwarf_stmm4, gcc_dwarf_stmm4, -1U, gdb_stmm4, NULL, NULL }, { e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm5), FPU_OFFSET(stmm5), gcc_dwarf_stmm5, gcc_dwarf_stmm5, -1U, gdb_stmm5, NULL, NULL }, { e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm6), FPU_OFFSET(stmm6), gcc_dwarf_stmm6, gcc_dwarf_stmm6, -1U, gdb_stmm6, NULL, NULL }, { e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm7), FPU_OFFSET(stmm7), gcc_dwarf_stmm7, gcc_dwarf_stmm7, -1U, gdb_stmm7, NULL, NULL }, { e_regSetFPU, fpu_xmm0 , "xmm0" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm0) , FPU_OFFSET(xmm0) , gcc_dwarf_xmm0 , gcc_dwarf_xmm0 , -1U, gdb_xmm0 , NULL, NULL }, { e_regSetFPU, fpu_xmm1 , "xmm1" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm1) , FPU_OFFSET(xmm1) , gcc_dwarf_xmm1 , gcc_dwarf_xmm1 , -1U, gdb_xmm1 , NULL, NULL }, { e_regSetFPU, fpu_xmm2 , "xmm2" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm2) , FPU_OFFSET(xmm2) , gcc_dwarf_xmm2 , gcc_dwarf_xmm2 , -1U, gdb_xmm2 , NULL, NULL }, { e_regSetFPU, fpu_xmm3 , "xmm3" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm3) , FPU_OFFSET(xmm3) , gcc_dwarf_xmm3 , gcc_dwarf_xmm3 , -1U, gdb_xmm3 , NULL, NULL }, { e_regSetFPU, fpu_xmm4 , "xmm4" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm4) , FPU_OFFSET(xmm4) , gcc_dwarf_xmm4 , gcc_dwarf_xmm4 , -1U, gdb_xmm4 , NULL, NULL }, { e_regSetFPU, fpu_xmm5 , "xmm5" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm5) , FPU_OFFSET(xmm5) , gcc_dwarf_xmm5 , gcc_dwarf_xmm5 , -1U, gdb_xmm5 , NULL, NULL }, { e_regSetFPU, fpu_xmm6 , "xmm6" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm6) , FPU_OFFSET(xmm6) , gcc_dwarf_xmm6 , gcc_dwarf_xmm6 , -1U, gdb_xmm6 , NULL, NULL }, { e_regSetFPU, fpu_xmm7 , "xmm7" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm7) , FPU_OFFSET(xmm7) , gcc_dwarf_xmm7 , gcc_dwarf_xmm7 , -1U, gdb_xmm7 , NULL, NULL }, { e_regSetFPU, fpu_xmm8 , "xmm8" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm8) , FPU_OFFSET(xmm8) , gcc_dwarf_xmm8 , gcc_dwarf_xmm8 , -1U, gdb_xmm8 , NULL, NULL }, { e_regSetFPU, fpu_xmm9 , "xmm9" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm9) , FPU_OFFSET(xmm9) , gcc_dwarf_xmm9 , gcc_dwarf_xmm9 , -1U, gdb_xmm9 , NULL, NULL }, { e_regSetFPU, fpu_xmm10, "xmm10" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm10) , FPU_OFFSET(xmm10), gcc_dwarf_xmm10, gcc_dwarf_xmm10, -1U, gdb_xmm10, NULL, NULL }, { e_regSetFPU, fpu_xmm11, "xmm11" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm11) , FPU_OFFSET(xmm11), gcc_dwarf_xmm11, gcc_dwarf_xmm11, -1U, gdb_xmm11, NULL, NULL }, { e_regSetFPU, fpu_xmm12, "xmm12" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm12) , FPU_OFFSET(xmm12), gcc_dwarf_xmm12, gcc_dwarf_xmm12, -1U, gdb_xmm12, NULL, NULL }, { e_regSetFPU, fpu_xmm13, "xmm13" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm13) , FPU_OFFSET(xmm13), gcc_dwarf_xmm13, gcc_dwarf_xmm13, -1U, gdb_xmm13, NULL, NULL }, { e_regSetFPU, fpu_xmm14, "xmm14" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm14) , FPU_OFFSET(xmm14), gcc_dwarf_xmm14, gcc_dwarf_xmm14, -1U, gdb_xmm14, NULL, NULL }, { e_regSetFPU, fpu_xmm15, "xmm15" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm15) , FPU_OFFSET(xmm15), gcc_dwarf_xmm15, gcc_dwarf_xmm15, -1U, gdb_xmm15, NULL, NULL }, }; const DNBRegisterInfo DNBArchImplX86_64::g_fpu_registers_avx[] = { { e_regSetFPU, fpu_fcw , "fctrl" , NULL, Uint, Hex, FPU_SIZE_UINT(fcw) , AVX_OFFSET(fcw) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_fsw , "fstat" , NULL, Uint, Hex, FPU_SIZE_UINT(fsw) , AVX_OFFSET(fsw) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_ftw , "ftag" , NULL, Uint, Hex, FPU_SIZE_UINT(ftw) , AVX_OFFSET(ftw) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_fop , "fop" , NULL, Uint, Hex, FPU_SIZE_UINT(fop) , AVX_OFFSET(fop) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_ip , "fioff" , NULL, Uint, Hex, FPU_SIZE_UINT(ip) , AVX_OFFSET(ip) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_cs , "fiseg" , NULL, Uint, Hex, FPU_SIZE_UINT(cs) , AVX_OFFSET(cs) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_dp , "fooff" , NULL, Uint, Hex, FPU_SIZE_UINT(dp) , AVX_OFFSET(dp) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_ds , "foseg" , NULL, Uint, Hex, FPU_SIZE_UINT(ds) , AVX_OFFSET(ds) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_mxcsr , "mxcsr" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr) , AVX_OFFSET(mxcsr) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_mxcsrmask, "mxcsrmask" , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsrmask) , AVX_OFFSET(mxcsrmask) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm0), AVX_OFFSET(stmm0), gcc_dwarf_stmm0, gcc_dwarf_stmm0, -1U, gdb_stmm0, NULL, NULL }, { e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm1), AVX_OFFSET(stmm1), gcc_dwarf_stmm1, gcc_dwarf_stmm1, -1U, gdb_stmm1, NULL, NULL }, { e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm2), AVX_OFFSET(stmm2), gcc_dwarf_stmm2, gcc_dwarf_stmm2, -1U, gdb_stmm2, NULL, NULL }, { e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm3), AVX_OFFSET(stmm3), gcc_dwarf_stmm3, gcc_dwarf_stmm3, -1U, gdb_stmm3, NULL, NULL }, { e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm4), AVX_OFFSET(stmm4), gcc_dwarf_stmm4, gcc_dwarf_stmm4, -1U, gdb_stmm4, NULL, NULL }, { e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm5), AVX_OFFSET(stmm5), gcc_dwarf_stmm5, gcc_dwarf_stmm5, -1U, gdb_stmm5, NULL, NULL }, { e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm6), AVX_OFFSET(stmm6), gcc_dwarf_stmm6, gcc_dwarf_stmm6, -1U, gdb_stmm6, NULL, NULL }, { e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm7), AVX_OFFSET(stmm7), gcc_dwarf_stmm7, gcc_dwarf_stmm7, -1U, gdb_stmm7, NULL, NULL }, { e_regSetFPU, fpu_xmm0 , "xmm0" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm0) , AVX_OFFSET(xmm0) , gcc_dwarf_xmm0 , gcc_dwarf_xmm0 , -1U, gdb_xmm0 , NULL, NULL }, { e_regSetFPU, fpu_xmm1 , "xmm1" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm1) , AVX_OFFSET(xmm1) , gcc_dwarf_xmm1 , gcc_dwarf_xmm1 , -1U, gdb_xmm1 , NULL, NULL }, { e_regSetFPU, fpu_xmm2 , "xmm2" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm2) , AVX_OFFSET(xmm2) , gcc_dwarf_xmm2 , gcc_dwarf_xmm2 , -1U, gdb_xmm2 , NULL, NULL }, { e_regSetFPU, fpu_xmm3 , "xmm3" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm3) , AVX_OFFSET(xmm3) , gcc_dwarf_xmm3 , gcc_dwarf_xmm3 , -1U, gdb_xmm3 , NULL, NULL }, { e_regSetFPU, fpu_xmm4 , "xmm4" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm4) , AVX_OFFSET(xmm4) , gcc_dwarf_xmm4 , gcc_dwarf_xmm4 , -1U, gdb_xmm4 , NULL, NULL }, { e_regSetFPU, fpu_xmm5 , "xmm5" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm5) , AVX_OFFSET(xmm5) , gcc_dwarf_xmm5 , gcc_dwarf_xmm5 , -1U, gdb_xmm5 , NULL, NULL }, { e_regSetFPU, fpu_xmm6 , "xmm6" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm6) , AVX_OFFSET(xmm6) , gcc_dwarf_xmm6 , gcc_dwarf_xmm6 , -1U, gdb_xmm6 , NULL, NULL }, { e_regSetFPU, fpu_xmm7 , "xmm7" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm7) , AVX_OFFSET(xmm7) , gcc_dwarf_xmm7 , gcc_dwarf_xmm7 , -1U, gdb_xmm7 , NULL, NULL }, { e_regSetFPU, fpu_xmm8 , "xmm8" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm8) , AVX_OFFSET(xmm8) , gcc_dwarf_xmm8 , gcc_dwarf_xmm8 , -1U, gdb_xmm8 , NULL, NULL }, { e_regSetFPU, fpu_xmm9 , "xmm9" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm9) , AVX_OFFSET(xmm9) , gcc_dwarf_xmm9 , gcc_dwarf_xmm9 , -1U, gdb_xmm9 , NULL, NULL }, { e_regSetFPU, fpu_xmm10, "xmm10" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm10) , AVX_OFFSET(xmm10), gcc_dwarf_xmm10, gcc_dwarf_xmm10, -1U, gdb_xmm10, NULL, NULL }, { e_regSetFPU, fpu_xmm11, "xmm11" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm11) , AVX_OFFSET(xmm11), gcc_dwarf_xmm11, gcc_dwarf_xmm11, -1U, gdb_xmm11, NULL, NULL }, { e_regSetFPU, fpu_xmm12, "xmm12" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm12) , AVX_OFFSET(xmm12), gcc_dwarf_xmm12, gcc_dwarf_xmm12, -1U, gdb_xmm12, NULL, NULL }, { e_regSetFPU, fpu_xmm13, "xmm13" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm13) , AVX_OFFSET(xmm13), gcc_dwarf_xmm13, gcc_dwarf_xmm13, -1U, gdb_xmm13, NULL, NULL }, { e_regSetFPU, fpu_xmm14, "xmm14" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm14) , AVX_OFFSET(xmm14), gcc_dwarf_xmm14, gcc_dwarf_xmm14, -1U, gdb_xmm14, NULL, NULL }, { e_regSetFPU, fpu_xmm15, "xmm15" , NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm15) , AVX_OFFSET(xmm15), gcc_dwarf_xmm15, gcc_dwarf_xmm15, -1U, gdb_xmm15, NULL, NULL }, { e_regSetFPU, fpu_ymm0 , "ymm0" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm0) , AVX_OFFSET_YMM(0) , gcc_dwarf_ymm0 , gcc_dwarf_ymm0 , -1U, gdb_ymm0, NULL, NULL }, { e_regSetFPU, fpu_ymm1 , "ymm1" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm1) , AVX_OFFSET_YMM(1) , gcc_dwarf_ymm1 , gcc_dwarf_ymm1 , -1U, gdb_ymm1, NULL, NULL }, { e_regSetFPU, fpu_ymm2 , "ymm2" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm2) , AVX_OFFSET_YMM(2) , gcc_dwarf_ymm2 , gcc_dwarf_ymm2 , -1U, gdb_ymm2, NULL, NULL }, { e_regSetFPU, fpu_ymm3 , "ymm3" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm3) , AVX_OFFSET_YMM(3) , gcc_dwarf_ymm3 , gcc_dwarf_ymm3 , -1U, gdb_ymm3, NULL, NULL }, { e_regSetFPU, fpu_ymm4 , "ymm4" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm4) , AVX_OFFSET_YMM(4) , gcc_dwarf_ymm4 , gcc_dwarf_ymm4 , -1U, gdb_ymm4, NULL, NULL }, { e_regSetFPU, fpu_ymm5 , "ymm5" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm5) , AVX_OFFSET_YMM(5) , gcc_dwarf_ymm5 , gcc_dwarf_ymm5 , -1U, gdb_ymm5, NULL, NULL }, { e_regSetFPU, fpu_ymm6 , "ymm6" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm6) , AVX_OFFSET_YMM(6) , gcc_dwarf_ymm6 , gcc_dwarf_ymm6 , -1U, gdb_ymm6, NULL, NULL }, { e_regSetFPU, fpu_ymm7 , "ymm7" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm7) , AVX_OFFSET_YMM(7) , gcc_dwarf_ymm7 , gcc_dwarf_ymm7 , -1U, gdb_ymm7, NULL, NULL }, { e_regSetFPU, fpu_ymm8 , "ymm8" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm8) , AVX_OFFSET_YMM(8) , gcc_dwarf_ymm8 , gcc_dwarf_ymm8 , -1U, gdb_ymm8 , NULL, NULL }, { e_regSetFPU, fpu_ymm9 , "ymm9" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm9) , AVX_OFFSET_YMM(9) , gcc_dwarf_ymm9 , gcc_dwarf_ymm9 , -1U, gdb_ymm9 , NULL, NULL }, { e_regSetFPU, fpu_ymm10, "ymm10" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm10) , AVX_OFFSET_YMM(10), gcc_dwarf_ymm10, gcc_dwarf_ymm10, -1U, gdb_ymm10, NULL, NULL }, { e_regSetFPU, fpu_ymm11, "ymm11" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm11) , AVX_OFFSET_YMM(11), gcc_dwarf_ymm11, gcc_dwarf_ymm11, -1U, gdb_ymm11, NULL, NULL }, { e_regSetFPU, fpu_ymm12, "ymm12" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm12) , AVX_OFFSET_YMM(12), gcc_dwarf_ymm12, gcc_dwarf_ymm12, -1U, gdb_ymm12, NULL, NULL }, { e_regSetFPU, fpu_ymm13, "ymm13" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm13) , AVX_OFFSET_YMM(13), gcc_dwarf_ymm13, gcc_dwarf_ymm13, -1U, gdb_ymm13, NULL, NULL }, { e_regSetFPU, fpu_ymm14, "ymm14" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm14) , AVX_OFFSET_YMM(14), gcc_dwarf_ymm14, gcc_dwarf_ymm14, -1U, gdb_ymm14, NULL, NULL }, { e_regSetFPU, fpu_ymm15, "ymm15" , NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm15) , AVX_OFFSET_YMM(15), gcc_dwarf_ymm15, gcc_dwarf_ymm15, -1U, gdb_ymm15, NULL, NULL } }; // Exception registers const DNBRegisterInfo DNBArchImplX86_64::g_exc_registers[] = { { e_regSetEXC, exc_trapno, "trapno" , NULL, Uint, Hex, EXC_SIZE (trapno) , EXC_OFFSET (trapno) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetEXC, exc_err, "err" , NULL, Uint, Hex, EXC_SIZE (err) , EXC_OFFSET (err) , -1U, -1U, -1U, -1U, NULL, NULL }, { e_regSetEXC, exc_faultvaddr, "faultvaddr", NULL, Uint, Hex, EXC_SIZE (faultvaddr), EXC_OFFSET (faultvaddr) , -1U, -1U, -1U, -1U, NULL, NULL } }; // Number of registers in each register set const size_t DNBArchImplX86_64::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo); const size_t DNBArchImplX86_64::k_num_fpu_registers_no_avx = sizeof(g_fpu_registers_no_avx)/sizeof(DNBRegisterInfo); const size_t DNBArchImplX86_64::k_num_fpu_registers_avx = sizeof(g_fpu_registers_avx)/sizeof(DNBRegisterInfo); const size_t DNBArchImplX86_64::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo); const size_t DNBArchImplX86_64::k_num_all_registers_no_avx = k_num_gpr_registers + k_num_fpu_registers_no_avx + k_num_exc_registers; const size_t DNBArchImplX86_64::k_num_all_registers_avx = k_num_gpr_registers + k_num_fpu_registers_avx + k_num_exc_registers; //---------------------------------------------------------------------- // Register set definitions. The first definitions at register set index // of zero is for all registers, followed by other registers sets. The // register information for the all register set need not be filled in. //---------------------------------------------------------------------- const DNBRegisterSetInfo DNBArchImplX86_64::g_reg_sets_no_avx[] = { { "x86_64 Registers", NULL, k_num_all_registers_no_avx }, { "General Purpose Registers", g_gpr_registers, k_num_gpr_registers }, { "Floating Point Registers", g_fpu_registers_no_avx, k_num_fpu_registers_no_avx }, { "Exception State Registers", g_exc_registers, k_num_exc_registers } }; const DNBRegisterSetInfo DNBArchImplX86_64::g_reg_sets_avx[] = { { "x86_64 Registers", NULL, k_num_all_registers_avx }, { "General Purpose Registers", g_gpr_registers, k_num_gpr_registers }, { "Floating Point Registers", g_fpu_registers_avx, k_num_fpu_registers_avx }, { "Exception State Registers", g_exc_registers, k_num_exc_registers } }; // Total number of register sets for this architecture const size_t DNBArchImplX86_64::k_num_register_sets = sizeof(g_reg_sets_avx)/sizeof(DNBRegisterSetInfo); DNBArchProtocol * DNBArchImplX86_64::Create (MachThread *thread) { DNBArchImplX86_64 *obj = new DNBArchImplX86_64 (thread); return obj; } const uint8_t * const DNBArchImplX86_64::SoftwareBreakpointOpcode (nub_size_t byte_size) { static const uint8_t g_breakpoint_opcode[] = { 0xCC }; if (byte_size == 1) return g_breakpoint_opcode; return NULL; } const DNBRegisterSetInfo * DNBArchImplX86_64::GetRegisterSetInfo(nub_size_t *num_reg_sets) { *num_reg_sets = k_num_register_sets; if (CPUHasAVX() || FORCE_AVX_REGS) return g_reg_sets_avx; else return g_reg_sets_no_avx; } void DNBArchImplX86_64::Initialize() { DNBArchPluginInfo arch_plugin_info = { CPU_TYPE_X86_64, DNBArchImplX86_64::Create, DNBArchImplX86_64::GetRegisterSetInfo, DNBArchImplX86_64::SoftwareBreakpointOpcode }; // Register this arch plug-in with the main protocol class DNBArchProtocol::RegisterArchPlugin (arch_plugin_info); } bool DNBArchImplX86_64::GetRegisterValue(int set, int reg, DNBRegisterValue *value) { if (set == REGISTER_SET_GENERIC) { switch (reg) { case GENERIC_REGNUM_PC: // Program Counter set = e_regSetGPR; reg = gpr_rip; break; case GENERIC_REGNUM_SP: // Stack Pointer set = e_regSetGPR; reg = gpr_rsp; break; case GENERIC_REGNUM_FP: // Frame Pointer set = e_regSetGPR; reg = gpr_rbp; break; case GENERIC_REGNUM_FLAGS: // Processor flags register set = e_regSetGPR; reg = gpr_rflags; break; case GENERIC_REGNUM_RA: // Return Address default: return false; } } if (GetRegisterState(set, false) != KERN_SUCCESS) return false; const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); if (regInfo) { value->info = *regInfo; switch (set) { case e_regSetGPR: if (reg < k_num_gpr_registers) { value->value.uint64 = ((uint64_t*)(&m_state.context.gpr))[reg]; return true; } break; case e_regSetFPU: if (CPUHasAVX() || FORCE_AVX_REGS) { switch (reg) { case fpu_fcw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fcw)); return true; case fpu_fsw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fsw)); return true; case fpu_ftw: value->value.uint8 = m_state.context.fpu.avx.__fpu_ftw; return true; case fpu_fop: value->value.uint16 = m_state.context.fpu.avx.__fpu_fop; return true; case fpu_ip: value->value.uint32 = m_state.context.fpu.avx.__fpu_ip; return true; case fpu_cs: value->value.uint16 = m_state.context.fpu.avx.__fpu_cs; return true; case fpu_dp: value->value.uint32 = m_state.context.fpu.avx.__fpu_dp; return true; case fpu_ds: value->value.uint16 = m_state.context.fpu.avx.__fpu_ds; return true; case fpu_mxcsr: value->value.uint32 = m_state.context.fpu.avx.__fpu_mxcsr; return true; case fpu_mxcsrmask: value->value.uint32 = m_state.context.fpu.avx.__fpu_mxcsrmask; return true; case fpu_stmm0: case fpu_stmm1: case fpu_stmm2: case fpu_stmm3: case fpu_stmm4: case fpu_stmm5: case fpu_stmm6: case fpu_stmm7: memcpy(&value->value.uint8, &m_state.context.fpu.avx.__fpu_stmm0 + (reg - fpu_stmm0), 10); return true; case fpu_xmm0: case fpu_xmm1: case fpu_xmm2: case fpu_xmm3: case fpu_xmm4: case fpu_xmm5: case fpu_xmm6: case fpu_xmm7: case fpu_xmm8: case fpu_xmm9: case fpu_xmm10: case fpu_xmm11: case fpu_xmm12: case fpu_xmm13: case fpu_xmm14: case fpu_xmm15: memcpy(&value->value.uint8, &m_state.context.fpu.avx.__fpu_xmm0 + (reg - fpu_xmm0), 16); return true; case fpu_ymm0: case fpu_ymm1: case fpu_ymm2: case fpu_ymm3: case fpu_ymm4: case fpu_ymm5: case fpu_ymm6: case fpu_ymm7: case fpu_ymm8: case fpu_ymm9: case fpu_ymm10: case fpu_ymm11: case fpu_ymm12: case fpu_ymm13: case fpu_ymm14: case fpu_ymm15: memcpy(&value->value.uint8, &m_state.context.fpu.avx.__fpu_xmm0 + (reg - fpu_ymm0), 16); memcpy((&value->value.uint8) + 16, &m_state.context.fpu.avx.__fpu_ymmh0 + (reg - fpu_ymm0), 16); return true; } } else { switch (reg) { case fpu_fcw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw)); return true; case fpu_fsw: value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw)); return true; case fpu_ftw: value->value.uint8 = m_state.context.fpu.no_avx.__fpu_ftw; return true; case fpu_fop: value->value.uint16 = m_state.context.fpu.no_avx.__fpu_fop; return true; case fpu_ip: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_ip; return true; case fpu_cs: value->value.uint16 = m_state.context.fpu.no_avx.__fpu_cs; return true; case fpu_dp: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_dp; return true; case fpu_ds: value->value.uint16 = m_state.context.fpu.no_avx.__fpu_ds; return true; case fpu_mxcsr: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsr; return true; case fpu_mxcsrmask: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsrmask; return true; case fpu_stmm0: case fpu_stmm1: case fpu_stmm2: case fpu_stmm3: case fpu_stmm4: case fpu_stmm5: case fpu_stmm6: case fpu_stmm7: memcpy(&value->value.uint8, &m_state.context.fpu.no_avx.__fpu_stmm0 + (reg - fpu_stmm0), 10); return true; case fpu_xmm0: case fpu_xmm1: case fpu_xmm2: case fpu_xmm3: case fpu_xmm4: case fpu_xmm5: case fpu_xmm6: case fpu_xmm7: case fpu_xmm8: case fpu_xmm9: case fpu_xmm10: case fpu_xmm11: case fpu_xmm12: case fpu_xmm13: case fpu_xmm14: case fpu_xmm15: memcpy(&value->value.uint8, &m_state.context.fpu.no_avx.__fpu_xmm0 + (reg - fpu_xmm0), 16); return true; } } break; case e_regSetEXC: switch (reg) { case exc_trapno: value->value.uint32 = m_state.context.exc.__trapno; return true; case exc_err: value->value.uint32 = m_state.context.exc.__err; return true; case exc_faultvaddr:value->value.uint64 = m_state.context.exc.__faultvaddr; return true; } break; } } return false; } bool DNBArchImplX86_64::SetRegisterValue(int set, int reg, const DNBRegisterValue *value) { if (set == REGISTER_SET_GENERIC) { switch (reg) { case GENERIC_REGNUM_PC: // Program Counter set = e_regSetGPR; reg = gpr_rip; break; case GENERIC_REGNUM_SP: // Stack Pointer set = e_regSetGPR; reg = gpr_rsp; break; case GENERIC_REGNUM_FP: // Frame Pointer set = e_regSetGPR; reg = gpr_rbp; break; case GENERIC_REGNUM_FLAGS: // Processor flags register set = e_regSetGPR; reg = gpr_rflags; break; case GENERIC_REGNUM_RA: // Return Address default: return false; } } if (GetRegisterState(set, false) != KERN_SUCCESS) return false; bool success = false; const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); if (regInfo) { switch (set) { case e_regSetGPR: if (reg < k_num_gpr_registers) { ((uint64_t*)(&m_state.context.gpr))[reg] = value->value.uint64; success = true; } break; case e_regSetFPU: if (CPUHasAVX() || FORCE_AVX_REGS) { switch (reg) { case fpu_fcw: *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fcw)) = value->value.uint16; success = true; break; case fpu_fsw: *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fsw)) = value->value.uint16; success = true; break; case fpu_ftw: m_state.context.fpu.avx.__fpu_ftw = value->value.uint8; success = true; break; case fpu_fop: m_state.context.fpu.avx.__fpu_fop = value->value.uint16; success = true; break; case fpu_ip: m_state.context.fpu.avx.__fpu_ip = value->value.uint32; success = true; break; case fpu_cs: m_state.context.fpu.avx.__fpu_cs = value->value.uint16; success = true; break; case fpu_dp: m_state.context.fpu.avx.__fpu_dp = value->value.uint32; success = true; break; case fpu_ds: m_state.context.fpu.avx.__fpu_ds = value->value.uint16; success = true; break; case fpu_mxcsr: m_state.context.fpu.avx.__fpu_mxcsr = value->value.uint32; success = true; break; case fpu_mxcsrmask: m_state.context.fpu.avx.__fpu_mxcsrmask = value->value.uint32; success = true; break; case fpu_stmm0: case fpu_stmm1: case fpu_stmm2: case fpu_stmm3: case fpu_stmm4: case fpu_stmm5: case fpu_stmm6: case fpu_stmm7: memcpy (&m_state.context.fpu.avx.__fpu_stmm0 + (reg - fpu_stmm0), &value->value.uint8, 10); success = true; break; case fpu_xmm0: case fpu_xmm1: case fpu_xmm2: case fpu_xmm3: case fpu_xmm4: case fpu_xmm5: case fpu_xmm6: case fpu_xmm7: case fpu_xmm8: case fpu_xmm9: case fpu_xmm10: case fpu_xmm11: case fpu_xmm12: case fpu_xmm13: case fpu_xmm14: case fpu_xmm15: memcpy (&m_state.context.fpu.avx.__fpu_xmm0 + (reg - fpu_xmm0), &value->value.uint8, 16); success = true; break; case fpu_ymm0: case fpu_ymm1: case fpu_ymm2: case fpu_ymm3: case fpu_ymm4: case fpu_ymm5: case fpu_ymm6: case fpu_ymm7: case fpu_ymm8: case fpu_ymm9: case fpu_ymm10: case fpu_ymm11: case fpu_ymm12: case fpu_ymm13: case fpu_ymm14: case fpu_ymm15: memcpy(&m_state.context.fpu.avx.__fpu_xmm0 + (reg - fpu_ymm0), &value->value.uint8, 16); memcpy(&m_state.context.fpu.avx.__fpu_ymmh0 + (reg - fpu_ymm0), (&value->value.uint8) + 16, 16); return true; } } else { switch (reg) { case fpu_fcw: *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw)) = value->value.uint16; success = true; break; case fpu_fsw: *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw)) = value->value.uint16; success = true; break; case fpu_ftw: m_state.context.fpu.no_avx.__fpu_ftw = value->value.uint8; success = true; break; case fpu_fop: m_state.context.fpu.no_avx.__fpu_fop = value->value.uint16; success = true; break; case fpu_ip: m_state.context.fpu.no_avx.__fpu_ip = value->value.uint32; success = true; break; case fpu_cs: m_state.context.fpu.no_avx.__fpu_cs = value->value.uint16; success = true; break; case fpu_dp: m_state.context.fpu.no_avx.__fpu_dp = value->value.uint32; success = true; break; case fpu_ds: m_state.context.fpu.no_avx.__fpu_ds = value->value.uint16; success = true; break; case fpu_mxcsr: m_state.context.fpu.no_avx.__fpu_mxcsr = value->value.uint32; success = true; break; case fpu_mxcsrmask: m_state.context.fpu.no_avx.__fpu_mxcsrmask = value->value.uint32; success = true; break; case fpu_stmm0: case fpu_stmm1: case fpu_stmm2: case fpu_stmm3: case fpu_stmm4: case fpu_stmm5: case fpu_stmm6: case fpu_stmm7: memcpy (&m_state.context.fpu.no_avx.__fpu_stmm0 + (reg - fpu_stmm0), &value->value.uint8, 10); success = true; break; case fpu_xmm0: case fpu_xmm1: case fpu_xmm2: case fpu_xmm3: case fpu_xmm4: case fpu_xmm5: case fpu_xmm6: case fpu_xmm7: case fpu_xmm8: case fpu_xmm9: case fpu_xmm10: case fpu_xmm11: case fpu_xmm12: case fpu_xmm13: case fpu_xmm14: case fpu_xmm15: memcpy (&m_state.context.fpu.no_avx.__fpu_xmm0 + (reg - fpu_xmm0), &value->value.uint8, 16); success = true; break; } } break; case e_regSetEXC: switch (reg) { case exc_trapno: m_state.context.exc.__trapno = value->value.uint32; success = true; break; case exc_err: m_state.context.exc.__err = value->value.uint32; success = true; break; case exc_faultvaddr:m_state.context.exc.__faultvaddr = value->value.uint64; success = true; break; } break; } } if (success) return SetRegisterState(set) == KERN_SUCCESS; return false; } nub_size_t DNBArchImplX86_64::GetRegisterContext (void *buf, nub_size_t buf_len) { nub_size_t size = sizeof (m_state.context); if (buf && buf_len) { if (size > buf_len) size = buf_len; bool force = false; kern_return_t kret; if ((kret = GetGPRState(force)) != KERN_SUCCESS) { DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::GetRegisterContext (buf = %p, len = %llu) error: GPR regs failed to read: %u ", buf, (uint64_t)buf_len, kret); size = 0; } else if ((kret = GetFPUState(force)) != KERN_SUCCESS) { DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::GetRegisterContext (buf = %p, len = %llu) error: %s regs failed to read: %u", buf, (uint64_t)buf_len, CPUHasAVX() ? "AVX" : "FPU", kret); size = 0; } else if ((kret = GetEXCState(force)) != KERN_SUCCESS) { DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::GetRegisterContext (buf = %p, len = %llu) error: EXC regs failed to read: %u", buf, (uint64_t)buf_len, kret); size = 0; } else { // Success ::memcpy (buf, &m_state.context, size); } } DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::GetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size); // Return the size of the register context even if NULL was passed in return size; } nub_size_t DNBArchImplX86_64::SetRegisterContext (const void *buf, nub_size_t buf_len) { nub_size_t size = sizeof (m_state.context); if (buf == NULL || buf_len == 0) size = 0; if (size) { if (size > buf_len) size = buf_len; ::memcpy (&m_state.context, buf, size); kern_return_t kret; if ((kret = SetGPRState()) != KERN_SUCCESS) DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SetRegisterContext (buf = %p, len = %llu) error: GPR regs failed to write: %u", buf, (uint64_t)buf_len, kret); if ((kret = SetFPUState()) != KERN_SUCCESS) DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SetRegisterContext (buf = %p, len = %llu) error: %s regs failed to write: %u", buf, (uint64_t)buf_len, CPUHasAVX() ? "AVX" : "FPU", kret); if ((kret = SetEXCState()) != KERN_SUCCESS) DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SetRegisterContext (buf = %p, len = %llu) error: EXP regs failed to write: %u", buf, (uint64_t)buf_len, kret); } DNBLogThreadedIf (LOG_THREAD, "DNBArchImplX86_64::SetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size); return size; } kern_return_t DNBArchImplX86_64::GetRegisterState(int set, bool force) { switch (set) { case e_regSetALL: return GetGPRState(force) | GetFPUState(force) | GetEXCState(force); case e_regSetGPR: return GetGPRState(force); case e_regSetFPU: return GetFPUState(force); case e_regSetEXC: return GetEXCState(force); default: break; } return KERN_INVALID_ARGUMENT; } kern_return_t DNBArchImplX86_64::SetRegisterState(int set) { // Make sure we have a valid context to set. if (RegisterSetStateIsValid(set)) { switch (set) { case e_regSetALL: return SetGPRState() | SetFPUState() | SetEXCState(); case e_regSetGPR: return SetGPRState(); case e_regSetFPU: return SetFPUState(); case e_regSetEXC: return SetEXCState(); default: break; } } return KERN_INVALID_ARGUMENT; } bool DNBArchImplX86_64::RegisterSetStateIsValid (int set) const { return m_state.RegsAreValid(set); } #endif // #if defined (__i386__) || defined (__x86_64__)