//===-- GlobalMerge.cpp - Internal globals merging -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This pass merges globals with internal linkage into one. This way all the // globals which were merged into a biggest one can be addressed using offsets // from the same base pointer (no need for separate base pointer for each of the // global). Such a transformation can significantly reduce the register pressure // when many globals are involved. // // For example, consider the code which touches several global variables at // once: // // static int foo[N], bar[N], baz[N]; // // for (i = 0; i < N; ++i) { // foo[i] = bar[i] * baz[i]; // } // // On ARM the addresses of 3 arrays should be kept in the registers, thus // this code has quite large register pressure (loop body): // // ldr r1, [r5], #4 // ldr r2, [r6], #4 // mul r1, r2, r1 // str r1, [r0], #4 // // Pass converts the code to something like: // // static struct { // int foo[N]; // int bar[N]; // int baz[N]; // } merged; // // for (i = 0; i < N; ++i) { // merged.foo[i] = merged.bar[i] * merged.baz[i]; // } // // and in ARM code this becomes: // // ldr r0, [r5, #40] // ldr r1, [r5, #80] // mul r0, r1, r0 // str r0, [r5], #4 // // note that we saved 2 registers here almostly "for free". // ===---------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetLoweringObjectFile.h" using namespace llvm; #define DEBUG_TYPE "global-merge" cl::opt<bool> EnableGlobalMerge("enable-global-merge", cl::Hidden, cl::desc("Enable global merge pass"), cl::init(true)); static cl::opt<bool> EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden, cl::desc("Enable global merge pass on constants"), cl::init(false)); // FIXME: this could be a transitional option, and we probably need to remove // it if only we are sure this optimization could always benefit all targets. static cl::opt<bool> EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden, cl::desc("Enable global merge pass on external linkage"), cl::init(false)); STATISTIC(NumMerged , "Number of globals merged"); namespace { class GlobalMerge : public FunctionPass { const TargetMachine *TM; bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals, Module &M, bool isConst, unsigned AddrSpace) const; /// \brief Check if the given variable has been identified as must keep /// \pre setMustKeepGlobalVariables must have been called on the Module that /// contains GV bool isMustKeepGlobalVariable(const GlobalVariable *GV) const { return MustKeepGlobalVariables.count(GV); } /// Collect every variables marked as "used" or used in a landing pad /// instruction for this Module. void setMustKeepGlobalVariables(Module &M); /// Collect every variables marked as "used" void collectUsedGlobalVariables(Module &M); /// Keep track of the GlobalVariable that must not be merged away SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables; public: static char ID; // Pass identification, replacement for typeid. explicit GlobalMerge(const TargetMachine *TM = nullptr) : FunctionPass(ID), TM(TM) { initializeGlobalMergePass(*PassRegistry::getPassRegistry()); } bool doInitialization(Module &M) override; bool runOnFunction(Function &F) override; bool doFinalization(Module &M) override; const char *getPassName() const override { return "Merge internal globals"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); FunctionPass::getAnalysisUsage(AU); } }; } // end anonymous namespace char GlobalMerge::ID = 0; INITIALIZE_TM_PASS(GlobalMerge, "global-merge", "Merge global variables", false, false) bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals, Module &M, bool isConst, unsigned AddrSpace) const { const TargetLowering *TLI = TM->getTargetLowering(); const DataLayout *DL = TLI->getDataLayout(); // FIXME: Infer the maximum possible offset depending on the actual users // (these max offsets are different for the users inside Thumb or ARM // functions) unsigned MaxOffset = TLI->getMaximalGlobalOffset(); // FIXME: Find better heuristics std::stable_sort(Globals.begin(), Globals.end(), [DL](const GlobalVariable *GV1, const GlobalVariable *GV2) { Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType(); Type *Ty2 = cast<PointerType>(GV2->getType())->getElementType(); return (DL->getTypeAllocSize(Ty1) < DL->getTypeAllocSize(Ty2)); }); Type *Int32Ty = Type::getInt32Ty(M.getContext()); assert(Globals.size() > 1); // FIXME: This simple solution merges globals all together as maximum as // possible. However, with this solution it would be hard to remove dead // global symbols at link-time. An alternative solution could be checking // global symbols references function by function, and make the symbols // being referred in the same function merged and we would probably need // to introduce heuristic algorithm to solve the merge conflict from // different functions. for (size_t i = 0, e = Globals.size(); i != e; ) { size_t j = 0; uint64_t MergedSize = 0; std::vector<Type*> Tys; std::vector<Constant*> Inits; bool HasExternal = false; GlobalVariable *TheFirstExternal = 0; for (j = i; j != e; ++j) { Type *Ty = Globals[j]->getType()->getElementType(); MergedSize += DL->getTypeAllocSize(Ty); if (MergedSize > MaxOffset) { break; } Tys.push_back(Ty); Inits.push_back(Globals[j]->getInitializer()); if (Globals[j]->hasExternalLinkage() && !HasExternal) { HasExternal = true; TheFirstExternal = Globals[j]; } } // If merged variables doesn't have external linkage, we needn't to expose // the symbol after merging. GlobalValue::LinkageTypes Linkage = HasExternal ? GlobalValue::ExternalLinkage : GlobalValue::InternalLinkage; StructType *MergedTy = StructType::get(M.getContext(), Tys); Constant *MergedInit = ConstantStruct::get(MergedTy, Inits); // If merged variables have external linkage, we use symbol name of the // first variable merged as the suffix of global symbol name. This would // be able to avoid the link-time naming conflict for globalm symbols. GlobalVariable *MergedGV = new GlobalVariable( M, MergedTy, isConst, Linkage, MergedInit, HasExternal ? "_MergedGlobals_" + TheFirstExternal->getName() : "_MergedGlobals", nullptr, GlobalVariable::NotThreadLocal, AddrSpace); for (size_t k = i; k < j; ++k) { GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage(); std::string Name = Globals[k]->getName(); Constant *Idx[2] = { ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, k-i) }; Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(MergedGV, Idx); Globals[k]->replaceAllUsesWith(GEP); Globals[k]->eraseFromParent(); if (Linkage != GlobalValue::InternalLinkage) { // Generate a new alias... auto *PTy = cast<PointerType>(GEP->getType()); GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), Linkage, Name, GEP, &M); } NumMerged++; } i = j; } return true; } void GlobalMerge::collectUsedGlobalVariables(Module &M) { // Extract global variables from llvm.used array const GlobalVariable *GV = M.getGlobalVariable("llvm.used"); if (!GV || !GV->hasInitializer()) return; // Should be an array of 'i8*'. const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer()); for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) if (const GlobalVariable *G = dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts())) MustKeepGlobalVariables.insert(G); } void GlobalMerge::setMustKeepGlobalVariables(Module &M) { collectUsedGlobalVariables(M); for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn; ++IFn) { for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end(); IBB != IEndBB; ++IBB) { // Follow the invoke link to find the landing pad instruction const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator()); if (!II) continue; const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst(); // Look for globals in the clauses of the landing pad instruction for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses(); Idx != NumClauses; ++Idx) if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LPInst->getClause(Idx) ->stripPointerCasts())) MustKeepGlobalVariables.insert(GV); } } } bool GlobalMerge::doInitialization(Module &M) { if (!EnableGlobalMerge) return false; DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals, BSSGlobals; const TargetLowering *TLI = TM->getTargetLowering(); const DataLayout *DL = TLI->getDataLayout(); unsigned MaxOffset = TLI->getMaximalGlobalOffset(); bool Changed = false; setMustKeepGlobalVariables(M); // Grab all non-const globals. for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { // Merge is safe for "normal" internal or external globals only if (I->isDeclaration() || I->isThreadLocal() || I->hasSection()) continue; if (!(EnableGlobalMergeOnExternal && I->hasExternalLinkage()) && !I->hasInternalLinkage()) continue; PointerType *PT = dyn_cast<PointerType>(I->getType()); assert(PT && "Global variable is not a pointer!"); unsigned AddressSpace = PT->getAddressSpace(); // Ignore fancy-aligned globals for now. unsigned Alignment = DL->getPreferredAlignment(I); Type *Ty = I->getType()->getElementType(); if (Alignment > DL->getABITypeAlignment(Ty)) continue; // Ignore all 'special' globals. if (I->getName().startswith("llvm.") || I->getName().startswith(".llvm.")) continue; // Ignore all "required" globals: if (isMustKeepGlobalVariable(I)) continue; if (DL->getTypeAllocSize(Ty) < MaxOffset) { if (TargetLoweringObjectFile::getKindForGlobal(I, *TM).isBSSLocal()) BSSGlobals[AddressSpace].push_back(I); else if (I->isConstant()) ConstGlobals[AddressSpace].push_back(I); else Globals[AddressSpace].push_back(I); } } for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator I = Globals.begin(), E = Globals.end(); I != E; ++I) if (I->second.size() > 1) Changed |= doMerge(I->second, M, false, I->first); for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I) if (I->second.size() > 1) Changed |= doMerge(I->second, M, false, I->first); if (EnableGlobalMergeOnConst) for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator I = ConstGlobals.begin(), E = ConstGlobals.end(); I != E; ++I) if (I->second.size() > 1) Changed |= doMerge(I->second, M, true, I->first); return Changed; } bool GlobalMerge::runOnFunction(Function &F) { return false; } bool GlobalMerge::doFinalization(Module &M) { MustKeepGlobalVariables.clear(); return false; } Pass *llvm::createGlobalMergePass(const TargetMachine *TM) { return new GlobalMerge(TM); }