//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LatencyPriorityQueue class, which is a // SchedulingPriorityQueue that schedules using latency information to // reduce the length of the critical path through the basic block. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LatencyPriorityQueue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "scheduler" bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { // The isScheduleHigh flag allows nodes with wraparound dependencies that // cannot easily be modeled as edges with latencies to be scheduled as // soon as possible in a top-down schedule. if (LHS->isScheduleHigh && !RHS->isScheduleHigh) return false; if (!LHS->isScheduleHigh && RHS->isScheduleHigh) return true; unsigned LHSNum = LHS->NodeNum; unsigned RHSNum = RHS->NodeNum; // The most important heuristic is scheduling the critical path. unsigned LHSLatency = PQ->getLatency(LHSNum); unsigned RHSLatency = PQ->getLatency(RHSNum); if (LHSLatency < RHSLatency) return true; if (LHSLatency > RHSLatency) return false; // After that, if two nodes have identical latencies, look to see if one will // unblock more other nodes than the other. unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum); unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum); if (LHSBlocked < RHSBlocked) return true; if (LHSBlocked > RHSBlocked) return false; // Finally, just to provide a stable ordering, use the node number as a // deciding factor. return RHSNum < LHSNum; } /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor /// of SU, return it, otherwise return null. SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) { SUnit *OnlyAvailablePred = nullptr; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { SUnit &Pred = *I->getSUnit(); if (!Pred.isScheduled) { // We found an available, but not scheduled, predecessor. If it's the // only one we have found, keep track of it... otherwise give up. if (OnlyAvailablePred && OnlyAvailablePred != &Pred) return nullptr; OnlyAvailablePred = &Pred; } } return OnlyAvailablePred; } void LatencyPriorityQueue::push(SUnit *SU) { // Look at all of the successors of this node. Count the number of nodes that // this node is the sole unscheduled node for. unsigned NumNodesBlocking = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (getSingleUnscheduledPred(I->getSUnit()) == SU) ++NumNodesBlocking; } NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; Queue.push_back(SU); } // scheduledNode - As nodes are scheduled, we look to see if there are any // successor nodes that have a single unscheduled predecessor. If so, that // single predecessor has a higher priority, since scheduling it will make // the node available. void LatencyPriorityQueue::scheduledNode(SUnit *SU) { for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { AdjustPriorityOfUnscheduledPreds(I->getSUnit()); } } /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just /// scheduled. If SU is not itself available, then there is at least one /// predecessor node that has not been scheduled yet. If SU has exactly ONE /// unscheduled predecessor, we want to increase its priority: it getting /// scheduled will make this node available, so it is better than some other /// node of the same priority that will not make a node available. void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { if (SU->isAvailable) return; // All preds scheduled. SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return; // Okay, we found a single predecessor that is available, but not scheduled. // Since it is available, it must be in the priority queue. First remove it. remove(OnlyAvailablePred); // Reinsert the node into the priority queue, which recomputes its // NumNodesSolelyBlocking value. push(OnlyAvailablePred); } SUnit *LatencyPriorityQueue::pop() { if (empty()) return nullptr; std::vector<SUnit *>::iterator Best = Queue.begin(); for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()), E = Queue.end(); I != E; ++I) if (Picker(*Best, *I)) Best = I; SUnit *V = *Best; if (Best != std::prev(Queue.end())) std::swap(*Best, Queue.back()); Queue.pop_back(); return V; } void LatencyPriorityQueue::remove(SUnit *SU) { assert(!Queue.empty() && "Queue is empty!"); std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU); if (I != std::prev(Queue.end())) std::swap(*I, Queue.back()); Queue.pop_back(); } #ifdef NDEBUG void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {} #else void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const { LatencyPriorityQueue q = *this; while (!q.empty()) { SUnit *su = q.pop(); dbgs() << "Height " << su->getHeight() << ": "; su->dump(DAG); } } #endif