//===---------------------------- StackMaps.cpp ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/StackMaps.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/IR/DataLayout.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOpcodes.h" #include "llvm/Target/TargetRegisterInfo.h" #include <iterator> using namespace llvm; #define DEBUG_TYPE "stackmaps" static cl::opt<int> StackMapVersion("stackmap-version", cl::init(1), cl::desc("Specify the stackmap encoding version (default = 1)")); const char *StackMaps::WSMP = "Stack Maps: "; PatchPointOpers::PatchPointOpers(const MachineInstr *MI) : MI(MI), HasDef(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && !MI->getOperand(0).isImplicit()), IsAnyReg(MI->getOperand(getMetaIdx(CCPos)).getImm() == CallingConv::AnyReg) { #ifndef NDEBUG unsigned CheckStartIdx = 0, e = MI->getNumOperands(); while (CheckStartIdx < e && MI->getOperand(CheckStartIdx).isReg() && MI->getOperand(CheckStartIdx).isDef() && !MI->getOperand(CheckStartIdx).isImplicit()) ++CheckStartIdx; assert(getMetaIdx() == CheckStartIdx && "Unexpected additional definition in Patchpoint intrinsic."); #endif } unsigned PatchPointOpers::getNextScratchIdx(unsigned StartIdx) const { if (!StartIdx) StartIdx = getVarIdx(); // Find the next scratch register (implicit def and early clobber) unsigned ScratchIdx = StartIdx, e = MI->getNumOperands(); while (ScratchIdx < e && !(MI->getOperand(ScratchIdx).isReg() && MI->getOperand(ScratchIdx).isDef() && MI->getOperand(ScratchIdx).isImplicit() && MI->getOperand(ScratchIdx).isEarlyClobber())) ++ScratchIdx; assert(ScratchIdx != e && "No scratch register available"); return ScratchIdx; } StackMaps::StackMaps(AsmPrinter &AP) : AP(AP) { if (StackMapVersion != 1) llvm_unreachable("Unsupported stackmap version!"); } MachineInstr::const_mop_iterator StackMaps::parseOperand(MachineInstr::const_mop_iterator MOI, MachineInstr::const_mop_iterator MOE, LocationVec &Locs, LiveOutVec &LiveOuts) const { if (MOI->isImm()) { switch (MOI->getImm()) { default: llvm_unreachable("Unrecognized operand type."); case StackMaps::DirectMemRefOp: { unsigned Size = AP.TM.getDataLayout()->getPointerSizeInBits(); assert((Size % 8) == 0 && "Need pointer size in bytes."); Size /= 8; unsigned Reg = (++MOI)->getReg(); int64_t Imm = (++MOI)->getImm(); Locs.push_back(Location(StackMaps::Location::Direct, Size, Reg, Imm)); break; } case StackMaps::IndirectMemRefOp: { int64_t Size = (++MOI)->getImm(); assert(Size > 0 && "Need a valid size for indirect memory locations."); unsigned Reg = (++MOI)->getReg(); int64_t Imm = (++MOI)->getImm(); Locs.push_back(Location(StackMaps::Location::Indirect, Size, Reg, Imm)); break; } case StackMaps::ConstantOp: { ++MOI; assert(MOI->isImm() && "Expected constant operand."); int64_t Imm = MOI->getImm(); Locs.push_back(Location(Location::Constant, sizeof(int64_t), 0, Imm)); break; } } return ++MOI; } // The physical register number will ultimately be encoded as a DWARF regno. // The stack map also records the size of a spill slot that can hold the // register content. (The runtime can track the actual size of the data type // if it needs to.) if (MOI->isReg()) { // Skip implicit registers (this includes our scratch registers) if (MOI->isImplicit()) return ++MOI; assert(TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) && "Virtreg operands should have been rewritten before now."); const TargetRegisterClass *RC = AP.TM.getRegisterInfo()->getMinimalPhysRegClass(MOI->getReg()); assert(!MOI->getSubReg() && "Physical subreg still around."); Locs.push_back( Location(Location::Register, RC->getSize(), MOI->getReg(), 0)); return ++MOI; } if (MOI->isRegLiveOut()) LiveOuts = parseRegisterLiveOutMask(MOI->getRegLiveOut()); return ++MOI; } /// Go up the super-register chain until we hit a valid dwarf register number. static unsigned getDwarfRegNum(unsigned Reg, const TargetRegisterInfo *TRI) { int RegNo = TRI->getDwarfRegNum(Reg, false); for (MCSuperRegIterator SR(Reg, TRI); SR.isValid() && RegNo < 0; ++SR) RegNo = TRI->getDwarfRegNum(*SR, false); assert(RegNo >= 0 && "Invalid Dwarf register number."); return (unsigned) RegNo; } /// Create a live-out register record for the given register Reg. StackMaps::LiveOutReg StackMaps::createLiveOutReg(unsigned Reg, const TargetRegisterInfo *TRI) const { unsigned RegNo = getDwarfRegNum(Reg, TRI); unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize(); return LiveOutReg(Reg, RegNo, Size); } /// Parse the register live-out mask and return a vector of live-out registers /// that need to be recorded in the stackmap. StackMaps::LiveOutVec StackMaps::parseRegisterLiveOutMask(const uint32_t *Mask) const { assert(Mask && "No register mask specified"); const TargetRegisterInfo *TRI = AP.TM.getRegisterInfo(); LiveOutVec LiveOuts; // Create a LiveOutReg for each bit that is set in the register mask. for (unsigned Reg = 0, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) if ((Mask[Reg / 32] >> Reg % 32) & 1) LiveOuts.push_back(createLiveOutReg(Reg, TRI)); // We don't need to keep track of a register if its super-register is already // in the list. Merge entries that refer to the same dwarf register and use // the maximum size that needs to be spilled. std::sort(LiveOuts.begin(), LiveOuts.end()); for (LiveOutVec::iterator I = LiveOuts.begin(), E = LiveOuts.end(); I != E; ++I) { for (LiveOutVec::iterator II = std::next(I); II != E; ++II) { if (I->RegNo != II->RegNo) { // Skip all the now invalid entries. I = --II; break; } I->Size = std::max(I->Size, II->Size); if (TRI->isSuperRegister(I->Reg, II->Reg)) I->Reg = II->Reg; II->MarkInvalid(); } } LiveOuts.erase(std::remove_if(LiveOuts.begin(), LiveOuts.end(), LiveOutReg::IsInvalid), LiveOuts.end()); return LiveOuts; } void StackMaps::recordStackMapOpers(const MachineInstr &MI, uint64_t ID, MachineInstr::const_mop_iterator MOI, MachineInstr::const_mop_iterator MOE, bool recordResult) { MCContext &OutContext = AP.OutStreamer.getContext(); MCSymbol *MILabel = OutContext.CreateTempSymbol(); AP.OutStreamer.EmitLabel(MILabel); LocationVec Locations; LiveOutVec LiveOuts; if (recordResult) { assert(PatchPointOpers(&MI).hasDef() && "Stackmap has no return value."); parseOperand(MI.operands_begin(), std::next(MI.operands_begin()), Locations, LiveOuts); } // Parse operands. while (MOI != MOE) { MOI = parseOperand(MOI, MOE, Locations, LiveOuts); } // Move large constants into the constant pool. for (LocationVec::iterator I = Locations.begin(), E = Locations.end(); I != E; ++I) { // Constants are encoded as sign-extended integers. // -1 is directly encoded as .long 0xFFFFFFFF with no constant pool. if (I->LocType == Location::Constant && ((I->Offset + (int64_t(1)<<31)) >> 32) != 0) { I->LocType = Location::ConstantIndex; auto Result = ConstPool.insert(std::make_pair(I->Offset, I->Offset)); I->Offset = Result.first - ConstPool.begin(); } } // Create an expression to calculate the offset of the callsite from function // entry. const MCExpr *CSOffsetExpr = MCBinaryExpr::CreateSub( MCSymbolRefExpr::Create(MILabel, OutContext), MCSymbolRefExpr::Create(AP.CurrentFnSym, OutContext), OutContext); CSInfos.push_back(CallsiteInfo(CSOffsetExpr, ID, Locations, LiveOuts)); // Record the stack size of the current function. const MachineFrameInfo *MFI = AP.MF->getFrameInfo(); FnStackSize[AP.CurrentFnSym] = MFI->hasVarSizedObjects() ? UINT64_MAX : MFI->getStackSize(); } void StackMaps::recordStackMap(const MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::STACKMAP && "expected stackmap"); int64_t ID = MI.getOperand(0).getImm(); recordStackMapOpers(MI, ID, std::next(MI.operands_begin(), 2), MI.operands_end()); } void StackMaps::recordPatchPoint(const MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::PATCHPOINT && "expected patchpoint"); PatchPointOpers opers(&MI); int64_t ID = opers.getMetaOper(PatchPointOpers::IDPos).getImm(); MachineInstr::const_mop_iterator MOI = std::next(MI.operands_begin(), opers.getStackMapStartIdx()); recordStackMapOpers(MI, ID, MOI, MI.operands_end(), opers.isAnyReg() && opers.hasDef()); #ifndef NDEBUG // verify anyregcc LocationVec &Locations = CSInfos.back().Locations; if (opers.isAnyReg()) { unsigned NArgs = opers.getMetaOper(PatchPointOpers::NArgPos).getImm(); for (unsigned i = 0, e = (opers.hasDef() ? NArgs+1 : NArgs); i != e; ++i) assert(Locations[i].LocType == Location::Register && "anyreg arg must be in reg."); } #endif } /// Emit the stackmap header. /// /// Header { /// uint8 : Stack Map Version (currently 1) /// uint8 : Reserved (expected to be 0) /// uint16 : Reserved (expected to be 0) /// } /// uint32 : NumFunctions /// uint32 : NumConstants /// uint32 : NumRecords void StackMaps::emitStackmapHeader(MCStreamer &OS) { // Header. OS.EmitIntValue(StackMapVersion, 1); // Version. OS.EmitIntValue(0, 1); // Reserved. OS.EmitIntValue(0, 2); // Reserved. // Num functions. DEBUG(dbgs() << WSMP << "#functions = " << FnStackSize.size() << '\n'); OS.EmitIntValue(FnStackSize.size(), 4); // Num constants. DEBUG(dbgs() << WSMP << "#constants = " << ConstPool.size() << '\n'); OS.EmitIntValue(ConstPool.size(), 4); // Num callsites. DEBUG(dbgs() << WSMP << "#callsites = " << CSInfos.size() << '\n'); OS.EmitIntValue(CSInfos.size(), 4); } /// Emit the function frame record for each function. /// /// StkSizeRecord[NumFunctions] { /// uint64 : Function Address /// uint64 : Stack Size /// } void StackMaps::emitFunctionFrameRecords(MCStreamer &OS) { // Function Frame records. DEBUG(dbgs() << WSMP << "functions:\n"); for (auto const &FR : FnStackSize) { DEBUG(dbgs() << WSMP << "function addr: " << FR.first << " frame size: " << FR.second); OS.EmitSymbolValue(FR.first, 8); OS.EmitIntValue(FR.second, 8); } } /// Emit the constant pool. /// /// int64 : Constants[NumConstants] void StackMaps::emitConstantPoolEntries(MCStreamer &OS) { // Constant pool entries. DEBUG(dbgs() << WSMP << "constants:\n"); for (auto ConstEntry : ConstPool) { DEBUG(dbgs() << WSMP << ConstEntry.second << '\n'); OS.EmitIntValue(ConstEntry.second, 8); } } /// Emit the callsite info for each callsite. /// /// StkMapRecord[NumRecords] { /// uint64 : PatchPoint ID /// uint32 : Instruction Offset /// uint16 : Reserved (record flags) /// uint16 : NumLocations /// Location[NumLocations] { /// uint8 : Register | Direct | Indirect | Constant | ConstantIndex /// uint8 : Size in Bytes /// uint16 : Dwarf RegNum /// int32 : Offset /// } /// uint16 : Padding /// uint16 : NumLiveOuts /// LiveOuts[NumLiveOuts] { /// uint16 : Dwarf RegNum /// uint8 : Reserved /// uint8 : Size in Bytes /// } /// uint32 : Padding (only if required to align to 8 byte) /// } /// /// Location Encoding, Type, Value: /// 0x1, Register, Reg (value in register) /// 0x2, Direct, Reg + Offset (frame index) /// 0x3, Indirect, [Reg + Offset] (spilled value) /// 0x4, Constant, Offset (small constant) /// 0x5, ConstIndex, Constants[Offset] (large constant) void StackMaps::emitCallsiteEntries(MCStreamer &OS, const TargetRegisterInfo *TRI) { // Callsite entries. DEBUG(dbgs() << WSMP << "callsites:\n"); for (const auto &CSI : CSInfos) { const LocationVec &CSLocs = CSI.Locations; const LiveOutVec &LiveOuts = CSI.LiveOuts; DEBUG(dbgs() << WSMP << "callsite " << CSI.ID << "\n"); // Verify stack map entry. It's better to communicate a problem to the // runtime than crash in case of in-process compilation. Currently, we do // simple overflow checks, but we may eventually communicate other // compilation errors this way. if (CSLocs.size() > UINT16_MAX || LiveOuts.size() > UINT16_MAX) { OS.EmitIntValue(UINT64_MAX, 8); // Invalid ID. OS.EmitValue(CSI.CSOffsetExpr, 4); OS.EmitIntValue(0, 2); // Reserved. OS.EmitIntValue(0, 2); // 0 locations. OS.EmitIntValue(0, 2); // padding. OS.EmitIntValue(0, 2); // 0 live-out registers. OS.EmitIntValue(0, 4); // padding. continue; } OS.EmitIntValue(CSI.ID, 8); OS.EmitValue(CSI.CSOffsetExpr, 4); // Reserved for flags. OS.EmitIntValue(0, 2); DEBUG(dbgs() << WSMP << " has " << CSLocs.size() << " locations\n"); OS.EmitIntValue(CSLocs.size(), 2); unsigned OperIdx = 0; for (const auto &Loc : CSLocs) { unsigned RegNo = 0; int Offset = Loc.Offset; if(Loc.Reg) { RegNo = getDwarfRegNum(Loc.Reg, TRI); // If this is a register location, put the subregister byte offset in // the location offset. if (Loc.LocType == Location::Register) { assert(!Loc.Offset && "Register location should have zero offset"); unsigned LLVMRegNo = TRI->getLLVMRegNum(RegNo, false); unsigned SubRegIdx = TRI->getSubRegIndex(LLVMRegNo, Loc.Reg); if (SubRegIdx) Offset = TRI->getSubRegIdxOffset(SubRegIdx); } } else { assert(Loc.LocType != Location::Register && "Missing location register"); } DEBUG(dbgs() << WSMP << " Loc " << OperIdx << ": "; switch (Loc.LocType) { case Location::Unprocessed: dbgs() << "<Unprocessed operand>"; break; case Location::Register: dbgs() << "Register " << TRI->getName(Loc.Reg); break; case Location::Direct: dbgs() << "Direct " << TRI->getName(Loc.Reg); if (Loc.Offset) dbgs() << " + " << Loc.Offset; break; case Location::Indirect: dbgs() << "Indirect " << TRI->getName(Loc.Reg) << " + " << Loc.Offset; break; case Location::Constant: dbgs() << "Constant " << Loc.Offset; break; case Location::ConstantIndex: dbgs() << "Constant Index " << Loc.Offset; break; } dbgs() << " [encoding: .byte " << Loc.LocType << ", .byte " << Loc.Size << ", .short " << RegNo << ", .int " << Offset << "]\n"; ); OS.EmitIntValue(Loc.LocType, 1); OS.EmitIntValue(Loc.Size, 1); OS.EmitIntValue(RegNo, 2); OS.EmitIntValue(Offset, 4); OperIdx++; } DEBUG(dbgs() << WSMP << " has " << LiveOuts.size() << " live-out registers\n"); // Num live-out registers and padding to align to 4 byte. OS.EmitIntValue(0, 2); OS.EmitIntValue(LiveOuts.size(), 2); OperIdx = 0; for (const auto &LO : LiveOuts) { DEBUG(dbgs() << WSMP << " LO " << OperIdx << ": " << TRI->getName(LO.Reg) << " [encoding: .short " << LO.RegNo << ", .byte 0, .byte " << LO.Size << "]\n"); OS.EmitIntValue(LO.RegNo, 2); OS.EmitIntValue(0, 1); OS.EmitIntValue(LO.Size, 1); } // Emit alignment to 8 byte. OS.EmitValueToAlignment(8); } } /// Serialize the stackmap data. void StackMaps::serializeToStackMapSection() { (void) WSMP; // Bail out if there's no stack map data. assert((!CSInfos.empty() || (CSInfos.empty() && ConstPool.empty())) && "Expected empty constant pool too!"); assert((!CSInfos.empty() || (CSInfos.empty() && FnStackSize.empty())) && "Expected empty function record too!"); if (CSInfos.empty()) return; MCContext &OutContext = AP.OutStreamer.getContext(); MCStreamer &OS = AP.OutStreamer; const TargetRegisterInfo *TRI = AP.TM.getRegisterInfo(); // Create the section. const MCSection *StackMapSection = OutContext.getObjectFileInfo()->getStackMapSection(); OS.SwitchSection(StackMapSection); // Emit a dummy symbol to force section inclusion. OS.EmitLabel(OutContext.GetOrCreateSymbol(Twine("__LLVM_StackMaps"))); // Serialize data. DEBUG(dbgs() << "********** Stack Map Output **********\n"); emitStackmapHeader(OS); emitFunctionFrameRecords(OS); emitConstantPoolEntries(OS); emitCallsiteEntries(OS, TRI); OS.AddBlankLine(); // Clean up. CSInfos.clear(); ConstPool.clear(); }