//===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a hash set that can be used to remove duplication of // nodes in a graph. // //===----------------------------------------------------------------------===// #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Hashing.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Host.h" #include "llvm/Support/MathExtras.h" #include <cassert> #include <cstring> using namespace llvm; //===----------------------------------------------------------------------===// // FoldingSetNodeIDRef Implementation /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, /// used to lookup the node in the FoldingSetImpl. unsigned FoldingSetNodeIDRef::ComputeHash() const { return static_cast<unsigned>(hash_combine_range(Data, Data+Size)); } bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const { if (Size != RHS.Size) return false; return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0; } /// Used to compare the "ordering" of two nodes as defined by the /// profiled bits and their ordering defined by memcmp(). bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const { if (Size != RHS.Size) return Size < RHS.Size; return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0; } //===----------------------------------------------------------------------===// // FoldingSetNodeID Implementation /// Add* - Add various data types to Bit data. /// void FoldingSetNodeID::AddPointer(const void *Ptr) { // Note: this adds pointers to the hash using sizes and endianness that // depend on the host. It doesn't matter however, because hashing on // pointer values in inherently unstable. Nothing should depend on the // ordering of nodes in the folding set. Bits.append(reinterpret_cast<unsigned *>(&Ptr), reinterpret_cast<unsigned *>(&Ptr+1)); } void FoldingSetNodeID::AddInteger(signed I) { Bits.push_back(I); } void FoldingSetNodeID::AddInteger(unsigned I) { Bits.push_back(I); } void FoldingSetNodeID::AddInteger(long I) { AddInteger((unsigned long)I); } void FoldingSetNodeID::AddInteger(unsigned long I) { if (sizeof(long) == sizeof(int)) AddInteger(unsigned(I)); else if (sizeof(long) == sizeof(long long)) { AddInteger((unsigned long long)I); } else { llvm_unreachable("unexpected sizeof(long)"); } } void FoldingSetNodeID::AddInteger(long long I) { AddInteger((unsigned long long)I); } void FoldingSetNodeID::AddInteger(unsigned long long I) { AddInteger(unsigned(I)); if ((uint64_t)(unsigned)I != I) Bits.push_back(unsigned(I >> 32)); } void FoldingSetNodeID::AddString(StringRef String) { unsigned Size = String.size(); Bits.push_back(Size); if (!Size) return; unsigned Units = Size / 4; unsigned Pos = 0; const unsigned *Base = (const unsigned*) String.data(); // If the string is aligned do a bulk transfer. if (!((intptr_t)Base & 3)) { Bits.append(Base, Base + Units); Pos = (Units + 1) * 4; } else { // Otherwise do it the hard way. // To be compatible with above bulk transfer, we need to take endianness // into account. if (sys::IsBigEndianHost) { for (Pos += 4; Pos <= Size; Pos += 4) { unsigned V = ((unsigned char)String[Pos - 4] << 24) | ((unsigned char)String[Pos - 3] << 16) | ((unsigned char)String[Pos - 2] << 8) | (unsigned char)String[Pos - 1]; Bits.push_back(V); } } else { assert(sys::IsLittleEndianHost && "Unexpected host endianness"); for (Pos += 4; Pos <= Size; Pos += 4) { unsigned V = ((unsigned char)String[Pos - 1] << 24) | ((unsigned char)String[Pos - 2] << 16) | ((unsigned char)String[Pos - 3] << 8) | (unsigned char)String[Pos - 4]; Bits.push_back(V); } } } // With the leftover bits. unsigned V = 0; // Pos will have overshot size by 4 - #bytes left over. // No need to take endianness into account here - this is always executed. switch (Pos - Size) { case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru. case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru. case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break; default: return; // Nothing left. } Bits.push_back(V); } // AddNodeID - Adds the Bit data of another ID to *this. void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) { Bits.append(ID.Bits.begin(), ID.Bits.end()); } /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to /// lookup the node in the FoldingSetImpl. unsigned FoldingSetNodeID::ComputeHash() const { return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash(); } /// operator== - Used to compare two nodes to each other. /// bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const { return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size()); } /// operator== - Used to compare two nodes to each other. /// bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const { return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS; } /// Used to compare the "ordering" of two nodes as defined by the /// profiled bits and their ordering defined by memcmp(). bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const { return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size()); } bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const { return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS; } /// Intern - Copy this node's data to a memory region allocated from the /// given allocator and return a FoldingSetNodeIDRef describing the /// interned data. FoldingSetNodeIDRef FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const { unsigned *New = Allocator.Allocate<unsigned>(Bits.size()); std::uninitialized_copy(Bits.begin(), Bits.end(), New); return FoldingSetNodeIDRef(New, Bits.size()); } //===----------------------------------------------------------------------===// /// Helper functions for FoldingSetImpl. /// GetNextPtr - In order to save space, each bucket is a /// singly-linked-list. In order to make deletion more efficient, we make /// the list circular, so we can delete a node without computing its hash. /// The problem with this is that the start of the hash buckets are not /// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null: /// use GetBucketPtr when this happens. static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr) { // The low bit is set if this is the pointer back to the bucket. if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1) return nullptr; return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr); } /// testing. static void **GetBucketPtr(void *NextInBucketPtr) { intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr); assert((Ptr & 1) && "Not a bucket pointer"); return reinterpret_cast<void**>(Ptr & ~intptr_t(1)); } /// GetBucketFor - Hash the specified node ID and return the hash bucket for /// the specified ID. static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) { // NumBuckets is always a power of 2. unsigned BucketNum = Hash & (NumBuckets-1); return Buckets + BucketNum; } /// AllocateBuckets - Allocated initialized bucket memory. static void **AllocateBuckets(unsigned NumBuckets) { void **Buckets = static_cast<void**>(calloc(NumBuckets+1, sizeof(void*))); // Set the very last bucket to be a non-null "pointer". Buckets[NumBuckets] = reinterpret_cast<void*>(-1); return Buckets; } //===----------------------------------------------------------------------===// // FoldingSetImpl Implementation FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) { assert(5 < Log2InitSize && Log2InitSize < 32 && "Initial hash table size out of range"); NumBuckets = 1 << Log2InitSize; Buckets = AllocateBuckets(NumBuckets); NumNodes = 0; } FoldingSetImpl::~FoldingSetImpl() { free(Buckets); } void FoldingSetImpl::clear() { // Set all but the last bucket to null pointers. memset(Buckets, 0, NumBuckets*sizeof(void*)); // Set the very last bucket to be a non-null "pointer". Buckets[NumBuckets] = reinterpret_cast<void*>(-1); // Reset the node count to zero. NumNodes = 0; } /// GrowHashTable - Double the size of the hash table and rehash everything. /// void FoldingSetImpl::GrowHashTable() { void **OldBuckets = Buckets; unsigned OldNumBuckets = NumBuckets; NumBuckets <<= 1; // Clear out new buckets. Buckets = AllocateBuckets(NumBuckets); NumNodes = 0; // Walk the old buckets, rehashing nodes into their new place. FoldingSetNodeID TempID; for (unsigned i = 0; i != OldNumBuckets; ++i) { void *Probe = OldBuckets[i]; if (!Probe) continue; while (Node *NodeInBucket = GetNextPtr(Probe)) { // Figure out the next link, remove NodeInBucket from the old link. Probe = NodeInBucket->getNextInBucket(); NodeInBucket->SetNextInBucket(nullptr); // Insert the node into the new bucket, after recomputing the hash. InsertNode(NodeInBucket, GetBucketFor(ComputeNodeHash(NodeInBucket, TempID), Buckets, NumBuckets)); TempID.clear(); } } free(OldBuckets); } /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, /// return it. If not, return the insertion token that will make insertion /// faster. FoldingSetImpl::Node *FoldingSetImpl::FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { unsigned IDHash = ID.ComputeHash(); void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets); void *Probe = *Bucket; InsertPos = nullptr; FoldingSetNodeID TempID; while (Node *NodeInBucket = GetNextPtr(Probe)) { if (NodeEquals(NodeInBucket, ID, IDHash, TempID)) return NodeInBucket; TempID.clear(); Probe = NodeInBucket->getNextInBucket(); } // Didn't find the node, return null with the bucket as the InsertPos. InsertPos = Bucket; return nullptr; } /// InsertNode - Insert the specified node into the folding set, knowing that it /// is not already in the map. InsertPos must be obtained from /// FindNodeOrInsertPos. void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) { assert(!N->getNextInBucket()); // Do we need to grow the hashtable? if (NumNodes+1 > NumBuckets*2) { GrowHashTable(); FoldingSetNodeID TempID; InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets); } ++NumNodes; /// The insert position is actually a bucket pointer. void **Bucket = static_cast<void**>(InsertPos); void *Next = *Bucket; // If this is the first insertion into this bucket, its next pointer will be // null. Pretend as if it pointed to itself, setting the low bit to indicate // that it is a pointer to the bucket. if (!Next) Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1); // Set the node's next pointer, and make the bucket point to the node. N->SetNextInBucket(Next); *Bucket = N; } /// RemoveNode - Remove a node from the folding set, returning true if one was /// removed or false if the node was not in the folding set. bool FoldingSetImpl::RemoveNode(Node *N) { // Because each bucket is a circular list, we don't need to compute N's hash // to remove it. void *Ptr = N->getNextInBucket(); if (!Ptr) return false; // Not in folding set. --NumNodes; N->SetNextInBucket(nullptr); // Remember what N originally pointed to, either a bucket or another node. void *NodeNextPtr = Ptr; // Chase around the list until we find the node (or bucket) which points to N. while (true) { if (Node *NodeInBucket = GetNextPtr(Ptr)) { // Advance pointer. Ptr = NodeInBucket->getNextInBucket(); // We found a node that points to N, change it to point to N's next node, // removing N from the list. if (Ptr == N) { NodeInBucket->SetNextInBucket(NodeNextPtr); return true; } } else { void **Bucket = GetBucketPtr(Ptr); Ptr = *Bucket; // If we found that the bucket points to N, update the bucket to point to // whatever is next. if (Ptr == N) { *Bucket = NodeNextPtr; return true; } } } } /// GetOrInsertNode - If there is an existing simple Node exactly /// equal to the specified node, return it. Otherwise, insert 'N' and it /// instead. FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) { FoldingSetNodeID ID; GetNodeProfile(N, ID); void *IP; if (Node *E = FindNodeOrInsertPos(ID, IP)) return E; InsertNode(N, IP); return N; } //===----------------------------------------------------------------------===// // FoldingSetIteratorImpl Implementation FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) { // Skip to the first non-null non-self-cycle bucket. while (*Bucket != reinterpret_cast<void*>(-1) && (!*Bucket || !GetNextPtr(*Bucket))) ++Bucket; NodePtr = static_cast<FoldingSetNode*>(*Bucket); } void FoldingSetIteratorImpl::advance() { // If there is another link within this bucket, go to it. void *Probe = NodePtr->getNextInBucket(); if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe)) NodePtr = NextNodeInBucket; else { // Otherwise, this is the last link in this bucket. void **Bucket = GetBucketPtr(Probe); // Skip to the next non-null non-self-cycle bucket. do { ++Bucket; } while (*Bucket != reinterpret_cast<void*>(-1) && (!*Bucket || !GetNextPtr(*Bucket))); NodePtr = static_cast<FoldingSetNode*>(*Bucket); } } //===----------------------------------------------------------------------===// // FoldingSetBucketIteratorImpl Implementation FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) { Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket; }