//===-- Path.cpp - Implement OS Path Concept ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the operating system Path API. // //===----------------------------------------------------------------------===// #include "llvm/Support/Errc.h" #include "llvm/Support/Path.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Process.h" #include <cctype> #include <cstdio> #include <cstring> #include <fcntl.h> #if !defined(_MSC_VER) && !defined(__MINGW32__) #include <unistd.h> #else #include <io.h> #endif using namespace llvm; namespace { using llvm::StringRef; using llvm::sys::path::is_separator; #ifdef LLVM_ON_WIN32 const char *separators = "\\/"; const char preferred_separator = '\\'; #else const char separators = '/'; const char preferred_separator = '/'; #endif StringRef find_first_component(StringRef path) { // Look for this first component in the following order. // * empty (in this case we return an empty string) // * either C: or {//,\\}net. // * {/,\} // * {.,..} // * {file,directory}name if (path.empty()) return path; #ifdef LLVM_ON_WIN32 // C: if (path.size() >= 2 && std::isalpha(static_cast<unsigned char>(path[0])) && path[1] == ':') return path.substr(0, 2); #endif // //net if ((path.size() > 2) && is_separator(path[0]) && path[0] == path[1] && !is_separator(path[2])) { // Find the next directory separator. size_t end = path.find_first_of(separators, 2); return path.substr(0, end); } // {/,\} if (is_separator(path[0])) return path.substr(0, 1); if (path.startswith("..")) return path.substr(0, 2); if (path[0] == '.') return path.substr(0, 1); // * {file,directory}name size_t end = path.find_first_of(separators); return path.substr(0, end); } size_t filename_pos(StringRef str) { if (str.size() == 2 && is_separator(str[0]) && str[0] == str[1]) return 0; if (str.size() > 0 && is_separator(str[str.size() - 1])) return str.size() - 1; size_t pos = str.find_last_of(separators, str.size() - 1); #ifdef LLVM_ON_WIN32 if (pos == StringRef::npos) pos = str.find_last_of(':', str.size() - 2); #endif if (pos == StringRef::npos || (pos == 1 && is_separator(str[0]))) return 0; return pos + 1; } size_t root_dir_start(StringRef str) { // case "c:/" #ifdef LLVM_ON_WIN32 if (str.size() > 2 && str[1] == ':' && is_separator(str[2])) return 2; #endif // case "//" if (str.size() == 2 && is_separator(str[0]) && str[0] == str[1]) return StringRef::npos; // case "//net" if (str.size() > 3 && is_separator(str[0]) && str[0] == str[1] && !is_separator(str[2])) { return str.find_first_of(separators, 2); } // case "/" if (str.size() > 0 && is_separator(str[0])) return 0; return StringRef::npos; } size_t parent_path_end(StringRef path) { size_t end_pos = filename_pos(path); bool filename_was_sep = path.size() > 0 && is_separator(path[end_pos]); // Skip separators except for root dir. size_t root_dir_pos = root_dir_start(path.substr(0, end_pos)); while(end_pos > 0 && (end_pos - 1) != root_dir_pos && is_separator(path[end_pos - 1])) --end_pos; if (end_pos == 1 && root_dir_pos == 0 && filename_was_sep) return StringRef::npos; return end_pos; } } // end unnamed namespace enum FSEntity { FS_Dir, FS_File, FS_Name }; // Implemented in Unix/Path.inc and Windows/Path.inc. static std::error_code TempDir(SmallVectorImpl<char> &result); static std::error_code createUniqueEntity(const Twine &Model, int &ResultFD, SmallVectorImpl<char> &ResultPath, bool MakeAbsolute, unsigned Mode, FSEntity Type) { SmallString<128> ModelStorage; Model.toVector(ModelStorage); if (MakeAbsolute) { // Make model absolute by prepending a temp directory if it's not already. if (!sys::path::is_absolute(Twine(ModelStorage))) { SmallString<128> TDir; if (std::error_code EC = TempDir(TDir)) return EC; sys::path::append(TDir, Twine(ModelStorage)); ModelStorage.swap(TDir); } } // From here on, DO NOT modify model. It may be needed if the randomly chosen // path already exists. ResultPath = ModelStorage; // Null terminate. ResultPath.push_back(0); ResultPath.pop_back(); retry_random_path: // Replace '%' with random chars. for (unsigned i = 0, e = ModelStorage.size(); i != e; ++i) { if (ModelStorage[i] == '%') ResultPath[i] = "0123456789abcdef"[sys::Process::GetRandomNumber() & 15]; } // Try to open + create the file. switch (Type) { case FS_File: { if (std::error_code EC = sys::fs::openFileForWrite(Twine(ResultPath.begin()), ResultFD, sys::fs::F_RW | sys::fs::F_Excl, Mode)) { if (EC == errc::file_exists) goto retry_random_path; return EC; } return std::error_code(); } case FS_Name: { bool Exists; std::error_code EC = sys::fs::exists(ResultPath.begin(), Exists); if (EC) return EC; if (Exists) goto retry_random_path; return std::error_code(); } case FS_Dir: { if (std::error_code EC = sys::fs::create_directory(ResultPath.begin(), false)) { if (EC == errc::file_exists) goto retry_random_path; return EC; } return std::error_code(); } } llvm_unreachable("Invalid Type"); } namespace llvm { namespace sys { namespace path { const_iterator begin(StringRef path) { const_iterator i; i.Path = path; i.Component = find_first_component(path); i.Position = 0; return i; } const_iterator end(StringRef path) { const_iterator i; i.Path = path; i.Position = path.size(); return i; } const_iterator &const_iterator::operator++() { assert(Position < Path.size() && "Tried to increment past end!"); // Increment Position to past the current component Position += Component.size(); // Check for end. if (Position == Path.size()) { Component = StringRef(); return *this; } // Both POSIX and Windows treat paths that begin with exactly two separators // specially. bool was_net = Component.size() > 2 && is_separator(Component[0]) && Component[1] == Component[0] && !is_separator(Component[2]); // Handle separators. if (is_separator(Path[Position])) { // Root dir. if (was_net #ifdef LLVM_ON_WIN32 // c:/ || Component.endswith(":") #endif ) { Component = Path.substr(Position, 1); return *this; } // Skip extra separators. while (Position != Path.size() && is_separator(Path[Position])) { ++Position; } // Treat trailing '/' as a '.'. if (Position == Path.size()) { --Position; Component = "."; return *this; } } // Find next component. size_t end_pos = Path.find_first_of(separators, Position); Component = Path.slice(Position, end_pos); return *this; } const_iterator &const_iterator::operator--() { // If we're at the end and the previous char was a '/', return '.' unless // we are the root path. size_t root_dir_pos = root_dir_start(Path); if (Position == Path.size() && Path.size() > root_dir_pos + 1 && is_separator(Path[Position - 1])) { --Position; Component = "."; return *this; } // Skip separators unless it's the root directory. size_t end_pos = Position; while(end_pos > 0 && (end_pos - 1) != root_dir_pos && is_separator(Path[end_pos - 1])) --end_pos; // Find next separator. size_t start_pos = filename_pos(Path.substr(0, end_pos)); Component = Path.slice(start_pos, end_pos); Position = start_pos; return *this; } bool const_iterator::operator==(const const_iterator &RHS) const { return Path.begin() == RHS.Path.begin() && Position == RHS.Position; } bool const_iterator::operator!=(const const_iterator &RHS) const { return !(*this == RHS); } ptrdiff_t const_iterator::operator-(const const_iterator &RHS) const { return Position - RHS.Position; } const StringRef root_path(StringRef path) { const_iterator b = begin(path), pos = b, e = end(path); if (b != e) { bool has_net = b->size() > 2 && is_separator((*b)[0]) && (*b)[1] == (*b)[0]; bool has_drive = #ifdef LLVM_ON_WIN32 b->endswith(":"); #else false; #endif if (has_net || has_drive) { if ((++pos != e) && is_separator((*pos)[0])) { // {C:/,//net/}, so get the first two components. return path.substr(0, b->size() + pos->size()); } else { // just {C:,//net}, return the first component. return *b; } } // POSIX style root directory. if (is_separator((*b)[0])) { return *b; } } return StringRef(); } const StringRef root_name(StringRef path) { const_iterator b = begin(path), e = end(path); if (b != e) { bool has_net = b->size() > 2 && is_separator((*b)[0]) && (*b)[1] == (*b)[0]; bool has_drive = #ifdef LLVM_ON_WIN32 b->endswith(":"); #else false; #endif if (has_net || has_drive) { // just {C:,//net}, return the first component. return *b; } } // No path or no name. return StringRef(); } const StringRef root_directory(StringRef path) { const_iterator b = begin(path), pos = b, e = end(path); if (b != e) { bool has_net = b->size() > 2 && is_separator((*b)[0]) && (*b)[1] == (*b)[0]; bool has_drive = #ifdef LLVM_ON_WIN32 b->endswith(":"); #else false; #endif if ((has_net || has_drive) && // {C:,//net}, skip to the next component. (++pos != e) && is_separator((*pos)[0])) { return *pos; } // POSIX style root directory. if (!has_net && is_separator((*b)[0])) { return *b; } } // No path or no root. return StringRef(); } const StringRef relative_path(StringRef path) { StringRef root = root_path(path); return path.substr(root.size()); } void append(SmallVectorImpl<char> &path, const Twine &a, const Twine &b, const Twine &c, const Twine &d) { SmallString<32> a_storage; SmallString<32> b_storage; SmallString<32> c_storage; SmallString<32> d_storage; SmallVector<StringRef, 4> components; if (!a.isTriviallyEmpty()) components.push_back(a.toStringRef(a_storage)); if (!b.isTriviallyEmpty()) components.push_back(b.toStringRef(b_storage)); if (!c.isTriviallyEmpty()) components.push_back(c.toStringRef(c_storage)); if (!d.isTriviallyEmpty()) components.push_back(d.toStringRef(d_storage)); for (SmallVectorImpl<StringRef>::const_iterator i = components.begin(), e = components.end(); i != e; ++i) { bool path_has_sep = !path.empty() && is_separator(path[path.size() - 1]); bool component_has_sep = !i->empty() && is_separator((*i)[0]); bool is_root_name = has_root_name(*i); if (path_has_sep) { // Strip separators from beginning of component. size_t loc = i->find_first_not_of(separators); StringRef c = i->substr(loc); // Append it. path.append(c.begin(), c.end()); continue; } if (!component_has_sep && !(path.empty() || is_root_name)) { // Add a separator. path.push_back(preferred_separator); } path.append(i->begin(), i->end()); } } void append(SmallVectorImpl<char> &path, const_iterator begin, const_iterator end) { for (; begin != end; ++begin) path::append(path, *begin); } const StringRef parent_path(StringRef path) { size_t end_pos = parent_path_end(path); if (end_pos == StringRef::npos) return StringRef(); else return path.substr(0, end_pos); } void remove_filename(SmallVectorImpl<char> &path) { size_t end_pos = parent_path_end(StringRef(path.begin(), path.size())); if (end_pos != StringRef::npos) path.set_size(end_pos); } void replace_extension(SmallVectorImpl<char> &path, const Twine &extension) { StringRef p(path.begin(), path.size()); SmallString<32> ext_storage; StringRef ext = extension.toStringRef(ext_storage); // Erase existing extension. size_t pos = p.find_last_of('.'); if (pos != StringRef::npos && pos >= filename_pos(p)) path.set_size(pos); // Append '.' if needed. if (ext.size() > 0 && ext[0] != '.') path.push_back('.'); // Append extension. path.append(ext.begin(), ext.end()); } void native(const Twine &path, SmallVectorImpl<char> &result) { assert((!path.isSingleStringRef() || path.getSingleStringRef().data() != result.data()) && "path and result are not allowed to overlap!"); // Clear result. result.clear(); path.toVector(result); native(result); } void native(SmallVectorImpl<char> &path) { #ifdef LLVM_ON_WIN32 std::replace(path.begin(), path.end(), '/', '\\'); #endif } const StringRef filename(StringRef path) { return *(--end(path)); } const StringRef stem(StringRef path) { StringRef fname = filename(path); size_t pos = fname.find_last_of('.'); if (pos == StringRef::npos) return fname; else if ((fname.size() == 1 && fname == ".") || (fname.size() == 2 && fname == "..")) return fname; else return fname.substr(0, pos); } const StringRef extension(StringRef path) { StringRef fname = filename(path); size_t pos = fname.find_last_of('.'); if (pos == StringRef::npos) return StringRef(); else if ((fname.size() == 1 && fname == ".") || (fname.size() == 2 && fname == "..")) return StringRef(); else return fname.substr(pos); } bool is_separator(char value) { switch(value) { #ifdef LLVM_ON_WIN32 case '\\': // fall through #endif case '/': return true; default: return false; } } static const char preferred_separator_string[] = { preferred_separator, '\0' }; const StringRef get_separator() { return preferred_separator_string; } void system_temp_directory(bool erasedOnReboot, SmallVectorImpl<char> &result) { result.clear(); #if defined(_CS_DARWIN_USER_TEMP_DIR) && defined(_CS_DARWIN_USER_CACHE_DIR) // On Darwin, use DARWIN_USER_TEMP_DIR or DARWIN_USER_CACHE_DIR. // macros defined in <unistd.h> on darwin >= 9 int ConfName = erasedOnReboot? _CS_DARWIN_USER_TEMP_DIR : _CS_DARWIN_USER_CACHE_DIR; size_t ConfLen = confstr(ConfName, nullptr, 0); if (ConfLen > 0) { do { result.resize(ConfLen); ConfLen = confstr(ConfName, result.data(), result.size()); } while (ConfLen > 0 && ConfLen != result.size()); if (ConfLen > 0) { assert(result.back() == 0); result.pop_back(); return; } result.clear(); } #endif // Check whether the temporary directory is specified by an environment // variable. const char *EnvironmentVariable; #ifdef LLVM_ON_WIN32 EnvironmentVariable = "TEMP"; #else EnvironmentVariable = "TMPDIR"; #endif if (char *RequestedDir = getenv(EnvironmentVariable)) { result.append(RequestedDir, RequestedDir + strlen(RequestedDir)); return; } // Fall back to a system default. const char *DefaultResult; #ifdef LLVM_ON_WIN32 (void)erasedOnReboot; DefaultResult = "C:\\TEMP"; #else if (erasedOnReboot) DefaultResult = "/tmp"; else DefaultResult = "/var/tmp"; #endif result.append(DefaultResult, DefaultResult + strlen(DefaultResult)); } bool has_root_name(const Twine &path) { SmallString<128> path_storage; StringRef p = path.toStringRef(path_storage); return !root_name(p).empty(); } bool has_root_directory(const Twine &path) { SmallString<128> path_storage; StringRef p = path.toStringRef(path_storage); return !root_directory(p).empty(); } bool has_root_path(const Twine &path) { SmallString<128> path_storage; StringRef p = path.toStringRef(path_storage); return !root_path(p).empty(); } bool has_relative_path(const Twine &path) { SmallString<128> path_storage; StringRef p = path.toStringRef(path_storage); return !relative_path(p).empty(); } bool has_filename(const Twine &path) { SmallString<128> path_storage; StringRef p = path.toStringRef(path_storage); return !filename(p).empty(); } bool has_parent_path(const Twine &path) { SmallString<128> path_storage; StringRef p = path.toStringRef(path_storage); return !parent_path(p).empty(); } bool has_stem(const Twine &path) { SmallString<128> path_storage; StringRef p = path.toStringRef(path_storage); return !stem(p).empty(); } bool has_extension(const Twine &path) { SmallString<128> path_storage; StringRef p = path.toStringRef(path_storage); return !extension(p).empty(); } bool is_absolute(const Twine &path) { SmallString<128> path_storage; StringRef p = path.toStringRef(path_storage); bool rootDir = has_root_directory(p), #ifdef LLVM_ON_WIN32 rootName = has_root_name(p); #else rootName = true; #endif return rootDir && rootName; } bool is_relative(const Twine &path) { return !is_absolute(path); } } // end namespace path namespace fs { std::error_code getUniqueID(const Twine Path, UniqueID &Result) { file_status Status; std::error_code EC = status(Path, Status); if (EC) return EC; Result = Status.getUniqueID(); return std::error_code(); } std::error_code createUniqueFile(const Twine &Model, int &ResultFd, SmallVectorImpl<char> &ResultPath, unsigned Mode) { return createUniqueEntity(Model, ResultFd, ResultPath, false, Mode, FS_File); } std::error_code createUniqueFile(const Twine &Model, SmallVectorImpl<char> &ResultPath) { int Dummy; return createUniqueEntity(Model, Dummy, ResultPath, false, 0, FS_Name); } static std::error_code createTemporaryFile(const Twine &Model, int &ResultFD, llvm::SmallVectorImpl<char> &ResultPath, FSEntity Type) { SmallString<128> Storage; StringRef P = Model.toNullTerminatedStringRef(Storage); assert(P.find_first_of(separators) == StringRef::npos && "Model must be a simple filename."); // Use P.begin() so that createUniqueEntity doesn't need to recreate Storage. return createUniqueEntity(P.begin(), ResultFD, ResultPath, true, owner_read | owner_write, Type); } static std::error_code createTemporaryFile(const Twine &Prefix, StringRef Suffix, int &ResultFD, llvm::SmallVectorImpl<char> &ResultPath, FSEntity Type) { const char *Middle = Suffix.empty() ? "-%%%%%%" : "-%%%%%%."; return createTemporaryFile(Prefix + Middle + Suffix, ResultFD, ResultPath, Type); } std::error_code createTemporaryFile(const Twine &Prefix, StringRef Suffix, int &ResultFD, SmallVectorImpl<char> &ResultPath) { return createTemporaryFile(Prefix, Suffix, ResultFD, ResultPath, FS_File); } std::error_code createTemporaryFile(const Twine &Prefix, StringRef Suffix, SmallVectorImpl<char> &ResultPath) { int Dummy; return createTemporaryFile(Prefix, Suffix, Dummy, ResultPath, FS_Name); } // This is a mkdtemp with a different pattern. We use createUniqueEntity mostly // for consistency. We should try using mkdtemp. std::error_code createUniqueDirectory(const Twine &Prefix, SmallVectorImpl<char> &ResultPath) { int Dummy; return createUniqueEntity(Prefix + "-%%%%%%", Dummy, ResultPath, true, 0, FS_Dir); } std::error_code make_absolute(SmallVectorImpl<char> &path) { StringRef p(path.data(), path.size()); bool rootDirectory = path::has_root_directory(p), #ifdef LLVM_ON_WIN32 rootName = path::has_root_name(p); #else rootName = true; #endif // Already absolute. if (rootName && rootDirectory) return std::error_code(); // All of the following conditions will need the current directory. SmallString<128> current_dir; if (std::error_code ec = current_path(current_dir)) return ec; // Relative path. Prepend the current directory. if (!rootName && !rootDirectory) { // Append path to the current directory. path::append(current_dir, p); // Set path to the result. path.swap(current_dir); return std::error_code(); } if (!rootName && rootDirectory) { StringRef cdrn = path::root_name(current_dir); SmallString<128> curDirRootName(cdrn.begin(), cdrn.end()); path::append(curDirRootName, p); // Set path to the result. path.swap(curDirRootName); return std::error_code(); } if (rootName && !rootDirectory) { StringRef pRootName = path::root_name(p); StringRef bRootDirectory = path::root_directory(current_dir); StringRef bRelativePath = path::relative_path(current_dir); StringRef pRelativePath = path::relative_path(p); SmallString<128> res; path::append(res, pRootName, bRootDirectory, bRelativePath, pRelativePath); path.swap(res); return std::error_code(); } llvm_unreachable("All rootName and rootDirectory combinations should have " "occurred above!"); } std::error_code create_directories(const Twine &Path, bool IgnoreExisting) { SmallString<128> PathStorage; StringRef P = Path.toStringRef(PathStorage); // Be optimistic and try to create the directory std::error_code EC = create_directory(P, IgnoreExisting); // If we succeeded, or had any error other than the parent not existing, just // return it. if (EC != errc::no_such_file_or_directory) return EC; // We failed because of a no_such_file_or_directory, try to create the // parent. StringRef Parent = path::parent_path(P); if (Parent.empty()) return EC; if ((EC = create_directories(Parent))) return EC; return create_directory(P, IgnoreExisting); } std::error_code copy_file(const Twine &From, const Twine &To) { int ReadFD, WriteFD; if (std::error_code EC = openFileForRead(From, ReadFD)) return EC; if (std::error_code EC = openFileForWrite(To, WriteFD, F_None)) { close(ReadFD); return EC; } const size_t BufSize = 4096; char *Buf = new char[BufSize]; int BytesRead = 0, BytesWritten = 0; for (;;) { BytesRead = read(ReadFD, Buf, BufSize); if (BytesRead <= 0) break; while (BytesRead) { BytesWritten = write(WriteFD, Buf, BytesRead); if (BytesWritten < 0) break; BytesRead -= BytesWritten; } if (BytesWritten < 0) break; } close(ReadFD); close(WriteFD); delete[] Buf; if (BytesRead < 0 || BytesWritten < 0) return std::error_code(errno, std::generic_category()); return std::error_code(); } bool exists(file_status status) { return status_known(status) && status.type() != file_type::file_not_found; } bool status_known(file_status s) { return s.type() != file_type::status_error; } bool is_directory(file_status status) { return status.type() == file_type::directory_file; } std::error_code is_directory(const Twine &path, bool &result) { file_status st; if (std::error_code ec = status(path, st)) return ec; result = is_directory(st); return std::error_code(); } bool is_regular_file(file_status status) { return status.type() == file_type::regular_file; } std::error_code is_regular_file(const Twine &path, bool &result) { file_status st; if (std::error_code ec = status(path, st)) return ec; result = is_regular_file(st); return std::error_code(); } bool is_other(file_status status) { return exists(status) && !is_regular_file(status) && !is_directory(status); } void directory_entry::replace_filename(const Twine &filename, file_status st) { SmallString<128> path(Path.begin(), Path.end()); path::remove_filename(path); path::append(path, filename); Path = path.str(); Status = st; } /// @brief Identify the magic in magic. file_magic identify_magic(StringRef Magic) { if (Magic.size() < 4) return file_magic::unknown; switch ((unsigned char)Magic[0]) { case 0x00: { // COFF short import library file if (Magic[1] == (char)0x00 && Magic[2] == (char)0xff && Magic[3] == (char)0xff) return file_magic::coff_import_library; // Windows resource file const char Expected[] = { 0, 0, 0, 0, '\x20', 0, 0, 0, '\xff' }; if (Magic.size() >= sizeof(Expected) && memcmp(Magic.data(), Expected, sizeof(Expected)) == 0) return file_magic::windows_resource; // 0x0000 = COFF unknown machine type if (Magic[1] == 0) return file_magic::coff_object; break; } case 0xDE: // 0x0B17C0DE = BC wraper if (Magic[1] == (char)0xC0 && Magic[2] == (char)0x17 && Magic[3] == (char)0x0B) return file_magic::bitcode; break; case 'B': if (Magic[1] == 'C' && Magic[2] == (char)0xC0 && Magic[3] == (char)0xDE) return file_magic::bitcode; break; case '!': if (Magic.size() >= 8) if (memcmp(Magic.data(),"!<arch>\n",8) == 0) return file_magic::archive; break; case '\177': if (Magic.size() >= 18 && Magic[1] == 'E' && Magic[2] == 'L' && Magic[3] == 'F') { bool Data2MSB = Magic[5] == 2; unsigned high = Data2MSB ? 16 : 17; unsigned low = Data2MSB ? 17 : 16; if (Magic[high] == 0) switch (Magic[low]) { default: break; case 1: return file_magic::elf_relocatable; case 2: return file_magic::elf_executable; case 3: return file_magic::elf_shared_object; case 4: return file_magic::elf_core; } } break; case 0xCA: if (Magic[1] == char(0xFE) && Magic[2] == char(0xBA) && Magic[3] == char(0xBE)) { // This is complicated by an overlap with Java class files. // See the Mach-O section in /usr/share/file/magic for details. if (Magic.size() >= 8 && Magic[7] < 43) return file_magic::macho_universal_binary; } break; // The two magic numbers for mach-o are: // 0xfeedface - 32-bit mach-o // 0xfeedfacf - 64-bit mach-o case 0xFE: case 0xCE: case 0xCF: { uint16_t type = 0; if (Magic[0] == char(0xFE) && Magic[1] == char(0xED) && Magic[2] == char(0xFA) && (Magic[3] == char(0xCE) || Magic[3] == char(0xCF))) { /* Native endian */ if (Magic.size() >= 16) type = Magic[14] << 8 | Magic[15]; } else if ((Magic[0] == char(0xCE) || Magic[0] == char(0xCF)) && Magic[1] == char(0xFA) && Magic[2] == char(0xED) && Magic[3] == char(0xFE)) { /* Reverse endian */ if (Magic.size() >= 14) type = Magic[13] << 8 | Magic[12]; } switch (type) { default: break; case 1: return file_magic::macho_object; case 2: return file_magic::macho_executable; case 3: return file_magic::macho_fixed_virtual_memory_shared_lib; case 4: return file_magic::macho_core; case 5: return file_magic::macho_preload_executable; case 6: return file_magic::macho_dynamically_linked_shared_lib; case 7: return file_magic::macho_dynamic_linker; case 8: return file_magic::macho_bundle; case 9: return file_magic::macho_dynamic_linker; case 10: return file_magic::macho_dsym_companion; } break; } case 0xF0: // PowerPC Windows case 0x83: // Alpha 32-bit case 0x84: // Alpha 64-bit case 0x66: // MPS R4000 Windows case 0x50: // mc68K case 0x4c: // 80386 Windows case 0xc4: // ARMNT Windows if (Magic[1] == 0x01) return file_magic::coff_object; case 0x90: // PA-RISC Windows case 0x68: // mc68K Windows if (Magic[1] == 0x02) return file_magic::coff_object; break; case 0x4d: // Possible MS-DOS stub on Windows PE file if (Magic[1] == 0x5a) { uint32_t off = *reinterpret_cast<const support::ulittle32_t*>(Magic.data() + 0x3c); // PE/COFF file, either EXE or DLL. if (off < Magic.size() && memcmp(Magic.data() + off, "PE\0\0",4) == 0) return file_magic::pecoff_executable; } break; case 0x64: // x86-64 Windows. if (Magic[1] == char(0x86)) return file_magic::coff_object; break; default: break; } return file_magic::unknown; } std::error_code identify_magic(const Twine &Path, file_magic &Result) { int FD; if (std::error_code EC = openFileForRead(Path, FD)) return EC; char Buffer[32]; int Length = read(FD, Buffer, sizeof(Buffer)); if (close(FD) != 0 || Length < 0) return std::error_code(errno, std::generic_category()); Result = identify_magic(StringRef(Buffer, Length)); return std::error_code(); } std::error_code directory_entry::status(file_status &result) const { return fs::status(Path, result); } } // end namespace fs } // end namespace sys } // end namespace llvm // Include the truly platform-specific parts. #if defined(LLVM_ON_UNIX) #include "Unix/Path.inc" #endif #if defined(LLVM_ON_WIN32) #include "Windows/Path.inc" #endif