//==-- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions --*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass that expands pseudo instructions into target // instructions to allow proper scheduling and other late optimizations. This // pass should be run after register allocation but before the post-regalloc // scheduling pass. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/AArch64AddressingModes.h" #include "AArch64InstrInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/MathExtras.h" using namespace llvm; namespace { class AArch64ExpandPseudo : public MachineFunctionPass { public: static char ID; AArch64ExpandPseudo() : MachineFunctionPass(ID) {} const AArch64InstrInfo *TII; bool runOnMachineFunction(MachineFunction &Fn) override; const char *getPassName() const override { return "AArch64 pseudo instruction expansion pass"; } private: bool expandMBB(MachineBasicBlock &MBB); bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI); bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned BitSize); }; char AArch64ExpandPseudo::ID = 0; } /// \brief Transfer implicit operands on the pseudo instruction to the /// instructions created from the expansion. static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI, MachineInstrBuilder &DefMI) { const MCInstrDesc &Desc = OldMI.getDesc(); for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = OldMI.getOperand(i); assert(MO.isReg() && MO.getReg()); if (MO.isUse()) UseMI.addOperand(MO); else DefMI.addOperand(MO); } } /// \brief Helper function which extracts the specified 16-bit chunk from a /// 64-bit value. static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) { assert(ChunkIdx < 4 && "Out of range chunk index specified!"); return (Imm >> (ChunkIdx * 16)) & 0xFFFF; } /// \brief Helper function which replicates a 16-bit chunk within a 64-bit /// value. Indices correspond to element numbers in a v4i16. static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) { assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!"); const unsigned ShiftAmt = ToIdx * 16; // Replicate the source chunk to the destination position. const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt; // Clear the destination chunk. Imm &= ~(0xFFFFLL << ShiftAmt); // Insert the replicated chunk. return Imm | Chunk; } /// \brief Helper function which tries to materialize a 64-bit value with an /// ORR + MOVK instruction sequence. static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const AArch64InstrInfo *TII, unsigned ChunkIdx) { assert(ChunkIdx < 4 && "Out of range chunk index specified!"); const unsigned ShiftAmt = ChunkIdx * 16; uint64_t Encoding; if (AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) { // Create the ORR-immediate instruction. MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri)) .addOperand(MI.getOperand(0)) .addReg(AArch64::XZR) .addImm(Encoding); // Create the MOVK instruction. const unsigned Imm16 = getChunk(UImm, ChunkIdx); const unsigned DstReg = MI.getOperand(0).getReg(); const bool DstIsDead = MI.getOperand(0).isDead(); MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) .addReg(DstReg) .addImm(Imm16) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt)); transferImpOps(MI, MIB, MIB1); MI.eraseFromParent(); return true; } return false; } /// \brief Check whether the given 16-bit chunk replicated to full 64-bit width /// can be materialized with an ORR instruction. static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) { Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk; return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding); } /// \brief Check for identical 16-bit chunks within the constant and if so /// materialize them with a single ORR instruction. The remaining one or two /// 16-bit chunks will be materialized with MOVK instructions. /// /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with /// an ORR instruction. /// static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const AArch64InstrInfo *TII) { typedef DenseMap<uint64_t, unsigned> CountMap; CountMap Counts; // Scan the constant and count how often every chunk occurs. for (unsigned Idx = 0; Idx < 4; ++Idx) ++Counts[getChunk(UImm, Idx)]; // Traverse the chunks to find one which occurs more than once. for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end(); Chunk != End; ++Chunk) { const uint64_t ChunkVal = Chunk->first; const unsigned Count = Chunk->second; uint64_t Encoding = 0; // We are looking for chunks which have two or three instances and can be // materialized with an ORR instruction. if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding)) continue; const bool CountThree = Count == 3; // Create the ORR-immediate instruction. MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri)) .addOperand(MI.getOperand(0)) .addReg(AArch64::XZR) .addImm(Encoding); const unsigned DstReg = MI.getOperand(0).getReg(); const bool DstIsDead = MI.getOperand(0).isDead(); unsigned ShiftAmt = 0; uint64_t Imm16 = 0; // Find the first chunk not materialized with the ORR instruction. for (; ShiftAmt < 64; ShiftAmt += 16) { Imm16 = (UImm >> ShiftAmt) & 0xFFFF; if (Imm16 != ChunkVal) break; } // Create the first MOVK instruction. MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead && CountThree)) .addReg(DstReg) .addImm(Imm16) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt)); // In case we have three instances the whole constant is now materialized // and we can exit. if (CountThree) { transferImpOps(MI, MIB, MIB1); MI.eraseFromParent(); return true; } // Find the remaining chunk which needs to be materialized. for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) { Imm16 = (UImm >> ShiftAmt) & 0xFFFF; if (Imm16 != ChunkVal) break; } // Create the second MOVK instruction. MachineInstrBuilder MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) .addReg(DstReg) .addImm(Imm16) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt)); transferImpOps(MI, MIB, MIB2); MI.eraseFromParent(); return true; } return false; } /// \brief Check whether this chunk matches the pattern '1...0...'. This pattern /// starts a contiguous sequence of ones if we look at the bits from the LSB /// towards the MSB. static bool isStartChunk(uint64_t Chunk) { if (Chunk == 0 || Chunk == UINT64_MAX) return false; return (CountLeadingOnes_64(Chunk) + countTrailingZeros(Chunk)) == 64; } /// \brief Check whether this chunk matches the pattern '0...1...' This pattern /// ends a contiguous sequence of ones if we look at the bits from the LSB /// towards the MSB. static bool isEndChunk(uint64_t Chunk) { if (Chunk == 0 || Chunk == UINT64_MAX) return false; return (countLeadingZeros(Chunk) + CountTrailingOnes_64(Chunk)) == 64; } /// \brief Clear or set all bits in the chunk at the given index. static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) { const uint64_t Mask = 0xFFFF; if (Clear) // Clear chunk in the immediate. Imm &= ~(Mask << (Idx * 16)); else // Set all bits in the immediate for the particular chunk. Imm |= Mask << (Idx * 16); return Imm; } /// \brief Check whether the constant contains a sequence of contiguous ones, /// which might be interrupted by one or two chunks. If so, materialize the /// sequence of contiguous ones with an ORR instruction. /// Materialize the chunks which are either interrupting the sequence or outside /// of the sequence with a MOVK instruction. /// /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk /// which ends the sequence (0...1...). Then we are looking for constants which /// contain at least one S and E chunk. /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|. /// /// We are also looking for constants like |S|A|B|E| where the contiguous /// sequence of ones wraps around the MSB into the LSB. /// static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const AArch64InstrInfo *TII) { const int NotSet = -1; const uint64_t Mask = 0xFFFF; int StartIdx = NotSet; int EndIdx = NotSet; // Try to find the chunks which start/end a contiguous sequence of ones. for (int Idx = 0; Idx < 4; ++Idx) { int64_t Chunk = getChunk(UImm, Idx); // Sign extend the 16-bit chunk to 64-bit. Chunk = (Chunk << 48) >> 48; if (isStartChunk(Chunk)) StartIdx = Idx; else if (isEndChunk(Chunk)) EndIdx = Idx; } // Early exit in case we can't find a start/end chunk. if (StartIdx == NotSet || EndIdx == NotSet) return false; // Outside of the contiguous sequence of ones everything needs to be zero. uint64_t Outside = 0; // Chunks between the start and end chunk need to have all their bits set. uint64_t Inside = Mask; // If our contiguous sequence of ones wraps around from the MSB into the LSB, // just swap indices and pretend we are materializing a contiguous sequence // of zeros surrounded by a contiguous sequence of ones. if (StartIdx > EndIdx) { std::swap(StartIdx, EndIdx); std::swap(Outside, Inside); } uint64_t OrrImm = UImm; int FirstMovkIdx = NotSet; int SecondMovkIdx = NotSet; // Find out which chunks we need to patch up to obtain a contiguous sequence // of ones. for (int Idx = 0; Idx < 4; ++Idx) { const uint64_t Chunk = getChunk(UImm, Idx); // Check whether we are looking at a chunk which is not part of the // contiguous sequence of ones. if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) { OrrImm = updateImm(OrrImm, Idx, Outside == 0); // Remember the index we need to patch. if (FirstMovkIdx == NotSet) FirstMovkIdx = Idx; else SecondMovkIdx = Idx; // Check whether we are looking a chunk which is part of the contiguous // sequence of ones. } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) { OrrImm = updateImm(OrrImm, Idx, Inside != Mask); // Remember the index we need to patch. if (FirstMovkIdx == NotSet) FirstMovkIdx = Idx; else SecondMovkIdx = Idx; } } assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!"); // Create the ORR-immediate instruction. uint64_t Encoding = 0; AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri)) .addOperand(MI.getOperand(0)) .addReg(AArch64::XZR) .addImm(Encoding); const unsigned DstReg = MI.getOperand(0).getReg(); const bool DstIsDead = MI.getOperand(0).isDead(); const bool SingleMovk = SecondMovkIdx == NotSet; // Create the first MOVK instruction. MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead && SingleMovk)) .addReg(DstReg) .addImm(getChunk(UImm, FirstMovkIdx)) .addImm( AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16)); // Early exit in case we only need to emit a single MOVK instruction. if (SingleMovk) { transferImpOps(MI, MIB, MIB1); MI.eraseFromParent(); return true; } // Create the second MOVK instruction. MachineInstrBuilder MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) .addReg(DstReg) .addImm(getChunk(UImm, SecondMovkIdx)) .addImm( AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16)); transferImpOps(MI, MIB, MIB2); MI.eraseFromParent(); return true; } /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more /// real move-immediate instructions to synthesize the immediate. bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned BitSize) { MachineInstr &MI = *MBBI; uint64_t Imm = MI.getOperand(1).getImm(); const unsigned Mask = 0xFFFF; // Try a MOVI instruction (aka ORR-immediate with the zero register). uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize); uint64_t Encoding; if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) { unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)) .addOperand(MI.getOperand(0)) .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR) .addImm(Encoding); transferImpOps(MI, MIB, MIB); MI.eraseFromParent(); return true; } // Scan the immediate and count the number of 16-bit chunks which are either // all ones or all zeros. unsigned OneChunks = 0; unsigned ZeroChunks = 0; for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { const unsigned Chunk = (Imm >> Shift) & Mask; if (Chunk == Mask) OneChunks++; else if (Chunk == 0) ZeroChunks++; } // Since we can't materialize the constant with a single ORR instruction, // let's see whether we can materialize 3/4 of the constant with an ORR // instruction and use an additional MOVK instruction to materialize the // remaining 1/4. // // We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|. // // E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR, // we would create the following instruction sequence: // // ORR x0, xzr, |A|X|A|X| // MOVK x0, |B|, LSL #16 // // Only look at 64-bit constants which can't be materialized with a single // instruction e.g. which have less than either three all zero or all one // chunks. // // Ignore 32-bit constants here, they always can be materialized with a // MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized // with a single ORR, the best sequence we can achieve is a ORR + MOVK pair. // Thus we fall back to the default code below which in the best case creates // a single MOVZ/MOVN instruction (in case one chunk is all zero or all one). // if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) { // If we interpret the 64-bit constant as a v4i16, are elements 0 and 2 // identical? if (getChunk(UImm, 0) == getChunk(UImm, 2)) { // See if we can come up with a constant which can be materialized with // ORR-immediate by replicating element 3 into element 1. uint64_t OrrImm = replicateChunk(UImm, 3, 1); if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1)) return true; // See if we can come up with a constant which can be materialized with // ORR-immediate by replicating element 1 into element 3. OrrImm = replicateChunk(UImm, 1, 3); if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3)) return true; // If we interpret the 64-bit constant as a v4i16, are elements 1 and 3 // identical? } else if (getChunk(UImm, 1) == getChunk(UImm, 3)) { // See if we can come up with a constant which can be materialized with // ORR-immediate by replicating element 2 into element 0. uint64_t OrrImm = replicateChunk(UImm, 2, 0); if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0)) return true; // See if we can come up with a constant which can be materialized with // ORR-immediate by replicating element 1 into element 3. OrrImm = replicateChunk(UImm, 0, 2); if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2)) return true; } } // Check for identical 16-bit chunks within the constant and if so materialize // them with a single ORR instruction. The remaining one or two 16-bit chunks // will be materialized with MOVK instructions. if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII)) return true; // Check whether the constant contains a sequence of contiguous ones, which // might be interrupted by one or two chunks. If so, materialize the sequence // of contiguous ones with an ORR instruction. Materialize the chunks which // are either interrupting the sequence or outside of the sequence with a // MOVK instruction. if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII)) return true; // Use a MOVZ or MOVN instruction to set the high bits, followed by one or // more MOVK instructions to insert additional 16-bit portions into the // lower bits. bool isNeg = false; // Use MOVN to materialize the high bits if we have more all one chunks // than all zero chunks. if (OneChunks > ZeroChunks) { isNeg = true; Imm = ~Imm; } unsigned FirstOpc; if (BitSize == 32) { Imm &= (1LL << 32) - 1; FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi); } else { FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi); } unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN unsigned LastShift = 0; // LSL amount for last MOVK if (Imm != 0) { unsigned LZ = countLeadingZeros(Imm); unsigned TZ = countTrailingZeros(Imm); Shift = ((63 - LZ) / 16) * 16; LastShift = (TZ / 16) * 16; } unsigned Imm16 = (Imm >> Shift) & Mask; unsigned DstReg = MI.getOperand(0).getReg(); bool DstIsDead = MI.getOperand(0).isDead(); MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead && Shift == LastShift)) .addImm(Imm16) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift)); // If a MOVN was used for the high bits of a negative value, flip the rest // of the bits back for use with MOVK. if (isNeg) Imm = ~Imm; if (Shift == LastShift) { transferImpOps(MI, MIB1, MIB1); MI.eraseFromParent(); return true; } MachineInstrBuilder MIB2; unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi); while (Shift != LastShift) { Shift -= 16; Imm16 = (Imm >> Shift) & Mask; if (Imm16 == (isNeg ? Mask : 0)) continue; // This 16-bit portion is already set correctly. MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)) .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead && Shift == LastShift)) .addReg(DstReg) .addImm(Imm16) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift)); } transferImpOps(MI, MIB1, MIB2); MI.eraseFromParent(); return true; } /// \brief If MBBI references a pseudo instruction that should be expanded here, /// do the expansion and return true. Otherwise return false. bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) { MachineInstr &MI = *MBBI; unsigned Opcode = MI.getOpcode(); switch (Opcode) { default: break; case AArch64::ADDWrr: case AArch64::SUBWrr: case AArch64::ADDXrr: case AArch64::SUBXrr: case AArch64::ADDSWrr: case AArch64::SUBSWrr: case AArch64::ADDSXrr: case AArch64::SUBSXrr: case AArch64::ANDWrr: case AArch64::ANDXrr: case AArch64::BICWrr: case AArch64::BICXrr: case AArch64::ANDSWrr: case AArch64::ANDSXrr: case AArch64::BICSWrr: case AArch64::BICSXrr: case AArch64::EONWrr: case AArch64::EONXrr: case AArch64::EORWrr: case AArch64::EORXrr: case AArch64::ORNWrr: case AArch64::ORNXrr: case AArch64::ORRWrr: case AArch64::ORRXrr: { unsigned Opcode; switch (MI.getOpcode()) { default: return false; case AArch64::ADDWrr: Opcode = AArch64::ADDWrs; break; case AArch64::SUBWrr: Opcode = AArch64::SUBWrs; break; case AArch64::ADDXrr: Opcode = AArch64::ADDXrs; break; case AArch64::SUBXrr: Opcode = AArch64::SUBXrs; break; case AArch64::ADDSWrr: Opcode = AArch64::ADDSWrs; break; case AArch64::SUBSWrr: Opcode = AArch64::SUBSWrs; break; case AArch64::ADDSXrr: Opcode = AArch64::ADDSXrs; break; case AArch64::SUBSXrr: Opcode = AArch64::SUBSXrs; break; case AArch64::ANDWrr: Opcode = AArch64::ANDWrs; break; case AArch64::ANDXrr: Opcode = AArch64::ANDXrs; break; case AArch64::BICWrr: Opcode = AArch64::BICWrs; break; case AArch64::BICXrr: Opcode = AArch64::BICXrs; break; case AArch64::ANDSWrr: Opcode = AArch64::ANDSWrs; break; case AArch64::ANDSXrr: Opcode = AArch64::ANDSXrs; break; case AArch64::BICSWrr: Opcode = AArch64::BICSWrs; break; case AArch64::BICSXrr: Opcode = AArch64::BICSXrs; break; case AArch64::EONWrr: Opcode = AArch64::EONWrs; break; case AArch64::EONXrr: Opcode = AArch64::EONXrs; break; case AArch64::EORWrr: Opcode = AArch64::EORWrs; break; case AArch64::EORXrr: Opcode = AArch64::EORXrs; break; case AArch64::ORNWrr: Opcode = AArch64::ORNWrs; break; case AArch64::ORNXrr: Opcode = AArch64::ORNXrs; break; case AArch64::ORRWrr: Opcode = AArch64::ORRWrs; break; case AArch64::ORRXrr: Opcode = AArch64::ORRXrs; break; } MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode), MI.getOperand(0).getReg()) .addOperand(MI.getOperand(1)) .addOperand(MI.getOperand(2)) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); transferImpOps(MI, MIB1, MIB1); MI.eraseFromParent(); return true; } case AArch64::FCVTSHpseudo: { MachineOperand Src = MI.getOperand(1); Src.setImplicit(); unsigned SrcH = TII->getRegisterInfo().getSubReg(Src.getReg(), AArch64::hsub); auto MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::FCVTSHr)) .addOperand(MI.getOperand(0)) .addReg(SrcH, RegState::Undef) .addOperand(Src); transferImpOps(MI, MIB, MIB); MI.eraseFromParent(); return true; } case AArch64::LOADgot: { // Expand into ADRP + LDR. unsigned DstReg = MI.getOperand(0).getReg(); const MachineOperand &MO1 = MI.getOperand(1); unsigned Flags = MO1.getTargetFlags(); MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg); MachineInstrBuilder MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui)) .addOperand(MI.getOperand(0)) .addReg(DstReg); if (MO1.isGlobal()) { MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE); MIB2.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); } else if (MO1.isSymbol()) { MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE); MIB2.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); } else { assert(MO1.isCPI() && "Only expect globals, externalsymbols, or constant pools"); MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(), Flags | AArch64II::MO_PAGE); MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(), Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); } transferImpOps(MI, MIB1, MIB2); MI.eraseFromParent(); return true; } case AArch64::MOVaddr: case AArch64::MOVaddrJT: case AArch64::MOVaddrCP: case AArch64::MOVaddrBA: case AArch64::MOVaddrTLS: case AArch64::MOVaddrEXT: { // Expand into ADRP + ADD. unsigned DstReg = MI.getOperand(0).getReg(); MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg) .addOperand(MI.getOperand(1)); MachineInstrBuilder MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri)) .addOperand(MI.getOperand(0)) .addReg(DstReg) .addOperand(MI.getOperand(2)) .addImm(0); transferImpOps(MI, MIB1, MIB2); MI.eraseFromParent(); return true; } case AArch64::MOVi32imm: return expandMOVImm(MBB, MBBI, 32); case AArch64::MOVi64imm: return expandMOVImm(MBB, MBBI, 64); case AArch64::RET_ReallyLR: BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET)) .addReg(AArch64::LR); MI.eraseFromParent(); return true; } return false; } /// \brief Iterate over the instructions in basic block MBB and expand any /// pseudo instructions. Return true if anything was modified. bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) { bool Modified = false; MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); while (MBBI != E) { MachineBasicBlock::iterator NMBBI = std::next(MBBI); Modified |= expandMI(MBB, MBBI); MBBI = NMBBI; } return Modified; } bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) { TII = static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo()); bool Modified = false; for (auto &MBB : MF) Modified |= expandMBB(MBB); return Modified; } /// \brief Returns an instance of the pseudo instruction expansion pass. FunctionPass *llvm::createAArch64ExpandPseudoPass() { return new AArch64ExpandPseudo(); }