//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AArch64TargetLowering class. // //===----------------------------------------------------------------------===// #include "AArch64ISelLowering.h" #include "AArch64PerfectShuffle.h" #include "AArch64Subtarget.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64TargetMachine.h" #include "AArch64TargetObjectFile.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Type.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #define DEBUG_TYPE "aarch64-lower" STATISTIC(NumTailCalls, "Number of tail calls"); STATISTIC(NumShiftInserts, "Number of vector shift inserts"); enum AlignMode { StrictAlign, NoStrictAlign }; static cl::opt<AlignMode> Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(NoStrictAlign), cl::values( clEnumValN(StrictAlign, "aarch64-strict-align", "Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign, "aarch64-no-strict-align", "Allow unaligned memory accesses"), clEnumValEnd)); // Place holder until extr generation is tested fully. static cl::opt<bool> EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden, cl::desc("Allow AArch64 (or (shift)(shift))->extract"), cl::init(true)); static cl::opt<bool> EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden, cl::desc("Allow AArch64 SLI/SRI formation"), cl::init(false)); //===----------------------------------------------------------------------===// // AArch64 Lowering public interface. //===----------------------------------------------------------------------===// static TargetLoweringObjectFile *createTLOF(const Triple &TT) { if (TT.isOSBinFormatMachO()) return new AArch64_MachoTargetObjectFile(); return new AArch64_ELFTargetObjectFile(); } AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM) : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) { Subtarget = &TM.getSubtarget<AArch64Subtarget>(); // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so // we have to make something up. Arbitrarily, choose ZeroOrOne. setBooleanContents(ZeroOrOneBooleanContent); // When comparing vectors the result sets the different elements in the // vector to all-one or all-zero. setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // Set up the register classes. addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); if (Subtarget->hasFPARMv8()) { addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); } if (Subtarget->hasNEON()) { addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); // Someone set us up the NEON. addDRTypeForNEON(MVT::v2f32); addDRTypeForNEON(MVT::v8i8); addDRTypeForNEON(MVT::v4i16); addDRTypeForNEON(MVT::v2i32); addDRTypeForNEON(MVT::v1i64); addDRTypeForNEON(MVT::v1f64); addQRTypeForNEON(MVT::v4f32); addQRTypeForNEON(MVT::v2f64); addQRTypeForNEON(MVT::v16i8); addQRTypeForNEON(MVT::v8i16); addQRTypeForNEON(MVT::v4i32); addQRTypeForNEON(MVT::v2i64); } // Compute derived properties from the register classes computeRegisterProperties(); // Provide all sorts of operation actions setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::SETCC, MVT::i32, Custom); setOperationAction(ISD::SETCC, MVT::i64, Custom); setOperationAction(ISD::SETCC, MVT::f32, Custom); setOperationAction(ISD::SETCC, MVT::f64, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::i64, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::SELECT, MVT::i32, Custom); setOperationAction(ISD::SELECT, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::f32, Custom); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::JumpTable, MVT::i64, Custom); setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); setOperationAction(ISD::FREM, MVT::f32, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f80, Expand); // Custom lowering hooks are needed for XOR // to fold it into CSINC/CSINV. setOperationAction(ISD::XOR, MVT::i32, Custom); setOperationAction(ISD::XOR, MVT::i64, Custom); // Virtually no operation on f128 is legal, but LLVM can't expand them when // there's a valid register class, so we need custom operations in most cases. setOperationAction(ISD::FABS, MVT::f128, Expand); setOperationAction(ISD::FADD, MVT::f128, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); setOperationAction(ISD::FCOS, MVT::f128, Expand); setOperationAction(ISD::FDIV, MVT::f128, Custom); setOperationAction(ISD::FMA, MVT::f128, Expand); setOperationAction(ISD::FMUL, MVT::f128, Custom); setOperationAction(ISD::FNEG, MVT::f128, Expand); setOperationAction(ISD::FPOW, MVT::f128, Expand); setOperationAction(ISD::FREM, MVT::f128, Expand); setOperationAction(ISD::FRINT, MVT::f128, Expand); setOperationAction(ISD::FSIN, MVT::f128, Expand); setOperationAction(ISD::FSINCOS, MVT::f128, Expand); setOperationAction(ISD::FSQRT, MVT::f128, Expand); setOperationAction(ISD::FSUB, MVT::f128, Custom); setOperationAction(ISD::FTRUNC, MVT::f128, Expand); setOperationAction(ISD::SETCC, MVT::f128, Custom); setOperationAction(ISD::BR_CC, MVT::f128, Custom); setOperationAction(ISD::SELECT, MVT::f128, Custom); setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); // Lowering for many of the conversions is actually specified by the non-f128 // type. The LowerXXX function will be trivial when f128 isn't involved. setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); // Variable arguments. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Custom); setOperationAction(ISD::VACOPY, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); // Variable-sized objects. setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); // Exception handling. // FIXME: These are guesses. Has this been defined yet? setExceptionPointerRegister(AArch64::X0); setExceptionSelectorRegister(AArch64::X1); // Constant pool entries setOperationAction(ISD::ConstantPool, MVT::i64, Custom); // BlockAddress setOperationAction(ISD::BlockAddress, MVT::i64, Custom); // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. setOperationAction(ISD::ADDC, MVT::i32, Custom); setOperationAction(ISD::ADDE, MVT::i32, Custom); setOperationAction(ISD::SUBC, MVT::i32, Custom); setOperationAction(ISD::SUBE, MVT::i32, Custom); setOperationAction(ISD::ADDC, MVT::i64, Custom); setOperationAction(ISD::ADDE, MVT::i64, Custom); setOperationAction(ISD::SUBC, MVT::i64, Custom); setOperationAction(ISD::SUBE, MVT::i64, Custom); // AArch64 lacks both left-rotate and popcount instructions. setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::ROTL, MVT::i64, Expand); // AArch64 doesn't have {U|S}MUL_LOHI. setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero // counterparts, which AArch64 supports directly. setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Custom); setOperationAction(ISD::CTPOP, MVT::i64, Custom); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); // Custom lower Add/Sub/Mul with overflow. setOperationAction(ISD::SADDO, MVT::i32, Custom); setOperationAction(ISD::SADDO, MVT::i64, Custom); setOperationAction(ISD::UADDO, MVT::i32, Custom); setOperationAction(ISD::UADDO, MVT::i64, Custom); setOperationAction(ISD::SSUBO, MVT::i32, Custom); setOperationAction(ISD::SSUBO, MVT::i64, Custom); setOperationAction(ISD::USUBO, MVT::i32, Custom); setOperationAction(ISD::USUBO, MVT::i64, Custom); setOperationAction(ISD::SMULO, MVT::i32, Custom); setOperationAction(ISD::SMULO, MVT::i64, Custom); setOperationAction(ISD::UMULO, MVT::i32, Custom); setOperationAction(ISD::UMULO, MVT::i64, Custom); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FCOS, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FPOW, MVT::f32, Expand); setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // AArch64 has implementations of a lot of rounding-like FP operations. static MVT RoundingTypes[] = { MVT::f32, MVT::f64}; for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) { MVT Ty = RoundingTypes[I]; setOperationAction(ISD::FFLOOR, Ty, Legal); setOperationAction(ISD::FNEARBYINT, Ty, Legal); setOperationAction(ISD::FCEIL, Ty, Legal); setOperationAction(ISD::FRINT, Ty, Legal); setOperationAction(ISD::FTRUNC, Ty, Legal); setOperationAction(ISD::FROUND, Ty, Legal); } setOperationAction(ISD::PREFETCH, MVT::Other, Custom); if (Subtarget->isTargetMachO()) { // For iOS, we don't want to the normal expansion of a libcall to // sincos. We want to issue a libcall to __sincos_stret to avoid memory // traffic. setOperationAction(ISD::FSINCOS, MVT::f64, Custom); setOperationAction(ISD::FSINCOS, MVT::f32, Custom); } else { setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); } // AArch64 does not have floating-point extending loads, i1 sign-extending // load, floating-point truncating stores, or v2i32->v2i16 truncating store. setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f128, MVT::f80, Expand); setTruncStoreAction(MVT::f128, MVT::f64, Expand); setTruncStoreAction(MVT::f128, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f16, Expand); // Indexed loads and stores are supported. for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, MVT::i8, Legal); setIndexedLoadAction(im, MVT::i16, Legal); setIndexedLoadAction(im, MVT::i32, Legal); setIndexedLoadAction(im, MVT::i64, Legal); setIndexedLoadAction(im, MVT::f64, Legal); setIndexedLoadAction(im, MVT::f32, Legal); setIndexedStoreAction(im, MVT::i8, Legal); setIndexedStoreAction(im, MVT::i16, Legal); setIndexedStoreAction(im, MVT::i32, Legal); setIndexedStoreAction(im, MVT::i64, Legal); setIndexedStoreAction(im, MVT::f64, Legal); setIndexedStoreAction(im, MVT::f32, Legal); } // Trap. setOperationAction(ISD::TRAP, MVT::Other, Legal); // We combine OR nodes for bitfield operations. setTargetDAGCombine(ISD::OR); // Vector add and sub nodes may conceal a high-half opportunity. // Also, try to fold ADD into CSINC/CSINV.. setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::SUB); setTargetDAGCombine(ISD::XOR); setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::UINT_TO_FP); setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); setTargetDAGCombine(ISD::ANY_EXTEND); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::BITCAST); setTargetDAGCombine(ISD::CONCAT_VECTORS); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::SELECT); setTargetDAGCombine(ISD::VSELECT); setTargetDAGCombine(ISD::INTRINSIC_VOID); setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8; MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4; MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4; setStackPointerRegisterToSaveRestore(AArch64::SP); setSchedulingPreference(Sched::Hybrid); // Enable TBZ/TBNZ MaskAndBranchFoldingIsLegal = true; setMinFunctionAlignment(2); RequireStrictAlign = (Align == StrictAlign); setHasExtractBitsInsn(true); if (Subtarget->hasNEON()) { // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to // silliness like this: setOperationAction(ISD::FABS, MVT::v1f64, Expand); setOperationAction(ISD::FADD, MVT::v1f64, Expand); setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); setOperationAction(ISD::FCOS, MVT::v1f64, Expand); setOperationAction(ISD::FDIV, MVT::v1f64, Expand); setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); setOperationAction(ISD::FMA, MVT::v1f64, Expand); setOperationAction(ISD::FMUL, MVT::v1f64, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); setOperationAction(ISD::FNEG, MVT::v1f64, Expand); setOperationAction(ISD::FPOW, MVT::v1f64, Expand); setOperationAction(ISD::FREM, MVT::v1f64, Expand); setOperationAction(ISD::FROUND, MVT::v1f64, Expand); setOperationAction(ISD::FRINT, MVT::v1f64, Expand); setOperationAction(ISD::FSIN, MVT::v1f64, Expand); setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); setOperationAction(ISD::FSUB, MVT::v1f64, Expand); setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); setOperationAction(ISD::SETCC, MVT::v1f64, Expand); setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); setOperationAction(ISD::SELECT, MVT::v1f64, Expand); setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); setOperationAction(ISD::MUL, MVT::v1i64, Expand); // AArch64 doesn't have a direct vector ->f32 conversion instructions for // elements smaller than i32, so promote the input to i32 first. setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote); // Similarly, there is no direct i32 -> f64 vector conversion instruction. setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); // AArch64 doesn't have MUL.2d: setOperationAction(ISD::MUL, MVT::v2i64, Expand); setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); // Likewise, narrowing and extending vector loads/stores aren't handled // directly. for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) setTruncStoreAction((MVT::SimpleValueType)VT, (MVT::SimpleValueType)InnerVT, Expand); setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); } // AArch64 has implementations of a lot of rounding-like FP operations. static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 }; for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) { MVT Ty = RoundingVecTypes[I]; setOperationAction(ISD::FFLOOR, Ty, Legal); setOperationAction(ISD::FNEARBYINT, Ty, Legal); setOperationAction(ISD::FCEIL, Ty, Legal); setOperationAction(ISD::FRINT, Ty, Legal); setOperationAction(ISD::FTRUNC, Ty, Legal); setOperationAction(ISD::FROUND, Ty, Legal); } } // Prefer likely predicted branches to selects on out-of-order cores. if (Subtarget->isCortexA57()) PredictableSelectIsExpensive = true; } void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) { if (VT == MVT::v2f32) { setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32); setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32); } else if (VT == MVT::v2f64 || VT == MVT::v4f32) { setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64); setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64); } // Mark vector float intrinsics as expand. if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand); setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand); setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand); setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand); setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand); setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand); setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand); setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand); setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand); } setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom); setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom); setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom); setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom); setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom); setOperationAction(ISD::AND, VT.getSimpleVT(), Custom); setOperationAction(ISD::OR, VT.getSimpleVT(), Custom); setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom); setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal); setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand); setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand); setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand); setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand); // CNT supports only B element sizes. if (VT != MVT::v8i8 && VT != MVT::v16i8) setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand); setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand); setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand); setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand); setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand); setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand); setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom); setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom); if (Subtarget->isLittleEndian()) { for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, VT.getSimpleVT(), Legal); setIndexedStoreAction(im, VT.getSimpleVT(), Legal); } } } void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { addRegisterClass(VT, &AArch64::FPR64RegClass); addTypeForNEON(VT, MVT::v2i32); } void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { addRegisterClass(VT, &AArch64::FPR128RegClass); addTypeForNEON(VT, MVT::v4i32); } EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { if (!VT.isVector()) return MVT::i32; return VT.changeVectorElementTypeToInteger(); } /// computeKnownBitsForTargetNode - Determine which of the bits specified in /// Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. void AArch64TargetLowering::computeKnownBitsForTargetNode( const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { switch (Op.getOpcode()) { default: break; case AArch64ISD::CSEL: { APInt KnownZero2, KnownOne2; DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1); DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1); KnownZero &= KnownZero2; KnownOne &= KnownOne2; break; } case ISD::INTRINSIC_W_CHAIN: { ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); switch (IntID) { default: return; case Intrinsic::aarch64_ldaxr: case Intrinsic::aarch64_ldxr: { unsigned BitWidth = KnownOne.getBitWidth(); EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); unsigned MemBits = VT.getScalarType().getSizeInBits(); KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); return; } } break; } case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_VOID: { unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); switch (IntNo) { default: break; case Intrinsic::aarch64_neon_umaxv: case Intrinsic::aarch64_neon_uminv: { // Figure out the datatype of the vector operand. The UMINV instruction // will zero extend the result, so we can mark as known zero all the // bits larger than the element datatype. 32-bit or larget doesn't need // this as those are legal types and will be handled by isel directly. MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); unsigned BitWidth = KnownZero.getBitWidth(); if (VT == MVT::v8i8 || VT == MVT::v16i8) { assert(BitWidth >= 8 && "Unexpected width!"); APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); KnownZero |= Mask; } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { assert(BitWidth >= 16 && "Unexpected width!"); APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); KnownZero |= Mask; } break; } break; } } } } MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i64; } unsigned AArch64TargetLowering::getMaximalGlobalOffset() const { // FIXME: On AArch64, this depends on the type. // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). // and the offset has to be a multiple of the related size in bytes. return 4095; } FastISel * AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const { return AArch64::createFastISel(funcInfo, libInfo); } const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return nullptr; case AArch64ISD::CALL: return "AArch64ISD::CALL"; case AArch64ISD::ADRP: return "AArch64ISD::ADRP"; case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow"; case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot"; case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG"; case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND"; case AArch64ISD::CSEL: return "AArch64ISD::CSEL"; case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL"; case AArch64ISD::CSINV: return "AArch64ISD::CSINV"; case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG"; case AArch64ISD::CSINC: return "AArch64ISD::CSINC"; case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL"; case AArch64ISD::ADC: return "AArch64ISD::ADC"; case AArch64ISD::SBC: return "AArch64ISD::SBC"; case AArch64ISD::ADDS: return "AArch64ISD::ADDS"; case AArch64ISD::SUBS: return "AArch64ISD::SUBS"; case AArch64ISD::ADCS: return "AArch64ISD::ADCS"; case AArch64ISD::SBCS: return "AArch64ISD::SBCS"; case AArch64ISD::ANDS: return "AArch64ISD::ANDS"; case AArch64ISD::FCMP: return "AArch64ISD::FCMP"; case AArch64ISD::FMIN: return "AArch64ISD::FMIN"; case AArch64ISD::FMAX: return "AArch64ISD::FMAX"; case AArch64ISD::DUP: return "AArch64ISD::DUP"; case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8"; case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16"; case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32"; case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64"; case AArch64ISD::MOVI: return "AArch64ISD::MOVI"; case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift"; case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit"; case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl"; case AArch64ISD::FMOV: return "AArch64ISD::FMOV"; case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift"; case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl"; case AArch64ISD::BICi: return "AArch64ISD::BICi"; case AArch64ISD::ORRi: return "AArch64ISD::ORRi"; case AArch64ISD::BSL: return "AArch64ISD::BSL"; case AArch64ISD::NEG: return "AArch64ISD::NEG"; case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1"; case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2"; case AArch64ISD::UZP1: return "AArch64ISD::UZP1"; case AArch64ISD::UZP2: return "AArch64ISD::UZP2"; case AArch64ISD::TRN1: return "AArch64ISD::TRN1"; case AArch64ISD::TRN2: return "AArch64ISD::TRN2"; case AArch64ISD::REV16: return "AArch64ISD::REV16"; case AArch64ISD::REV32: return "AArch64ISD::REV32"; case AArch64ISD::REV64: return "AArch64ISD::REV64"; case AArch64ISD::EXT: return "AArch64ISD::EXT"; case AArch64ISD::VSHL: return "AArch64ISD::VSHL"; case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR"; case AArch64ISD::VASHR: return "AArch64ISD::VASHR"; case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ"; case AArch64ISD::CMGE: return "AArch64ISD::CMGE"; case AArch64ISD::CMGT: return "AArch64ISD::CMGT"; case AArch64ISD::CMHI: return "AArch64ISD::CMHI"; case AArch64ISD::CMHS: return "AArch64ISD::CMHS"; case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ"; case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE"; case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT"; case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz"; case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz"; case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz"; case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz"; case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz"; case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz"; case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz"; case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz"; case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz"; case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz"; case AArch64ISD::NOT: return "AArch64ISD::NOT"; case AArch64ISD::BIT: return "AArch64ISD::BIT"; case AArch64ISD::CBZ: return "AArch64ISD::CBZ"; case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ"; case AArch64ISD::TBZ: return "AArch64ISD::TBZ"; case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ"; case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; case AArch64ISD::SITOF: return "AArch64ISD::SITOF"; case AArch64ISD::UITOF: return "AArch64ISD::UITOF"; case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I"; case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I"; case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I"; case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I"; case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I"; case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge"; case AArch64ISD::LD2post: return "AArch64ISD::LD2post"; case AArch64ISD::LD3post: return "AArch64ISD::LD3post"; case AArch64ISD::LD4post: return "AArch64ISD::LD4post"; case AArch64ISD::ST2post: return "AArch64ISD::ST2post"; case AArch64ISD::ST3post: return "AArch64ISD::ST3post"; case AArch64ISD::ST4post: return "AArch64ISD::ST4post"; case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post"; case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post"; case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post"; case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post"; case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post"; case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post"; case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost"; case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost"; case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost"; case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost"; case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost"; case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost"; case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost"; case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost"; case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost"; case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost"; case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost"; } } MachineBasicBlock * AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI, MachineBasicBlock *MBB) const { // We materialise the F128CSEL pseudo-instruction as some control flow and a // phi node: // OrigBB: // [... previous instrs leading to comparison ...] // b.ne TrueBB // b EndBB // TrueBB: // ; Fallthrough // EndBB: // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); MachineFunction *MF = MBB->getParent(); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); DebugLoc DL = MI->getDebugLoc(); MachineFunction::iterator It = MBB; ++It; unsigned DestReg = MI->getOperand(0).getReg(); unsigned IfTrueReg = MI->getOperand(1).getReg(); unsigned IfFalseReg = MI->getOperand(2).getReg(); unsigned CondCode = MI->getOperand(3).getImm(); bool NZCVKilled = MI->getOperand(4).isKill(); MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, TrueBB); MF->insert(It, EndBB); // Transfer rest of current basic-block to EndBB EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); EndBB->transferSuccessorsAndUpdatePHIs(MBB); BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); MBB->addSuccessor(TrueBB); MBB->addSuccessor(EndBB); // TrueBB falls through to the end. TrueBB->addSuccessor(EndBB); if (!NZCVKilled) { TrueBB->addLiveIn(AArch64::NZCV); EndBB->addLiveIn(AArch64::NZCV); } BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) .addReg(IfTrueReg) .addMBB(TrueBB) .addReg(IfFalseReg) .addMBB(MBB); MI->eraseFromParent(); return EndBB; } MachineBasicBlock * AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { switch (MI->getOpcode()) { default: #ifndef NDEBUG MI->dump(); #endif llvm_unreachable("Unexpected instruction for custom inserter!"); case AArch64::F128CSEL: return EmitF128CSEL(MI, BB); case TargetOpcode::STACKMAP: case TargetOpcode::PATCHPOINT: return emitPatchPoint(MI, BB); } } //===----------------------------------------------------------------------===// // AArch64 Lowering private implementation. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Lowering Code //===----------------------------------------------------------------------===// /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 /// CC static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown condition code!"); case ISD::SETNE: return AArch64CC::NE; case ISD::SETEQ: return AArch64CC::EQ; case ISD::SETGT: return AArch64CC::GT; case ISD::SETGE: return AArch64CC::GE; case ISD::SETLT: return AArch64CC::LT; case ISD::SETLE: return AArch64CC::LE; case ISD::SETUGT: return AArch64CC::HI; case ISD::SETUGE: return AArch64CC::HS; case ISD::SETULT: return AArch64CC::LO; case ISD::SETULE: return AArch64CC::LS; } } /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. static void changeFPCCToAArch64CC(ISD::CondCode CC, AArch64CC::CondCode &CondCode, AArch64CC::CondCode &CondCode2) { CondCode2 = AArch64CC::AL; switch (CC) { default: llvm_unreachable("Unknown FP condition!"); case ISD::SETEQ: case ISD::SETOEQ: CondCode = AArch64CC::EQ; break; case ISD::SETGT: case ISD::SETOGT: CondCode = AArch64CC::GT; break; case ISD::SETGE: case ISD::SETOGE: CondCode = AArch64CC::GE; break; case ISD::SETOLT: CondCode = AArch64CC::MI; break; case ISD::SETOLE: CondCode = AArch64CC::LS; break; case ISD::SETONE: CondCode = AArch64CC::MI; CondCode2 = AArch64CC::GT; break; case ISD::SETO: CondCode = AArch64CC::VC; break; case ISD::SETUO: CondCode = AArch64CC::VS; break; case ISD::SETUEQ: CondCode = AArch64CC::EQ; CondCode2 = AArch64CC::VS; break; case ISD::SETUGT: CondCode = AArch64CC::HI; break; case ISD::SETUGE: CondCode = AArch64CC::PL; break; case ISD::SETLT: case ISD::SETULT: CondCode = AArch64CC::LT; break; case ISD::SETLE: case ISD::SETULE: CondCode = AArch64CC::LE; break; case ISD::SETNE: case ISD::SETUNE: CondCode = AArch64CC::NE; break; } } /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 /// CC usable with the vector instructions. Fewer operations are available /// without a real NZCV register, so we have to use less efficient combinations /// to get the same effect. static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, AArch64CC::CondCode &CondCode, AArch64CC::CondCode &CondCode2, bool &Invert) { Invert = false; switch (CC) { default: // Mostly the scalar mappings work fine. changeFPCCToAArch64CC(CC, CondCode, CondCode2); break; case ISD::SETUO: Invert = true; // Fallthrough case ISD::SETO: CondCode = AArch64CC::MI; CondCode2 = AArch64CC::GE; break; case ISD::SETUEQ: case ISD::SETULT: case ISD::SETULE: case ISD::SETUGT: case ISD::SETUGE: // All of the compare-mask comparisons are ordered, but we can switch // between the two by a double inversion. E.g. ULE == !OGT. Invert = true; changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2); break; } } static bool isLegalArithImmed(uint64_t C) { // Matches AArch64DAGToDAGISel::SelectArithImmed(). return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); } static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl, SelectionDAG &DAG) { EVT VT = LHS.getValueType(); if (VT.isFloatingPoint()) return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); // The CMP instruction is just an alias for SUBS, and representing it as // SUBS means that it's possible to get CSE with subtract operations. // A later phase can perform the optimization of setting the destination // register to WZR/XZR if it ends up being unused. unsigned Opcode = AArch64ISD::SUBS; if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) && cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 && (CC == ISD::SETEQ || CC == ISD::SETNE)) { // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags // can be set differently by this operation. It comes down to whether // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then // everything is fine. If not then the optimization is wrong. Thus general // comparisons are only valid if op2 != 0. // So, finally, the only LLVM-native comparisons that don't mention C and V // are SETEQ and SETNE. They're the only ones we can safely use CMN for in // the absence of information about op2. Opcode = AArch64ISD::ADDS; RHS = RHS.getOperand(1); } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) && cast<ConstantSDNode>(RHS)->getZExtValue() == 0 && !isUnsignedIntSetCC(CC)) { // Similarly, (CMP (and X, Y), 0) can be implemented with a TST // (a.k.a. ANDS) except that the flags are only guaranteed to work for one // of the signed comparisons. Opcode = AArch64ISD::ANDS; RHS = LHS.getOperand(1); LHS = LHS.getOperand(0); } return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS) .getValue(1); } static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) { if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { EVT VT = RHS.getValueType(); uint64_t C = RHSC->getZExtValue(); if (!isLegalArithImmed(C)) { // Constant does not fit, try adjusting it by one? switch (CC) { default: break; case ISD::SETLT: case ISD::SETGE: if ((VT == MVT::i32 && C != 0x80000000 && isLegalArithImmed((uint32_t)(C - 1))) || (VT == MVT::i64 && C != 0x80000000ULL && isLegalArithImmed(C - 1ULL))) { CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; RHS = DAG.getConstant(C, VT); } break; case ISD::SETULT: case ISD::SETUGE: if ((VT == MVT::i32 && C != 0 && isLegalArithImmed((uint32_t)(C - 1))) || (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; RHS = DAG.getConstant(C, VT); } break; case ISD::SETLE: case ISD::SETGT: if ((VT == MVT::i32 && C != 0x7fffffff && isLegalArithImmed((uint32_t)(C + 1))) || (VT == MVT::i64 && C != 0x7ffffffffffffffULL && isLegalArithImmed(C + 1ULL))) { CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; RHS = DAG.getConstant(C, VT); } break; case ISD::SETULE: case ISD::SETUGT: if ((VT == MVT::i32 && C != 0xffffffff && isLegalArithImmed((uint32_t)(C + 1))) || (VT == MVT::i64 && C != 0xfffffffffffffffULL && isLegalArithImmed(C + 1ULL))) { CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; RHS = DAG.getConstant(C, VT); } break; } } } SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); AArch64cc = DAG.getConstant(AArch64CC, MVT::i32); return Cmp; } static std::pair<SDValue, SDValue> getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && "Unsupported value type"); SDValue Value, Overflow; SDLoc DL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); unsigned Opc = 0; switch (Op.getOpcode()) { default: llvm_unreachable("Unknown overflow instruction!"); case ISD::SADDO: Opc = AArch64ISD::ADDS; CC = AArch64CC::VS; break; case ISD::UADDO: Opc = AArch64ISD::ADDS; CC = AArch64CC::HS; break; case ISD::SSUBO: Opc = AArch64ISD::SUBS; CC = AArch64CC::VS; break; case ISD::USUBO: Opc = AArch64ISD::SUBS; CC = AArch64CC::LO; break; // Multiply needs a little bit extra work. case ISD::SMULO: case ISD::UMULO: { CC = AArch64CC::NE; bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false; if (Op.getValueType() == MVT::i32) { unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; // For a 32 bit multiply with overflow check we want the instruction // selector to generate a widening multiply (SMADDL/UMADDL). For that we // need to generate the following pattern: // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, DAG.getConstant(0, MVT::i64)); // On AArch64 the upper 32 bits are always zero extended for a 32 bit // operation. We need to clear out the upper 32 bits, because we used a // widening multiply that wrote all 64 bits. In the end this should be a // noop. Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); if (IsSigned) { // The signed overflow check requires more than just a simple check for // any bit set in the upper 32 bits of the result. These bits could be // just the sign bits of a negative number. To perform the overflow // check we have to arithmetic shift right the 32nd bit of the result by // 31 bits. Then we compare the result to the upper 32 bits. SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, DAG.getConstant(32, MVT::i64)); UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, DAG.getConstant(31, MVT::i64)); // It is important that LowerBits is last, otherwise the arithmetic // shift will not be folded into the compare (SUBS). SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) .getValue(1); } else { // The overflow check for unsigned multiply is easy. We only need to // check if any of the upper 32 bits are set. This can be done with a // CMP (shifted register). For that we need to generate the following // pattern: // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64)); SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64), UpperBits).getValue(1); } break; } assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); // For the 64 bit multiply Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); if (IsSigned) { SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, DAG.getConstant(63, MVT::i64)); // It is important that LowerBits is last, otherwise the arithmetic // shift will not be folded into the compare (SUBS). SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) .getValue(1); } else { SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64), UpperBits).getValue(1); } break; } } // switch (...) if (Opc) { SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); // Emit the AArch64 operation with overflow check. Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); Overflow = Value.getValue(1); } return std::make_pair(Value, Overflow); } SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, RTLIB::Libcall Call) const { SmallVector<SDValue, 2> Ops; for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) Ops.push_back(Op.getOperand(i)); return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false, SDLoc(Op)).first; } static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) { SDValue Sel = Op.getOperand(0); SDValue Other = Op.getOperand(1); // If neither operand is a SELECT_CC, give up. if (Sel.getOpcode() != ISD::SELECT_CC) std::swap(Sel, Other); if (Sel.getOpcode() != ISD::SELECT_CC) return Op; // The folding we want to perform is: // (xor x, (select_cc a, b, cc, 0, -1) ) // --> // (csel x, (xor x, -1), cc ...) // // The latter will get matched to a CSINV instruction. ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); SDValue LHS = Sel.getOperand(0); SDValue RHS = Sel.getOperand(1); SDValue TVal = Sel.getOperand(2); SDValue FVal = Sel.getOperand(3); SDLoc dl(Sel); // FIXME: This could be generalized to non-integer comparisons. if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) return Op; ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); // The the values aren't constants, this isn't the pattern we're looking for. if (!CFVal || !CTVal) return Op; // We can commute the SELECT_CC by inverting the condition. This // might be needed to make this fit into a CSINV pattern. if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, true); } // If the constants line up, perform the transform! if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { SDValue CCVal; SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); FVal = Other; TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, DAG.getConstant(-1ULL, Other.getValueType())); return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, CCVal, Cmp); } return Op; } static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); SDVTList VTs = DAG.getVTList(VT, MVT::i32); unsigned Opc; bool ExtraOp = false; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid code"); case ISD::ADDC: Opc = AArch64ISD::ADDS; break; case ISD::SUBC: Opc = AArch64ISD::SUBS; break; case ISD::ADDE: Opc = AArch64ISD::ADCS; ExtraOp = true; break; case ISD::SUBE: Opc = AArch64ISD::SBCS; ExtraOp = true; break; } if (!ExtraOp) return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), Op.getOperand(2)); } static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) return SDValue(); AArch64CC::CondCode CC; // The actual operation that sets the overflow or carry flag. SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); // We use 0 and 1 as false and true values. SDValue TVal = DAG.getConstant(1, MVT::i32); SDValue FVal = DAG.getConstant(0, MVT::i32); // We use an inverted condition, because the conditional select is inverted // too. This will allow it to be selected to a single instruction: // CSINC Wd, WZR, WZR, invert(cond). SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32); Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal, CCVal, Overflow); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow); } // Prefetch operands are: // 1: Address to prefetch // 2: bool isWrite // 3: int locality (0 = no locality ... 3 = extreme locality) // 4: bool isDataCache static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); // The data thing is not used. // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); bool IsStream = !Locality; // When the locality number is set if (Locality) { // The front-end should have filtered out the out-of-range values assert(Locality <= 3 && "Prefetch locality out-of-range"); // The locality degree is the opposite of the cache speed. // Put the number the other way around. // The encoding starts at 0 for level 1 Locality = 3 - Locality; } // built the mask value encoding the expected behavior. unsigned PrfOp = (IsWrite << 4) | // Load/Store bit (Locality << 1) | // Cache level bits (unsigned)IsStream; // Stream bit return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1)); } SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); RTLIB::Libcall LC; LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); return LowerF128Call(Op, DAG, LC); } SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { if (Op.getOperand(0).getValueType() != MVT::f128) { // It's legal except when f128 is involved return Op; } RTLIB::Libcall LC; LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); // FP_ROUND node has a second operand indicating whether it is known to be // precise. That doesn't take part in the LibCall so we can't directly use // LowerF128Call. SDValue SrcVal = Op.getOperand(0); return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1, /*isSigned*/ false, SDLoc(Op)).first; } static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. // Any additional optimization in this function should be recorded // in the cost tables. EVT InVT = Op.getOperand(0).getValueType(); EVT VT = Op.getValueType(); if (VT.getSizeInBits() < InVT.getSizeInBits()) { SDLoc dl(Op); SDValue Cv = DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), Op.getOperand(0)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); } if (VT.getSizeInBits() > InVT.getSizeInBits()) { SDLoc dl(Op); SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Op.getOperand(0)); return DAG.getNode(Op.getOpcode(), dl, VT, Ext); } // Type changing conversions are illegal. return Op; } SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { if (Op.getOperand(0).getValueType().isVector()) return LowerVectorFP_TO_INT(Op, DAG); if (Op.getOperand(0).getValueType() != MVT::f128) { // It's legal except when f128 is involved return Op; } RTLIB::Libcall LC; if (Op.getOpcode() == ISD::FP_TO_SINT) LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); else LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); SmallVector<SDValue, 2> Ops; for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) Ops.push_back(Op.getOperand(i)); return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false, SDLoc(Op)).first; } static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. // Any additional optimization in this function should be recorded // in the cost tables. EVT VT = Op.getValueType(); SDLoc dl(Op); SDValue In = Op.getOperand(0); EVT InVT = In.getValueType(); if (VT.getSizeInBits() < InVT.getSizeInBits()) { MVT CastVT = MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), InVT.getVectorNumElements()); In = DAG.getNode(Op.getOpcode(), dl, CastVT, In); return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0)); } if (VT.getSizeInBits() > InVT.getSizeInBits()) { unsigned CastOpc = Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; EVT CastVT = VT.changeVectorElementTypeToInteger(); In = DAG.getNode(CastOpc, dl, CastVT, In); return DAG.getNode(Op.getOpcode(), dl, VT, In); } return Op; } SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isVector()) return LowerVectorINT_TO_FP(Op, DAG); // i128 conversions are libcalls. if (Op.getOperand(0).getValueType() == MVT::i128) return SDValue(); // Other conversions are legal, unless it's to the completely software-based // fp128. if (Op.getValueType() != MVT::f128) return Op; RTLIB::Libcall LC; if (Op.getOpcode() == ISD::SINT_TO_FP) LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); else LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); return LowerF128Call(Op, DAG, LC); } SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { // For iOS, we want to call an alternative entry point: __sincos_stret, // which returns the values in two S / D registers. SDLoc dl(Op); SDValue Arg = Op.getOperand(0); EVT ArgVT = Arg.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); ArgListTy Args; ArgListEntry Entry; Entry.Node = Arg; Entry.Ty = ArgTy; Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); const char *LibcallName = (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret"; SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy()); StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0); std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); return CallResult.first; } SDValue AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("unimplemented operand"); return SDValue(); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::VACOPY: return LowerVACOPY(Op, DAG); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); case ISD::SADDO: case ISD::UADDO: case ISD::SSUBO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: return LowerXALUO(Op, DAG); case ISD::FADD: return LowerF128Call(Op, DAG, RTLIB::ADD_F128); case ISD::FSUB: return LowerF128Call(Op, DAG, RTLIB::SUB_F128); case ISD::FMUL: return LowerF128Call(Op, DAG, RTLIB::MUL_F128); case ISD::FDIV: return LowerF128Call(Op, DAG, RTLIB::DIV_F128); case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); case ISD::SRA: case ISD::SRL: case ISD::SHL: return LowerVectorSRA_SRL_SHL(Op, DAG); case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); case ISD::SRL_PARTS: case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); case ISD::CTPOP: return LowerCTPOP(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::AND: return LowerVectorAND(Op, DAG); case ISD::OR: return LowerVectorOR(Op, DAG); case ISD::XOR: return LowerXOR(Op, DAG); case ISD::PREFETCH: return LowerPREFETCH(Op, DAG); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); } } /// getFunctionAlignment - Return the Log2 alignment of this function. unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const { return 2; } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// #include "AArch64GenCallingConv.inc" /// Selects the correct CCAssignFn for a the given CallingConvention /// value. CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const { switch (CC) { default: llvm_unreachable("Unsupported calling convention."); case CallingConv::WebKit_JS: return CC_AArch64_WebKit_JS; case CallingConv::C: case CallingConv::Fast: if (!Subtarget->isTargetDarwin()) return CC_AArch64_AAPCS; return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS; } } SDValue AArch64TargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); // At this point, Ins[].VT may already be promoted to i32. To correctly // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here // we use a special version of AnalyzeFormalArguments to pass in ValVT and // LocVT. unsigned NumArgs = Ins.size(); Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); unsigned CurArgIdx = 0; for (unsigned i = 0; i != NumArgs; ++i) { MVT ValVT = Ins[i].VT; std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx); CurArgIdx = Ins[i].OrigArgIndex; // Get type of the original argument. EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true); MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) ValVT = MVT::i8; else if (ActualMVT == MVT::i16) ValVT = MVT::i16; CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); assert(!Res && "Call operand has unhandled type"); (void)Res; } assert(ArgLocs.size() == Ins.size()); SmallVector<SDValue, 16> ArgValues; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (Ins[i].Flags.isByVal()) { // Byval is used for HFAs in the PCS, but the system should work in a // non-compliant manner for larger structs. EVT PtrTy = getPointerTy(); int Size = Ins[i].Flags.getByValSize(); unsigned NumRegs = (Size + 7) / 8; // FIXME: This works on big-endian for composite byvals, which are the common // case. It should also work for fundamental types too. unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy); InVals.push_back(FrameIdxN); continue; } if (VA.isRegLoc()) { // Arguments stored in registers. EVT RegVT = VA.getLocVT(); SDValue ArgValue; const TargetRegisterClass *RC; if (RegVT == MVT::i32) RC = &AArch64::GPR32RegClass; else if (RegVT == MVT::i64) RC = &AArch64::GPR64RegClass; else if (RegVT == MVT::f32) RC = &AArch64::FPR32RegClass; else if (RegVT == MVT::f64 || RegVT.is64BitVector()) RC = &AArch64::FPR64RegClass; else if (RegVT == MVT::f128 || RegVT.is128BitVector()) RC = &AArch64::FPR128RegClass; else llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); // Transform the arguments in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); // If this is an 8, 16 or 32-bit value, it is really passed promoted // to 64 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); break; case CCValAssign::AExt: case CCValAssign::SExt: case CCValAssign::ZExt: // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt // nodes after our lowering. assert(RegVT == Ins[i].VT && "incorrect register location selected"); break; } InVals.push_back(ArgValue); } else { // VA.isRegLoc() assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); unsigned ArgOffset = VA.getLocMemOffset(); unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; uint32_t BEAlign = 0; if (ArgSize < 8 && !Subtarget->isLittleEndian()) BEAlign = 8 - ArgSize; int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); SDValue ArgValue; // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; MVT MemVT = VA.getValVT(); switch (VA.getLocInfo()) { default: break; case CCValAssign::BCvt: MemVT = VA.getLocVT(); break; case CCValAssign::SExt: ExtType = ISD::SEXTLOAD; break; case CCValAssign::ZExt: ExtType = ISD::ZEXTLOAD; break; case CCValAssign::AExt: ExtType = ISD::EXTLOAD; break; } ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN, MachinePointerInfo::getFixedStack(FI), MemVT, false, false, false, nullptr); InVals.push_back(ArgValue); } } // varargs if (isVarArg) { if (!Subtarget->isTargetDarwin()) { // The AAPCS variadic function ABI is identical to the non-variadic // one. As a result there may be more arguments in registers and we should // save them for future reference. saveVarArgRegisters(CCInfo, DAG, DL, Chain); } AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); // This will point to the next argument passed via stack. unsigned StackOffset = CCInfo.getNextStackOffset(); // We currently pass all varargs at 8-byte alignment. StackOffset = ((StackOffset + 7) & ~7); AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true)); } AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); unsigned StackArgSize = CCInfo.getNextStackOffset(); bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { // This is a non-standard ABI so by fiat I say we're allowed to make full // use of the stack area to be popped, which must be aligned to 16 bytes in // any case: StackArgSize = RoundUpToAlignment(StackArgSize, 16); // If we're expected to restore the stack (e.g. fastcc) then we'll be adding // a multiple of 16. FuncInfo->setArgumentStackToRestore(StackArgSize); // This realignment carries over to the available bytes below. Our own // callers will guarantee the space is free by giving an aligned value to // CALLSEQ_START. } // Even if we're not expected to free up the space, it's useful to know how // much is there while considering tail calls (because we can reuse it). FuncInfo->setBytesInStackArgArea(StackArgSize); return Chain; } void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, SDLoc DL, SDValue &Chain) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); SmallVector<SDValue, 8> MemOps; static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7 }; static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs); unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); int GPRIdx = 0; if (GPRSaveSize != 0) { GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false); SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy()); for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, MachinePointerInfo::getStack(i * 8), false, false, 0); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, DAG.getConstant(8, getPointerTy())); } } FuncInfo->setVarArgsGPRIndex(GPRIdx); FuncInfo->setVarArgsGPRSize(GPRSaveSize); if (Subtarget->hasFPARMv8()) { static const MCPhysReg FPRArgRegs[] = { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs); unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); int FPRIdx = 0; if (FPRSaveSize != 0) { FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false); SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy()); for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, MachinePointerInfo::getStack(i * 16), false, false, 0); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, DAG.getConstant(16, getPointerTy())); } } FuncInfo->setVarArgsFPRIndex(FPRIdx); FuncInfo->setVarArgsFPRSize(FPRSaveSize); } if (!MemOps.empty()) { Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); } } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. SDValue AArch64TargetLowering::LowerCallResult( SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn, SDValue ThisVal) const { CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS : RetCC_AArch64_AAPCS; // Assign locations to each value returned by this call. SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign VA = RVLocs[i]; // Pass 'this' value directly from the argument to return value, to avoid // reg unit interference if (i == 0 && isThisReturn) { assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && "unexpected return calling convention register assignment"); InVals.push_back(ThisVal); continue; } SDValue Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); break; } InVals.push_back(Val); } return Chain; } bool AArch64TargetLowering::isEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { // For CallingConv::C this function knows whether the ABI needs // changing. That's not true for other conventions so they will have to opt in // manually. if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) return false; const MachineFunction &MF = DAG.getMachineFunction(); const Function *CallerF = MF.getFunction(); CallingConv::ID CallerCC = CallerF->getCallingConv(); bool CCMatch = CallerCC == CalleeCC; // Byval parameters hand the function a pointer directly into the stack area // we want to reuse during a tail call. Working around this *is* possible (see // X86) but less efficient and uglier in LowerCall. for (Function::const_arg_iterator i = CallerF->arg_begin(), e = CallerF->arg_end(); i != e; ++i) if (i->hasByValAttr()) return false; if (getTargetMachine().Options.GuaranteedTailCallOpt) { if (IsTailCallConvention(CalleeCC) && CCMatch) return true; return false; } // Now we search for cases where we can use a tail call without changing the // ABI. Sibcall is used in some places (particularly gcc) to refer to this // concept. // I want anyone implementing a new calling convention to think long and hard // about this assert. assert((!isVarArg || CalleeCC == CallingConv::C) && "Unexpected variadic calling convention"); if (isVarArg && !Outs.empty()) { // At least two cases here: if caller is fastcc then we can't have any // memory arguments (we'd be expected to clean up the stack afterwards). If // caller is C then we could potentially use its argument area. // FIXME: for now we take the most conservative of these in both cases: // disallow all variadic memory operands. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) if (!ArgLocs[i].isRegLoc()) return false; } // If the calling conventions do not match, then we'd better make sure the // results are returned in the same way as what the caller expects. if (!CCMatch) { SmallVector<CCValAssign, 16> RVLocs1; CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), getTargetMachine(), RVLocs1, *DAG.getContext()); CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg)); SmallVector<CCValAssign, 16> RVLocs2; CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), getTargetMachine(), RVLocs2, *DAG.getContext()); CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg)); if (RVLocs1.size() != RVLocs2.size()) return false; for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) return false; if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) return false; if (RVLocs1[i].isRegLoc()) { if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) return false; } else { if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) return false; } } } // Nothing more to check if the callee is taking no arguments if (Outs.empty()) return true; SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); // If the stack arguments for this call would fit into our own save area then // the call can be made tail. return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea(); } SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo *MFI, int ClobberedFI) const { SmallVector<SDValue, 8> ArgChains; int64_t FirstByte = MFI->getObjectOffset(ClobberedFI); int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1; // Include the original chain at the beginning of the list. When this is // used by target LowerCall hooks, this helps legalize find the // CALLSEQ_BEGIN node. ArgChains.push_back(Chain); // Add a chain value for each stack argument corresponding for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U) if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) if (FI->getIndex() < 0) { int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex()); int64_t InLastByte = InFirstByte; InLastByte += MFI->getObjectSize(FI->getIndex()) - 1; if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || (FirstByte <= InFirstByte && InFirstByte <= LastByte)) ArgChains.push_back(SDValue(L, 1)); } // Build a tokenfactor for all the chains. return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); } bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const { return CallCC == CallingConv::Fast && TailCallOpt; } bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const { return CallCC == CallingConv::Fast; } /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, /// and add input and output parameter nodes. SDValue AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &DL = CLI.DL; SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; SmallVector<SDValue, 32> &OutVals = CLI.OutVals; SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); bool IsThisReturn = false; AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; bool IsSibCall = false; if (IsTailCall) { // Check if it's really possible to do a tail call. IsTailCall = isEligibleForTailCallOptimization( Callee, CallConv, IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG); if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); // A sibling call is one where we're under the usual C ABI and not planning // to change that but can still do a tail call: if (!TailCallOpt && IsTailCall) IsSibCall = true; if (IsTailCall) ++NumTailCalls; } // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); if (IsVarArg) { // Handle fixed and variable vector arguments differently. // Variable vector arguments always go into memory. unsigned NumArgs = Outs.size(); for (unsigned i = 0; i != NumArgs; ++i) { MVT ArgVT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/ !Outs[i].IsFixed); bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); assert(!Res && "Call operand has unhandled type"); (void)Res; } } else { // At this point, Outs[].VT may already be promoted to i32. To correctly // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here // we use a special version of AnalyzeCallOperands to pass in ValVT and // LocVT. unsigned NumArgs = Outs.size(); for (unsigned i = 0; i != NumArgs; ++i) { MVT ValVT = Outs[i].VT; // Get type of the original argument. EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty, /*AllowUnknown*/ true); MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) ValVT = MVT::i8; else if (ActualMVT == MVT::i16) ValVT = MVT::i16; CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo); assert(!Res && "Call operand has unhandled type"); (void)Res; } } // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); if (IsSibCall) { // Since we're not changing the ABI to make this a tail call, the memory // operands are already available in the caller's incoming argument space. NumBytes = 0; } // FPDiff is the byte offset of the call's argument area from the callee's. // Stores to callee stack arguments will be placed in FixedStackSlots offset // by this amount for a tail call. In a sibling call it must be 0 because the // caller will deallocate the entire stack and the callee still expects its // arguments to begin at SP+0. Completely unused for non-tail calls. int FPDiff = 0; if (IsTailCall && !IsSibCall) { unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); // Since callee will pop argument stack as a tail call, we must keep the // popped size 16-byte aligned. NumBytes = RoundUpToAlignment(NumBytes, 16); // FPDiff will be negative if this tail call requires more space than we // would automatically have in our incoming argument space. Positive if we // can actually shrink the stack. FPDiff = NumReusableBytes - NumBytes; // The stack pointer must be 16-byte aligned at all times it's used for a // memory operation, which in practice means at *all* times and in // particular across call boundaries. Therefore our own arguments started at // a 16-byte aligned SP and the delta applied for the tail call should // satisfy the same constraint. assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); } // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass if (!IsSibCall) Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL); SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy()); SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; SmallVector<SDValue, 8> MemOpChains; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[realArgIdx]; ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: if (Outs[realArgIdx].ArgVT == MVT::i1) { // AAPCS requires i1 to be zero-extended to 8-bits by the caller. Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); } Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; case CCValAssign::FPExt: Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); break; } if (VA.isRegLoc()) { if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) { assert(VA.getLocVT() == MVT::i64 && "unexpected calling convention register assignment"); assert(!Ins.empty() && Ins[0].VT == MVT::i64 && "unexpected use of 'returned'"); IsThisReturn = true; } RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { assert(VA.isMemLoc()); SDValue DstAddr; MachinePointerInfo DstInfo; // FIXME: This works on big-endian for composite byvals, which are the // common case. It should also work for fundamental types too. uint32_t BEAlign = 0; unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 : VA.getLocVT().getSizeInBits(); OpSize = (OpSize + 7) / 8; if (!Subtarget->isLittleEndian() && !Flags.isByVal()) { if (OpSize < 8) BEAlign = 8 - OpSize; } unsigned LocMemOffset = VA.getLocMemOffset(); int32_t Offset = LocMemOffset + BEAlign; SDValue PtrOff = DAG.getIntPtrConstant(Offset); PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff); if (IsTailCall) { Offset = Offset + FPDiff; int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); DstAddr = DAG.getFrameIndex(FI, getPointerTy()); DstInfo = MachinePointerInfo::getFixedStack(FI); // Make sure any stack arguments overlapping with where we're storing // are loaded before this eventual operation. Otherwise they'll be // clobbered. Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); } else { SDValue PtrOff = DAG.getIntPtrConstant(Offset); DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff); DstInfo = MachinePointerInfo::getStack(LocMemOffset); } if (Outs[i].Flags.isByVal()) { SDValue SizeNode = DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64); SDValue Cpy = DAG.getMemcpy( Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), /*isVolatile = */ false, /*alwaysInline = */ false, DstInfo, MachinePointerInfo()); MemOpChains.push_back(Cpy); } else { // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already // promoted to a legal register type i32, we should truncate Arg back to // i1/i8/i16. if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0); MemOpChains.push_back(Store); } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (getTargetMachine().getCodeModel() == CodeModel::Large && Subtarget->isTargetMachO()) { if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { const GlobalValue *GV = G->getGlobal(); bool InternalLinkage = GV->hasInternalLinkage(); if (InternalLinkage) Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0); else { Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, AArch64II::MO_GOT); Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee); } } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { const char *Sym = S->getSymbol(); Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT); Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee); } } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { const GlobalValue *GV = G->getGlobal(); Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0); } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { const char *Sym = S->getSymbol(); Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0); } // We don't usually want to end the call-sequence here because we would tidy // the frame up *after* the call, however in the ABI-changing tail-call case // we've carefully laid out the parameters so that when sp is reset they'll be // in the correct location. if (IsTailCall && !IsSibCall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag, DL); InFlag = Chain.getValue(1); } std::vector<SDValue> Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (IsTailCall) { // Each tail call may have to adjust the stack by a different amount, so // this information must travel along with the operation for eventual // consumption by emitEpilogue. Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32)); } // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. const uint32_t *Mask; const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(TRI); if (IsThisReturn) { // For 'this' returns, use the X0-preserving mask if applicable Mask = ARI->getThisReturnPreservedMask(CallConv); if (!Mask) { IsThisReturn = false; Mask = ARI->getCallPreservedMask(CallConv); } } else Mask = ARI->getCallPreservedMask(CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); // If we're doing a tall call, use a TC_RETURN here rather than an // actual call instruction. if (IsTailCall) return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); // Returns a chain and a flag for retval copy to use. Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops); InFlag = Chain.getValue(1); uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? RoundUpToAlignment(NumBytes, 16) : 0; Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(CalleePopBytes, true), InFlag, DL); if (!Ins.empty()) InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, InVals, IsThisReturn, IsThisReturn ? OutVals[0] : SDValue()); } bool AArch64TargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS : RetCC_AArch64_AAPCS; SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context); return CCInfo.CheckReturn(Outs, RetCC); } SDValue AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, SDLoc DL, SelectionDAG &DAG) const { CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS : RetCC_AArch64_AAPCS; SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC); // Copy the result values into the output registers. SDValue Flag; SmallVector<SDValue, 4> RetOps(1, Chain); for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); ++i, ++realRVLocIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = OutVals[realRVLocIdx]; switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: if (Outs[i].ArgVT == MVT::i1) { // AAPCS requires i1 to be zero-extended to i8 by the producer of the // value. This is strictly redundant on Darwin (which uses "zeroext // i1"), but will be optimised out before ISel. Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); } break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; } Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); } //===----------------------------------------------------------------------===// // Other Lowering Code //===----------------------------------------------------------------------===// SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(); SDLoc DL(Op); const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && "unexpected offset in global node"); // This also catched the large code model case for Darwin. if ((OpFlags & AArch64II::MO_GOT) != 0) { SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into two nodes instead of using a wrapper node. return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr); } if (getTargetMachine().getCodeModel() == CodeModel::Large) { const unsigned char MO_NC = AArch64II::MO_NC; return DAG.getNode( AArch64ISD::WrapperLarge, DL, PtrVT, DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3), DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC), DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC), DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC)); } else { // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and // the only correct model on Darwin. SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags | AArch64II::MO_PAGE); unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC; SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags); SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); } } /// \brief Convert a TLS address reference into the correct sequence of loads /// and calls to compute the variable's address (for Darwin, currently) and /// return an SDValue containing the final node. /// Darwin only has one TLS scheme which must be capable of dealing with the /// fully general situation, in the worst case. This means: /// + "extern __thread" declaration. /// + Defined in a possibly unknown dynamic library. /// /// The general system is that each __thread variable has a [3 x i64] descriptor /// which contains information used by the runtime to calculate the address. The /// only part of this the compiler needs to know about is the first xword, which /// contains a function pointer that must be called with the address of the /// entire descriptor in "x0". /// /// Since this descriptor may be in a different unit, in general even the /// descriptor must be accessed via an indirect load. The "ideal" code sequence /// is: /// adrp x0, _var@TLVPPAGE /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor /// ldr x1, [x0] ; x1 contains 1st entry of descriptor, /// ; the function pointer /// blr x1 ; Uses descriptor address in x0 /// ; Address of _var is now in x0. /// /// If the address of _var's descriptor *is* known to the linker, then it can /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for /// a slight efficiency gain. SDValue AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin"); SDLoc DL(Op); MVT PtrVT = getPointerTy(); const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); SDValue TLVPAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); // The first entry in the descriptor is a function pointer that we must call // to obtain the address of the variable. SDValue Chain = DAG.getEntryNode(); SDValue FuncTLVGet = DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(), false, true, true, 8); Chain = FuncTLVGet.getValue(1); MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setAdjustsStack(true); // TLS calls preserve all registers except those that absolutely must be // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be // silly). const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(TRI); const uint32_t *Mask = ARI->getTLSCallPreservedMask(); // Finally, we can make the call. This is just a degenerate version of a // normal AArch64 call node: x0 takes the address of the descriptor, and // returns the address of the variable in this thread. Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); Chain = DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), DAG.getRegisterMask(Mask), Chain.getValue(1)); return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); } /// When accessing thread-local variables under either the general-dynamic or /// local-dynamic system, we make a "TLS-descriptor" call. The variable will /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry /// is a function pointer to carry out the resolution. This function takes the /// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All /// other registers (except LR, NZCV) are preserved. /// /// Thus, the ideal call sequence on AArch64 is: /// /// adrp x0, :tlsdesc:thread_var /// ldr x8, [x0, :tlsdesc_lo12:thread_var] /// add x0, x0, :tlsdesc_lo12:thread_var /// .tlsdesccall thread_var /// blr x8 /// (TPIDR_EL0 offset now in x0). /// /// The ".tlsdesccall" directive instructs the assembler to insert a particular /// relocation to help the linker relax this sequence if it turns out to be too /// conservative. /// /// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this /// is harmless. SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr, SDValue DescAddr, SDLoc DL, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(); // The function we need to call is simply the first entry in the GOT for this // descriptor, load it in preparation. SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr); // TLS calls preserve all registers except those that absolutely must be // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be // silly). const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(TRI); const uint32_t *Mask = ARI->getTLSCallPreservedMask(); // The function takes only one argument: the address of the descriptor itself // in X0. SDValue Glue, Chain; Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue); Glue = Chain.getValue(1); // We're now ready to populate the argument list, as with a normal call: SmallVector<SDValue, 6> Ops; Ops.push_back(Chain); Ops.push_back(Func); Ops.push_back(SymAddr); Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT)); Ops.push_back(DAG.getRegisterMask(Mask)); Ops.push_back(Glue); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops); Glue = Chain.getValue(1); return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); } SDValue AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetELF() && "This function expects an ELF target"); assert(getTargetMachine().getCodeModel() == CodeModel::Small && "ELF TLS only supported in small memory model"); const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); SDValue TPOff; EVT PtrVT = getPointerTy(); SDLoc DL(Op); const GlobalValue *GV = GA->getGlobal(); SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); if (Model == TLSModel::LocalExec) { SDValue HiVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1); SDValue LoVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, DAG.getTargetConstant(16, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, DAG.getTargetConstant(0, MVT::i32)), 0); } else if (Model == TLSModel::InitialExec) { TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); } else if (Model == TLSModel::LocalDynamic) { // Local-dynamic accesses proceed in two phases. A general-dynamic TLS // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate // the beginning of the module's TLS region, followed by a DTPREL offset // calculation. // These accesses will need deduplicating if there's more than one. AArch64FunctionInfo *MFI = DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); MFI->incNumLocalDynamicTLSAccesses(); // Accesses used in this sequence go via the TLS descriptor which lives in // the GOT. Prepare an address we can use to handle this. SDValue HiDesc = DAG.getTargetExternalSymbol( "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE); SDValue LoDesc = DAG.getTargetExternalSymbol( "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); // First argument to the descriptor call is the address of the descriptor // itself. SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc); DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc); // The call needs a relocation too for linker relaxation. It doesn't make // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of // the address. SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS); // Now we can calculate the offset from TPIDR_EL0 to this module's // thread-local area. TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG); // Now use :dtprel_whatever: operations to calculate this variable's offset // in its thread-storage area. SDValue HiVar = DAG.getTargetGlobalAddress( GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1); SDValue LoVar = DAG.getTargetGlobalAddress( GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); SDValue DTPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, DAG.getTargetConstant(16, MVT::i32)), 0); DTPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar, DAG.getTargetConstant(0, MVT::i32)), 0); TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff); } else if (Model == TLSModel::GeneralDynamic) { // Accesses used in this sequence go via the TLS descriptor which lives in // the GOT. Prepare an address we can use to handle this. SDValue HiDesc = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE); SDValue LoDesc = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); // First argument to the descriptor call is the address of the descriptor // itself. SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc); DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc); // The call needs a relocation too for linker relaxation. It doesn't make // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of // the address. SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); // Finally we can make a call to calculate the offset from tpidr_el0. TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG); } else llvm_unreachable("Unsupported ELF TLS access model"); return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); } SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { if (Subtarget->isTargetDarwin()) return LowerDarwinGlobalTLSAddress(Op, DAG); else if (Subtarget->isTargetELF()) return LowerELFGlobalTLSAddress(Op, DAG); llvm_unreachable("Unexpected platform trying to use TLS"); } SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); // Handle f128 first, since lowering it will result in comparing the return // value of a libcall against zero, which is just what the rest of LowerBR_CC // is expecting to deal with. if (LHS.getValueType() == MVT::f128) { softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); // If softenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (!RHS.getNode()) { RHS = DAG.getConstant(0, LHS.getValueType()); CC = ISD::SETNE; } } // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch // instruction. unsigned Opc = LHS.getOpcode(); if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) && cast<ConstantSDNode>(RHS)->isOne() && (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { assert((CC == ISD::SETEQ || CC == ISD::SETNE) && "Unexpected condition code."); // Only lower legal XALUO ops. if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) return SDValue(); // The actual operation with overflow check. AArch64CC::CondCode OFCC; SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); if (CC == ISD::SETNE) OFCC = getInvertedCondCode(OFCC); SDValue CCVal = DAG.getConstant(OFCC, MVT::i32); return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest, CCVal, Overflow); } if (LHS.getValueType().isInteger()) { assert((LHS.getValueType() == RHS.getValueType()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); // If the RHS of the comparison is zero, we can potentially fold this // to a specialized branch. const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); if (RHSC && RHSC->getZExtValue() == 0) { if (CC == ISD::SETEQ) { // See if we can use a TBZ to fold in an AND as well. // TBZ has a smaller branch displacement than CBZ. If the offset is // out of bounds, a late MI-layer pass rewrites branches. // 403.gcc is an example that hits this case. if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(LHS.getOperand(1)) && isPowerOf2_64(LHS.getConstantOperandVal(1))) { SDValue Test = LHS.getOperand(0); uint64_t Mask = LHS.getConstantOperandVal(1); // TBZ only operates on i64's, but the ext should be free. if (Test.getValueType() == MVT::i32) Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64); return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, DAG.getConstant(Log2_64(Mask), MVT::i64), Dest); } return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); } else if (CC == ISD::SETNE) { // See if we can use a TBZ to fold in an AND as well. // TBZ has a smaller branch displacement than CBZ. If the offset is // out of bounds, a late MI-layer pass rewrites branches. // 403.gcc is an example that hits this case. if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(LHS.getOperand(1)) && isPowerOf2_64(LHS.getConstantOperandVal(1))) { SDValue Test = LHS.getOperand(0); uint64_t Mask = LHS.getConstantOperandVal(1); // TBNZ only operates on i64's, but the ext should be free. if (Test.getValueType() == MVT::i32) Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64); return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, DAG.getConstant(Log2_64(Mask), MVT::i64), Dest); } return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); } } SDValue CCVal; SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, Cmp); } assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally // clean. Some of them require two branches to implement. SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); AArch64CC::CondCode CC1, CC2; changeFPCCToAArch64CC(CC, CC1, CC2); SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); SDValue BR1 = DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); if (CC2 != AArch64CC::AL) { SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, Cmp); } return BR1; } SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue In1 = Op.getOperand(0); SDValue In2 = Op.getOperand(1); EVT SrcVT = In2.getValueType(); if (SrcVT != VT) { if (SrcVT == MVT::f32 && VT == MVT::f64) In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); else if (SrcVT == MVT::f64 && VT == MVT::f32) In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0)); else // FIXME: Src type is different, bail out for now. Can VT really be a // vector type? return SDValue(); } EVT VecVT; EVT EltVT; SDValue EltMask, VecVal1, VecVal2; if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { EltVT = MVT::i32; VecVT = MVT::v4i32; EltMask = DAG.getConstant(0x80000000ULL, EltVT); if (!VT.isVector()) { VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT, DAG.getUNDEF(VecVT), In1); VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT, DAG.getUNDEF(VecVT), In2); } else { VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); } } else if (VT == MVT::f64 || VT == MVT::v2f64) { EltVT = MVT::i64; VecVT = MVT::v2i64; // We want to materialize a mask with the the high bit set, but the AdvSIMD // immediate moves cannot materialize that in a single instruction for // 64-bit elements. Instead, materialize zero and then negate it. EltMask = DAG.getConstant(0, EltVT); if (!VT.isVector()) { VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT, DAG.getUNDEF(VecVT), In1); VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT, DAG.getUNDEF(VecVT), In2); } else { VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); } } else { llvm_unreachable("Invalid type for copysign!"); } std::vector<SDValue> BuildVectorOps; for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i) BuildVectorOps.push_back(EltMask); SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps); // If we couldn't materialize the mask above, then the mask vector will be // the zero vector, and we need to negate it here. if (VT == MVT::f64 || VT == MVT::v2f64) { BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); } SDValue Sel = DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); if (VT == MVT::f32) return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel); else if (VT == MVT::f64) return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel); else return DAG.getNode(ISD::BITCAST, DL, VT, Sel); } SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute( AttributeSet::FunctionIndex, Attribute::NoImplicitFloat)) return SDValue(); // While there is no integer popcount instruction, it can // be more efficiently lowered to the following sequence that uses // AdvSIMD registers/instructions as long as the copies to/from // the AdvSIMD registers are cheap. // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd // CNT V0.8B, V0.8B // 8xbyte pop-counts // ADDV B0, V0.8B // sum 8xbyte pop-counts // UMOV X0, V0.B[0] // copy byte result back to integer reg SDValue Val = Op.getOperand(0); SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8); SDValue VecVal; if (VT == MVT::i32) { VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec, VecVal); } else { VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); } SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal); SDValue UaddLV = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop); if (VT == MVT::i64) UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); return UaddLV; } SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); SDLoc dl(Op); // We chose ZeroOrOneBooleanContents, so use zero and one. EVT VT = Op.getValueType(); SDValue TVal = DAG.getConstant(1, VT); SDValue FVal = DAG.getConstant(0, VT); // Handle f128 first, since one possible outcome is a normal integer // comparison which gets picked up by the next if statement. if (LHS.getValueType() == MVT::f128) { softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); // If softenSetCCOperands returned a scalar, use it. if (!RHS.getNode()) { assert(LHS.getValueType() == Op.getValueType() && "Unexpected setcc expansion!"); return LHS; } } if (LHS.getValueType().isInteger()) { SDValue CCVal; SDValue Cmp = getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl); // Note that we inverted the condition above, so we reverse the order of // the true and false operands here. This will allow the setcc to be // matched to a single CSINC instruction. return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); } // Now we know we're dealing with FP values. assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead // and do the comparison. SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); AArch64CC::CondCode CC1, CC2; changeFPCCToAArch64CC(CC, CC1, CC2); if (CC2 == AArch64CC::AL) { changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2); SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); // Note that we inverted the condition above, so we reverse the order of // the true and false operands here. This will allow the setcc to be // matched to a single CSINC instruction. return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); } else { // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't // totally clean. Some of them require two CSELs to implement. As is in // this case, we emit the first CSEL and then emit a second using the output // of the first as the RHS. We're effectively OR'ing the two CC's together. // FIXME: It would be nice if we could match the two CSELs to two CSINCs. SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); } } /// A SELECT_CC operation is really some kind of max or min if both values being /// compared are, in some sense, equal to the results in either case. However, /// it is permissible to compare f32 values and produce directly extended f64 /// values. /// /// Extending the comparison operands would also be allowed, but is less likely /// to happen in practice since their use is right here. Note that truncate /// operations would *not* be semantically equivalent. static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) { if (Cmp == Result) return true; ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp); ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result); if (CCmp && CResult && Cmp.getValueType() == MVT::f32 && Result.getValueType() == MVT::f64) { bool Lossy; APFloat CmpVal = CCmp->getValueAPF(); CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy); return CResult->getValueAPF().bitwiseIsEqual(CmpVal); } return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp; } SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { SDValue CC = Op->getOperand(0); SDValue TVal = Op->getOperand(1); SDValue FVal = Op->getOperand(2); SDLoc DL(Op); unsigned Opc = CC.getOpcode(); // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select // instruction. if (CC.getResNo() == 1 && (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { // Only lower legal XALUO ops. if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0))) return SDValue(); AArch64CC::CondCode OFCC; SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG); SDValue CCVal = DAG.getConstant(OFCC, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, CCVal, Overflow); } if (CC.getOpcode() == ISD::SETCC) return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal, cast<CondCodeSDNode>(CC.getOperand(2))->get()); else return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal, FVal, ISD::SETNE); } SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue TVal = Op.getOperand(2); SDValue FVal = Op.getOperand(3); SDLoc dl(Op); // Handle f128 first, because it will result in a comparison of some RTLIB // call result against zero. if (LHS.getValueType() == MVT::f128) { softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); // If softenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (!RHS.getNode()) { RHS = DAG.getConstant(0, LHS.getValueType()); CC = ISD::SETNE; } } // Handle integers first. if (LHS.getValueType().isInteger()) { assert((LHS.getValueType() == RHS.getValueType()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); unsigned Opcode = AArch64ISD::CSEL; // If both the TVal and the FVal are constants, see if we can swap them in // order to for a CSINV or CSINC out of them. ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, true); } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, true); } else if (TVal.getOpcode() == ISD::XOR) { // If TVal is a NOT we want to swap TVal and FVal so that we can match // with a CSINV rather than a CSEL. ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1)); if (CVal && CVal->isAllOnesValue()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, true); } } else if (TVal.getOpcode() == ISD::SUB) { // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so // that we can match with a CSNEG rather than a CSEL. ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0)); if (CVal && CVal->isNullValue()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, true); } } else if (CTVal && CFVal) { const int64_t TrueVal = CTVal->getSExtValue(); const int64_t FalseVal = CFVal->getSExtValue(); bool Swap = false; // If both TVal and FVal are constants, see if FVal is the // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC // instead of a CSEL in that case. if (TrueVal == ~FalseVal) { Opcode = AArch64ISD::CSINV; } else if (TrueVal == -FalseVal) { Opcode = AArch64ISD::CSNEG; } else if (TVal.getValueType() == MVT::i32) { // If our operands are only 32-bit wide, make sure we use 32-bit // arithmetic for the check whether we can use CSINC. This ensures that // the addition in the check will wrap around properly in case there is // an overflow (which would not be the case if we do the check with // 64-bit arithmetic). const uint32_t TrueVal32 = CTVal->getZExtValue(); const uint32_t FalseVal32 = CFVal->getZExtValue(); if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { Opcode = AArch64ISD::CSINC; if (TrueVal32 > FalseVal32) { Swap = true; } } // 64-bit check whether we can use CSINC. } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { Opcode = AArch64ISD::CSINC; if (TrueVal > FalseVal) { Swap = true; } } // Swap TVal and FVal if necessary. if (Swap) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, true); } if (Opcode != AArch64ISD::CSEL) { // Drop FVal since we can get its value by simply inverting/negating // TVal. FVal = TVal; } } SDValue CCVal; SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); EVT VT = Op.getValueType(); return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); } // Now we know we're dealing with FP values. assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); assert(LHS.getValueType() == RHS.getValueType()); EVT VT = Op.getValueType(); // Try to match this select into a max/min operation, which have dedicated // opcode in the instruction set. // FIXME: This is not correct in the presence of NaNs, so we only enable this // in no-NaNs mode. if (getTargetMachine().Options.NoNaNsFPMath) { SDValue MinMaxLHS = TVal, MinMaxRHS = FVal; if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) && selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) { CC = ISD::getSetCCSwappedOperands(CC); std::swap(MinMaxLHS, MinMaxRHS); } if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) && selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) { switch (CC) { default: break; case ISD::SETGT: case ISD::SETGE: case ISD::SETUGT: case ISD::SETUGE: case ISD::SETOGT: case ISD::SETOGE: return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS); break; case ISD::SETLT: case ISD::SETLE: case ISD::SETULT: case ISD::SETULE: case ISD::SETOLT: case ISD::SETOLE: return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS); break; } } } // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead // and do the comparison. SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally // clean. Some of them require two CSELs to implement. AArch64CC::CondCode CC1, CC2; changeFPCCToAArch64CC(CC, CC1, CC2); SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); // If we need a second CSEL, emit it, using the output of the first as the // RHS. We're effectively OR'ing the two CC's together. if (CC2 != AArch64CC::AL) { SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); } // Otherwise, return the output of the first CSEL. return CS1; } SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { // Jump table entries as PC relative offsets. No additional tweaking // is necessary here. Just get the address of the jump table. JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); EVT PtrVT = getPointerTy(); SDLoc DL(Op); if (getTargetMachine().getCodeModel() == CodeModel::Large && !Subtarget->isTargetMachO()) { const unsigned char MO_NC = AArch64II::MO_NC; return DAG.getNode( AArch64ISD::WrapperLarge, DL, PtrVT, DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3), DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC), DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC), DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G0 | MO_NC)); } SDValue Hi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE); SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); } SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); EVT PtrVT = getPointerTy(); SDLoc DL(Op); if (getTargetMachine().getCodeModel() == CodeModel::Large) { // Use the GOT for the large code model on iOS. if (Subtarget->isTargetMachO()) { SDValue GotAddr = DAG.getTargetConstantPool( CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), AArch64II::MO_GOT); return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr); } const unsigned char MO_NC = AArch64II::MO_NC; return DAG.getNode( AArch64ISD::WrapperLarge, DL, PtrVT, DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), AArch64II::MO_G3), DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), AArch64II::MO_G2 | MO_NC), DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), AArch64II::MO_G1 | MO_NC), DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), AArch64II::MO_G0 | MO_NC)); } else { // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on // ELF, the only valid one on Darwin. SDValue Hi = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), AArch64II::MO_PAGE); SDValue Lo = DAG.getTargetConstantPool( CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), AArch64II::MO_PAGEOFF | AArch64II::MO_NC); SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); } } SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); EVT PtrVT = getPointerTy(); SDLoc DL(Op); if (getTargetMachine().getCodeModel() == CodeModel::Large && !Subtarget->isTargetMachO()) { const unsigned char MO_NC = AArch64II::MO_NC; return DAG.getNode( AArch64ISD::WrapperLarge, DL, PtrVT, DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3), DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC), DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC), DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC)); } else { SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE); SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); } } SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, SelectionDAG &DAG) const { AArch64FunctionInfo *FuncInfo = DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); SDLoc DL(Op); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy()); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, SelectionDAG &DAG) const { // The layout of the va_list struct is specified in the AArch64 Procedure Call // Standard, section B.3. MachineFunction &MF = DAG.getMachineFunction(); AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); SDLoc DL(Op); SDValue Chain = Op.getOperand(0); SDValue VAList = Op.getOperand(1); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); SmallVector<SDValue, 4> MemOps; // void *__stack at offset 0 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy()); MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, MachinePointerInfo(SV), false, false, 8)); // void *__gr_top at offset 8 int GPRSize = FuncInfo->getVarArgsGPRSize(); if (GPRSize > 0) { SDValue GRTop, GRTopAddr; GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, DAG.getConstant(8, getPointerTy())); GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy()); GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop, DAG.getConstant(GPRSize, getPointerTy())); MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, MachinePointerInfo(SV, 8), false, false, 8)); } // void *__vr_top at offset 16 int FPRSize = FuncInfo->getVarArgsFPRSize(); if (FPRSize > 0) { SDValue VRTop, VRTopAddr; VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, DAG.getConstant(16, getPointerTy())); VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy()); VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop, DAG.getConstant(FPRSize, getPointerTy())); MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, MachinePointerInfo(SV, 16), false, false, 8)); } // int __gr_offs at offset 24 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, DAG.getConstant(24, getPointerTy())); MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32), GROffsAddr, MachinePointerInfo(SV, 24), false, false, 4)); // int __vr_offs at offset 28 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, DAG.getConstant(28, getPointerTy())); MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32), VROffsAddr, MachinePointerInfo(SV, 28), false, false, 4)); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); } SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG) : LowerAAPCS_VASTART(Op, DAG); } SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single // pointer. unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32; const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1), Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32), 8, false, false, MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); } SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetDarwin() && "automatic va_arg instruction only works on Darwin"); const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue Chain = Op.getOperand(0); SDValue Addr = Op.getOperand(1); unsigned Align = Op.getConstantOperandVal(3); SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr, MachinePointerInfo(V), false, false, false, 0); Chain = VAList.getValue(1); if (Align > 8) { assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2"); VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, DAG.getConstant(Align - 1, getPointerTy())); VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList, DAG.getConstant(-(int64_t)Align, getPointerTy())); } Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy); // Scalar integer and FP values smaller than 64 bits are implicitly extended // up to 64 bits. At the very least, we have to increase the striding of the // vaargs list to match this, and for FP values we need to introduce // FP_ROUND nodes as well. if (VT.isInteger() && !VT.isVector()) ArgSize = 8; bool NeedFPTrunc = false; if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { ArgSize = 8; NeedFPTrunc = true; } // Increment the pointer, VAList, to the next vaarg SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, DAG.getConstant(ArgSize, getPointerTy())); // Store the incremented VAList to the legalized pointer SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V), false, false, 0); // Load the actual argument out of the pointer VAList if (NeedFPTrunc) { // Load the value as an f64. SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo(), false, false, false, 0); // Round the value down to an f32. SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), DAG.getIntPtrConstant(1)); SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; // Merge the rounded value with the chain output of the load. return DAG.getMergeValues(Ops, DL); } return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false, false, false, 0); } SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); while (Depth--) FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, MachinePointerInfo(), false, false, false, 0); return FrameAddr; } // FIXME? Maybe this could be a TableGen attribute on some registers and // this table could be generated automatically from RegInfo. unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT) const { unsigned Reg = StringSwitch<unsigned>(RegName) .Case("sp", AArch64::SP) .Default(0); if (Reg) return Reg; report_fatal_error("Invalid register name global variable"); } SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MFI->setReturnAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(8, getPointerTy()); return DAG.getLoad(VT, DL, DAG.getEntryNode(), DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), MachinePointerInfo(), false, false, false, 0); } // Return LR, which contains the return address. Mark it an implicit live-in. unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); } /// LowerShiftRightParts - Lower SRA_PARTS, which returns two /// i64 values and take a 2 x i64 value to shift plus a shift amount. SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue ARMcc; unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, DAG.getConstant(VTBits, MVT::i64), ShAmt); SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, DAG.getConstant(VTBits, MVT::i64)); SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64), ISD::SETGE, dl, DAG); SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32); SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp); // AArch64 shifts larger than the register width are wrapped rather than // clamped, so we can't just emit "hi >> x". SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); SDValue TrueValHi = Opc == ISD::SRA ? DAG.getNode(Opc, dl, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i64)) : DAG.getConstant(0, VT); SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two /// i64 values and take a 2 x i64 value to shift plus a shift amount. SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue ARMcc; assert(Op.getOpcode() == ISD::SHL_PARTS); SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, DAG.getConstant(VTBits, MVT::i64), ShAmt); SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, DAG.getConstant(VTBits, MVT::i64)); SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64), ISD::SETGE, dl, DAG); SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32); SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp); // AArch64 shifts of larger than register sizes are wrapped rather than // clamped, so we can't just emit "lo << a" if a is too big. SDValue TrueValLo = DAG.getConstant(0, VT); SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } bool AArch64TargetLowering::isOffsetFoldingLegal( const GlobalAddressSDNode *GA) const { // The AArch64 target doesn't support folding offsets into global addresses. return false; } bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases. // FIXME: We should be able to handle f128 as well with a clever lowering. if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32)) return true; if (VT == MVT::f64) return AArch64_AM::getFP64Imm(Imm) != -1; else if (VT == MVT::f32) return AArch64_AM::getFP32Imm(Imm) != -1; return false; } //===----------------------------------------------------------------------===// // AArch64 Optimization Hooks //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // AArch64 Inline Assembly Support //===----------------------------------------------------------------------===// // Table of Constraints // TODO: This is the current set of constraints supported by ARM for the // compiler, not all of them may make sense, e.g. S may be difficult to support. // // r - A general register // w - An FP/SIMD register of some size in the range v0-v31 // x - An FP/SIMD register of some size in the range v0-v15 // I - Constant that can be used with an ADD instruction // J - Constant that can be used with a SUB instruction // K - Constant that can be used with a 32-bit logical instruction // L - Constant that can be used with a 64-bit logical instruction // M - Constant that can be used as a 32-bit MOV immediate // N - Constant that can be used as a 64-bit MOV immediate // Q - A memory reference with base register and no offset // S - A symbolic address // Y - Floating point constant zero // Z - Integer constant zero // // Note that general register operands will be output using their 64-bit x // register name, whatever the size of the variable, unless the asm operand // is prefixed by the %w modifier. Floating-point and SIMD register operands // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or // %q modifier. /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. AArch64TargetLowering::ConstraintType AArch64TargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'z': return C_Other; case 'x': case 'w': return C_RegisterClass; // An address with a single base register. Due to the way we // currently handle addresses it is the same as 'r'. case 'Q': return C_Memory; } } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight AArch64TargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'x': case 'w': if (type->isFloatingPointTy() || type->isVectorTy()) weight = CW_Register; break; case 'z': weight = CW_Constant; break; } return weight; } std::pair<unsigned, const TargetRegisterClass *> AArch64TargetLowering::getRegForInlineAsmConstraint( const std::string &Constraint, MVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': if (VT.getSizeInBits() == 64) return std::make_pair(0U, &AArch64::GPR64commonRegClass); return std::make_pair(0U, &AArch64::GPR32commonRegClass); case 'w': if (VT == MVT::f32) return std::make_pair(0U, &AArch64::FPR32RegClass); if (VT.getSizeInBits() == 64) return std::make_pair(0U, &AArch64::FPR64RegClass); if (VT.getSizeInBits() == 128) return std::make_pair(0U, &AArch64::FPR128RegClass); break; // The instructions that this constraint is designed for can // only take 128-bit registers so just use that regclass. case 'x': if (VT.getSizeInBits() == 128) return std::make_pair(0U, &AArch64::FPR128_loRegClass); break; } } if (StringRef("{cc}").equals_lower(Constraint)) return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); // Use the default implementation in TargetLowering to convert the register // constraint into a member of a register class. std::pair<unsigned, const TargetRegisterClass *> Res; Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); // Not found as a standard register? if (!Res.second) { unsigned Size = Constraint.size(); if ((Size == 4 || Size == 5) && Constraint[0] == '{' && tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { const std::string Reg = std::string(&Constraint[2], &Constraint[Size - 1]); int RegNo = atoi(Reg.c_str()); if (RegNo >= 0 && RegNo <= 31) { // v0 - v31 are aliases of q0 - q31. // By default we'll emit v0-v31 for this unless there's a modifier where // we'll emit the correct register as well. Res.first = AArch64::FPR128RegClass.getRegister(RegNo); Res.second = &AArch64::FPR128RegClass; } } } return Res; } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void AArch64TargetLowering::LowerAsmOperandForConstraint( SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, SelectionDAG &DAG) const { SDValue Result; // Currently only support length 1 constraints. if (Constraint.length() != 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; // This set of constraints deal with valid constants for various instructions. // Validate and return a target constant for them if we can. case 'z': { // 'z' maps to xzr or wzr so it needs an input of 0. ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); if (!C || C->getZExtValue() != 0) return; if (Op.getValueType() == MVT::i64) Result = DAG.getRegister(AArch64::XZR, MVT::i64); else Result = DAG.getRegister(AArch64::WZR, MVT::i32); break; } case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); if (!C) return; // Grab the value and do some validation. uint64_t CVal = C->getZExtValue(); switch (ConstraintLetter) { // The I constraint applies only to simple ADD or SUB immediate operands: // i.e. 0 to 4095 with optional shift by 12 // The J constraint applies only to ADD or SUB immediates that would be // valid when negated, i.e. if [an add pattern] were to be output as a SUB // instruction [or vice versa], in other words -1 to -4095 with optional // left shift by 12. case 'I': if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) break; return; case 'J': { uint64_t NVal = -C->getSExtValue(); if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) break; return; } // The K and L constraints apply *only* to logical immediates, including // what used to be the MOVI alias for ORR (though the MOVI alias has now // been removed and MOV should be used). So these constraints have to // distinguish between bit patterns that are valid 32-bit or 64-bit // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice // versa. case 'K': if (AArch64_AM::isLogicalImmediate(CVal, 32)) break; return; case 'L': if (AArch64_AM::isLogicalImmediate(CVal, 64)) break; return; // The M and N constraints are a superset of K and L respectively, for use // with the MOV (immediate) alias. As well as the logical immediates they // also match 32 or 64-bit immediates that can be loaded either using a // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca // (M) or 64-bit 0x1234000000000000 (N) etc. // As a note some of this code is liberally stolen from the asm parser. case 'M': { if (!isUInt<32>(CVal)) return; if (AArch64_AM::isLogicalImmediate(CVal, 32)) break; if ((CVal & 0xFFFF) == CVal) break; if ((CVal & 0xFFFF0000ULL) == CVal) break; uint64_t NCVal = ~(uint32_t)CVal; if ((NCVal & 0xFFFFULL) == NCVal) break; if ((NCVal & 0xFFFF0000ULL) == NCVal) break; return; } case 'N': { if (AArch64_AM::isLogicalImmediate(CVal, 64)) break; if ((CVal & 0xFFFFULL) == CVal) break; if ((CVal & 0xFFFF0000ULL) == CVal) break; if ((CVal & 0xFFFF00000000ULL) == CVal) break; if ((CVal & 0xFFFF000000000000ULL) == CVal) break; uint64_t NCVal = ~CVal; if ((NCVal & 0xFFFFULL) == NCVal) break; if ((NCVal & 0xFFFF0000ULL) == NCVal) break; if ((NCVal & 0xFFFF00000000ULL) == NCVal) break; if ((NCVal & 0xFFFF000000000000ULL) == NCVal) break; return; } default: return; } // All assembler immediates are 64-bit integers. Result = DAG.getTargetConstant(CVal, MVT::i64); break; } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } //===----------------------------------------------------------------------===// // AArch64 Advanced SIMD Support //===----------------------------------------------------------------------===// /// WidenVector - Given a value in the V64 register class, produce the /// equivalent value in the V128 register class. static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { EVT VT = V64Reg.getValueType(); unsigned NarrowSize = VT.getVectorNumElements(); MVT EltTy = VT.getVectorElementType().getSimpleVT(); MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); SDLoc DL(V64Reg); return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), V64Reg, DAG.getConstant(0, MVT::i32)); } /// getExtFactor - Determine the adjustment factor for the position when /// generating an "extract from vector registers" instruction. static unsigned getExtFactor(SDValue &V) { EVT EltType = V.getValueType().getVectorElementType(); return EltType.getSizeInBits() / 8; } /// NarrowVector - Given a value in the V128 register class, produce the /// equivalent value in the V64 register class. static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { EVT VT = V128Reg.getValueType(); unsigned WideSize = VT.getVectorNumElements(); MVT EltTy = VT.getVectorElementType().getSimpleVT(); MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); SDLoc DL(V128Reg); return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); } // Gather data to see if the operation can be modelled as a // shuffle in combination with VEXTs. SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); SDLoc dl(Op); EVT VT = Op.getValueType(); unsigned NumElts = VT.getVectorNumElements(); SmallVector<SDValue, 2> SourceVecs; SmallVector<unsigned, 2> MinElts; SmallVector<unsigned, 2> MaxElts; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { // A shuffle can only come from building a vector from various // elements of other vectors. return SDValue(); } // Record this extraction against the appropriate vector if possible... SDValue SourceVec = V.getOperand(0); unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); bool FoundSource = false; for (unsigned j = 0; j < SourceVecs.size(); ++j) { if (SourceVecs[j] == SourceVec) { if (MinElts[j] > EltNo) MinElts[j] = EltNo; if (MaxElts[j] < EltNo) MaxElts[j] = EltNo; FoundSource = true; break; } } // Or record a new source if not... if (!FoundSource) { SourceVecs.push_back(SourceVec); MinElts.push_back(EltNo); MaxElts.push_back(EltNo); } } // Currently only do something sane when at most two source vectors // involved. if (SourceVecs.size() > 2) return SDValue(); SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) }; int VEXTOffsets[2] = { 0, 0 }; int OffsetMultipliers[2] = { 1, 1 }; // This loop extracts the usage patterns of the source vectors // and prepares appropriate SDValues for a shuffle if possible. for (unsigned i = 0; i < SourceVecs.size(); ++i) { unsigned NumSrcElts = SourceVecs[i].getValueType().getVectorNumElements(); SDValue CurSource = SourceVecs[i]; if (SourceVecs[i].getValueType().getVectorElementType() != VT.getVectorElementType()) { // It may hit this case if SourceVecs[i] is AssertSext/AssertZext. // Then bitcast it to the vector which holds asserted element type, // and record the multiplier of element width between SourceVecs and // Build_vector which is needed to extract the correct lanes later. EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), SourceVecs[i].getValueSizeInBits() / VT.getVectorElementType().getSizeInBits()); CurSource = DAG.getNode(ISD::BITCAST, dl, CastVT, SourceVecs[i]); OffsetMultipliers[i] = CastVT.getVectorNumElements() / NumSrcElts; NumSrcElts *= OffsetMultipliers[i]; MaxElts[i] *= OffsetMultipliers[i]; MinElts[i] *= OffsetMultipliers[i]; } if (CurSource.getValueType() == VT) { // No VEXT necessary ShuffleSrcs[i] = CurSource; VEXTOffsets[i] = 0; continue; } else if (NumSrcElts < NumElts) { // We can pad out the smaller vector for free, so if it's part of a // shuffle... ShuffleSrcs[i] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, CurSource, DAG.getUNDEF(CurSource.getValueType())); continue; } // Since only 64-bit and 128-bit vectors are legal on ARM and // we've eliminated the other cases... assert(NumSrcElts == 2 * NumElts && "unexpected vector sizes in ReconstructShuffle"); if (MaxElts[i] - MinElts[i] >= NumElts) { // Span too large for a VEXT to cope return SDValue(); } if (MinElts[i] >= NumElts) { // The extraction can just take the second half VEXTOffsets[i] = NumElts; ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource, DAG.getIntPtrConstant(NumElts)); } else if (MaxElts[i] < NumElts) { // The extraction can just take the first half VEXTOffsets[i] = 0; ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource, DAG.getIntPtrConstant(0)); } else { // An actual VEXT is needed VEXTOffsets[i] = MinElts[i]; SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource, DAG.getIntPtrConstant(0)); SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource, DAG.getIntPtrConstant(NumElts)); unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1); ShuffleSrcs[i] = DAG.getNode(AArch64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2, DAG.getConstant(Imm, MVT::i32)); } } SmallVector<int, 8> Mask; for (unsigned i = 0; i < NumElts; ++i) { SDValue Entry = Op.getOperand(i); if (Entry.getOpcode() == ISD::UNDEF) { Mask.push_back(-1); continue; } SDValue ExtractVec = Entry.getOperand(0); int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue(); if (ExtractVec == SourceVecs[0]) { Mask.push_back(ExtractElt * OffsetMultipliers[0] - VEXTOffsets[0]); } else { Mask.push_back(ExtractElt * OffsetMultipliers[1] + NumElts - VEXTOffsets[1]); } } // Final check before we try to produce nonsense... if (isShuffleMaskLegal(Mask, VT)) return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1], &Mask[0]); return SDValue(); } // check if an EXT instruction can handle the shuffle mask when the // vector sources of the shuffle are the same. static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { unsigned NumElts = VT.getVectorNumElements(); // Assume that the first shuffle index is not UNDEF. Fail if it is. if (M[0] < 0) return false; Imm = M[0]; // If this is a VEXT shuffle, the immediate value is the index of the first // element. The other shuffle indices must be the successive elements after // the first one. unsigned ExpectedElt = Imm; for (unsigned i = 1; i < NumElts; ++i) { // Increment the expected index. If it wraps around, just follow it // back to index zero and keep going. ++ExpectedElt; if (ExpectedElt == NumElts) ExpectedElt = 0; if (M[i] < 0) continue; // ignore UNDEF indices if (ExpectedElt != static_cast<unsigned>(M[i])) return false; } return true; } // check if an EXT instruction can handle the shuffle mask when the // vector sources of the shuffle are different. static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, unsigned &Imm) { // Look for the first non-undef element. const int *FirstRealElt = std::find_if(M.begin(), M.end(), [](int Elt) {return Elt >= 0;}); // Benefit form APInt to handle overflow when calculating expected element. unsigned NumElts = VT.getVectorNumElements(); unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); // The following shuffle indices must be the successive elements after the // first real element. const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); if (FirstWrongElt != M.end()) return false; // The index of an EXT is the first element if it is not UNDEF. // Watch out for the beginning UNDEFs. The EXT index should be the expected // value of the first element. E.g. // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. // ExpectedElt is the last mask index plus 1. Imm = ExpectedElt.getZExtValue(); // There are two difference cases requiring to reverse input vectors. // For example, for vector <4 x i32> we have the following cases, // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) // For both cases, we finally use mask <5, 6, 7, 0>, which requires // to reverse two input vectors. if (Imm < NumElts) ReverseEXT = true; else Imm -= NumElts; return true; } /// isREVMask - Check if a vector shuffle corresponds to a REV /// instruction with the specified blocksize. (The order of the elements /// within each block of the vector is reversed.) static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && "Only possible block sizes for REV are: 16, 32, 64"); unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); unsigned BlockElts = M[0] + 1; // If the first shuffle index is UNDEF, be optimistic. if (M[0] < 0) BlockElts = BlockSize / EltSz; if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) return false; for (unsigned i = 0; i < NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) return false; } return true; } static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); unsigned Idx = WhichResult * NumElts / 2; for (unsigned i = 0; i != NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != Idx) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) return false; Idx += 1; } return true; } static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i != NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned)M[i] != 2 * i + WhichResult) return false; } return true; } static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i < NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) return false; } return true; } /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); unsigned Idx = WhichResult * NumElts / 2; for (unsigned i = 0; i != NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != Idx) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) return false; Idx += 1; } return true; } /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { unsigned Half = VT.getVectorNumElements() / 2; WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned j = 0; j != 2; ++j) { unsigned Idx = WhichResult; for (unsigned i = 0; i != Half; ++i) { int MIdx = M[i + j * Half]; if (MIdx >= 0 && (unsigned)MIdx != Idx) return false; Idx += 2; } } return true; } /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i < NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) return false; } return true; } static bool isINSMask(ArrayRef<int> M, int NumInputElements, bool &DstIsLeft, int &Anomaly) { if (M.size() != static_cast<size_t>(NumInputElements)) return false; int NumLHSMatch = 0, NumRHSMatch = 0; int LastLHSMismatch = -1, LastRHSMismatch = -1; for (int i = 0; i < NumInputElements; ++i) { if (M[i] == -1) { ++NumLHSMatch; ++NumRHSMatch; continue; } if (M[i] == i) ++NumLHSMatch; else LastLHSMismatch = i; if (M[i] == i + NumInputElements) ++NumRHSMatch; else LastRHSMismatch = i; } if (NumLHSMatch == NumInputElements - 1) { DstIsLeft = true; Anomaly = LastLHSMismatch; return true; } else if (NumRHSMatch == NumInputElements - 1) { DstIsLeft = false; Anomaly = LastRHSMismatch; return true; } return false; } static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { if (VT.getSizeInBits() != 128) return false; unsigned NumElts = VT.getVectorNumElements(); for (int I = 0, E = NumElts / 2; I != E; I++) { if (Mask[I] != I) return false; } int Offset = NumElts / 2; for (int I = NumElts / 2, E = NumElts; I != E; I++) { if (Mask[I] != I + SplitLHS * Offset) return false; } return true; } static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue V0 = Op.getOperand(0); SDValue V1 = Op.getOperand(1); ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || VT.getVectorElementType() != V1.getValueType().getVectorElementType()) return SDValue(); bool SplitV0 = V0.getValueType().getSizeInBits() == 128; if (!isConcatMask(Mask, VT, SplitV0)) return SDValue(); EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), VT.getVectorNumElements() / 2); if (SplitV0) { V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, DAG.getConstant(0, MVT::i64)); } if (V1.getValueType().getSizeInBits() == 128) { V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, DAG.getConstant(0, MVT::i64)); } return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, SDLoc dl) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); enum { OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> OP_VREV, OP_VDUP0, OP_VDUP1, OP_VDUP2, OP_VDUP3, OP_VEXT1, OP_VEXT2, OP_VEXT3, OP_VUZPL, // VUZP, left result OP_VUZPR, // VUZP, right result OP_VZIPL, // VZIP, left result OP_VZIPR, // VZIP, right result OP_VTRNL, // VTRN, left result OP_VTRNR // VTRN, right result }; if (OpNum == OP_COPY) { if (LHSID == (1 * 9 + 2) * 9 + 3) return LHS; assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); return RHS; } SDValue OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); EVT VT = OpLHS.getValueType(); switch (OpNum) { default: llvm_unreachable("Unknown shuffle opcode!"); case OP_VREV: // VREV divides the vector in half and swaps within the half. if (VT.getVectorElementType() == MVT::i32 || VT.getVectorElementType() == MVT::f32) return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); // vrev <4 x i16> -> REV32 if (VT.getVectorElementType() == MVT::i16) return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); // vrev <4 x i8> -> REV16 assert(VT.getVectorElementType() == MVT::i8); return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); case OP_VDUP0: case OP_VDUP1: case OP_VDUP2: case OP_VDUP3: { EVT EltTy = VT.getVectorElementType(); unsigned Opcode; if (EltTy == MVT::i8) Opcode = AArch64ISD::DUPLANE8; else if (EltTy == MVT::i16) Opcode = AArch64ISD::DUPLANE16; else if (EltTy == MVT::i32 || EltTy == MVT::f32) Opcode = AArch64ISD::DUPLANE32; else if (EltTy == MVT::i64 || EltTy == MVT::f64) Opcode = AArch64ISD::DUPLANE64; else llvm_unreachable("Invalid vector element type?"); if (VT.getSizeInBits() == 64) OpLHS = WidenVector(OpLHS, DAG); SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64); return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); } case OP_VEXT1: case OP_VEXT2: case OP_VEXT3: { unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, DAG.getConstant(Imm, MVT::i32)); } case OP_VUZPL: return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); case OP_VUZPR: return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); case OP_VZIPL: return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); case OP_VZIPR: return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); case OP_VTRNL: return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); case OP_VTRNR: return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS); } } static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, SelectionDAG &DAG) { // Check to see if we can use the TBL instruction. SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc DL(Op); EVT EltVT = Op.getValueType().getVectorElementType(); unsigned BytesPerElt = EltVT.getSizeInBits() / 8; SmallVector<SDValue, 8> TBLMask; for (int Val : ShuffleMask) { for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { unsigned Offset = Byte + Val * BytesPerElt; TBLMask.push_back(DAG.getConstant(Offset, MVT::i32)); } } MVT IndexVT = MVT::v8i8; unsigned IndexLen = 8; if (Op.getValueType().getSizeInBits() == 128) { IndexVT = MVT::v16i8; IndexLen = 16; } SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); SDValue Shuffle; if (V2.getNode()->getOpcode() == ISD::UNDEF) { if (IndexLen == 8) V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); Shuffle = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst, DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, makeArrayRef(TBLMask.data(), IndexLen))); } else { if (IndexLen == 8) { V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); Shuffle = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst, DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, makeArrayRef(TBLMask.data(), IndexLen))); } else { // FIXME: We cannot, for the moment, emit a TBL2 instruction because we // cannot currently represent the register constraints on the input // table registers. // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, // &TBLMask[0], IndexLen)); Shuffle = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst, DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, makeArrayRef(TBLMask.data(), IndexLen))); } } return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); } static unsigned getDUPLANEOp(EVT EltType) { if (EltType == MVT::i8) return AArch64ISD::DUPLANE8; if (EltType == MVT::i16) return AArch64ISD::DUPLANE16; if (EltType == MVT::i32 || EltType == MVT::f32) return AArch64ISD::DUPLANE32; if (EltType == MVT::i64 || EltType == MVT::f64) return AArch64ISD::DUPLANE64; llvm_unreachable("Invalid vector element type?"); } SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); // Convert shuffles that are directly supported on NEON to target-specific // DAG nodes, instead of keeping them as shuffles and matching them again // during code selection. This is more efficient and avoids the possibility // of inconsistencies between legalization and selection. ArrayRef<int> ShuffleMask = SVN->getMask(); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], V1.getValueType().getSimpleVT())) { int Lane = SVN->getSplatIndex(); // If this is undef splat, generate it via "just" vdup, if possible. if (Lane == -1) Lane = 0; if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), V1.getOperand(0)); // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- // constant. If so, we can just reference the lane's definition directly. if (V1.getOpcode() == ISD::BUILD_VECTOR && !isa<ConstantSDNode>(V1.getOperand(Lane))) return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); // Otherwise, duplicate from the lane of the input vector. unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); // SelectionDAGBuilder may have "helpfully" already extracted or conatenated // to make a vector of the same size as this SHUFFLE. We can ignore the // extract entirely, and canonicalise the concat using WidenVector. if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue(); V1 = V1.getOperand(0); } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) { unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; Lane -= Idx * VT.getVectorNumElements() / 2; V1 = WidenVector(V1.getOperand(Idx), DAG); } else if (VT.getSizeInBits() == 64) V1 = WidenVector(V1, DAG); return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64)); } if (isREVMask(ShuffleMask, VT, 64)) return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); if (isREVMask(ShuffleMask, VT, 32)) return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); if (isREVMask(ShuffleMask, VT, 16)) return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); bool ReverseEXT = false; unsigned Imm; if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { if (ReverseEXT) std::swap(V1, V2); Imm *= getExtFactor(V1); return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, DAG.getConstant(Imm, MVT::i32)); } else if (V2->getOpcode() == ISD::UNDEF && isSingletonEXTMask(ShuffleMask, VT, Imm)) { Imm *= getExtFactor(V1); return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, DAG.getConstant(Imm, MVT::i32)); } unsigned WhichResult; if (isZIPMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); } if (isUZPMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); } if (isTRNMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); } if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); } if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); } if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); } SDValue Concat = tryFormConcatFromShuffle(Op, DAG); if (Concat.getNode()) return Concat; bool DstIsLeft; int Anomaly; int NumInputElements = V1.getValueType().getVectorNumElements(); if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { SDValue DstVec = DstIsLeft ? V1 : V2; SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64); SDValue SrcVec = V1; int SrcLane = ShuffleMask[Anomaly]; if (SrcLane >= NumInputElements) { SrcVec = V2; SrcLane -= VT.getVectorNumElements(); } SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64); EVT ScalarVT = VT.getVectorElementType(); if (ScalarVT.getSizeInBits() < 32) ScalarVT = MVT::i32; return DAG.getNode( ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), DstLaneV); } // If the shuffle is not directly supported and it has 4 elements, use // the PerfectShuffle-generated table to synthesize it from other shuffles. unsigned NumElts = VT.getVectorNumElements(); if (NumElts == 4) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (ShuffleMask[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = ShuffleMask[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + PFIndexes[2] * 9 + PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); if (Cost <= 4) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); } return GenerateTBL(Op, ShuffleMask, DAG); } static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, APInt &UndefBits) { EVT VT = BVN->getValueType(0); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; for (unsigned i = 0; i < NumSplats; ++i) { CnstBits <<= SplatBitSize; UndefBits <<= SplatBitSize; CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); } return true; } return false; } SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op, SelectionDAG &DAG) const { BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); SDValue LHS = Op.getOperand(0); SDLoc dl(Op); EVT VT = Op.getValueType(); if (!BVN) return Op; APInt CnstBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); if (resolveBuildVector(BVN, CnstBits, UndefBits)) { // We only have BIC vector immediate instruction, which is and-not. CnstBits = ~CnstBits; // We make use of a little bit of goto ickiness in order to avoid having to // duplicate the immediate matching logic for the undef toggled case. bool SecondTry = false; AttemptModImm: if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { CnstBits = CnstBits.zextOrTrunc(64); uint64_t CnstVal = CnstBits.getZExtValue(); if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(0, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(8, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(16, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(24, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(0, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(8, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } } if (SecondTry) goto FailedModImm; SecondTry = true; CnstBits = ~UndefBits; goto AttemptModImm; } // We can always fall back to a non-immediate AND. FailedModImm: return Op; } // Specialized code to quickly find if PotentialBVec is a BuildVector that // consists of only the same constant int value, returned in reference arg // ConstVal static bool isAllConstantBuildVector(const SDValue &PotentialBVec, uint64_t &ConstVal) { BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); if (!Bvec) return false; ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); if (!FirstElt) return false; EVT VT = Bvec->getValueType(0); unsigned NumElts = VT.getVectorNumElements(); for (unsigned i = 1; i < NumElts; ++i) if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) return false; ConstVal = FirstElt->getZExtValue(); return true; } static unsigned getIntrinsicID(const SDNode *N) { unsigned Opcode = N->getOpcode(); switch (Opcode) { default: return Intrinsic::not_intrinsic; case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); if (IID < Intrinsic::num_intrinsics) return IID; return Intrinsic::not_intrinsic; } } } // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2. // Also, logical shift right -> sri, with the same structure. static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (!VT.isVector()) return SDValue(); SDLoc DL(N); // Is the first op an AND? const SDValue And = N->getOperand(0); if (And.getOpcode() != ISD::AND) return SDValue(); // Is the second op an shl or lshr? SDValue Shift = N->getOperand(1); // This will have been turned into: AArch64ISD::VSHL vector, #shift // or AArch64ISD::VLSHR vector, #shift unsigned ShiftOpc = Shift.getOpcode(); if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR)) return SDValue(); bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR; // Is the shift amount constant? ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); if (!C2node) return SDValue(); // Is the and mask vector all constant? uint64_t C1; if (!isAllConstantBuildVector(And.getOperand(1), C1)) return SDValue(); // Is C1 == ~C2, taking into account how much one can shift elements of a // particular size? uint64_t C2 = C2node->getZExtValue(); unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits(); if (C2 > ElemSizeInBits) return SDValue(); unsigned ElemMask = (1 << ElemSizeInBits) - 1; if ((C1 & ElemMask) != (~C2 & ElemMask)) return SDValue(); SDValue X = And.getOperand(0); SDValue Y = Shift.getOperand(0); unsigned Intrin = IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli; SDValue ResultSLI = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1)); DEBUG(dbgs() << "aarch64-lower: transformed: \n"); DEBUG(N->dump(&DAG)); DEBUG(dbgs() << "into: \n"); DEBUG(ResultSLI->dump(&DAG)); ++NumShiftInserts; return ResultSLI; } SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, SelectionDAG &DAG) const { // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) if (EnableAArch64SlrGeneration) { SDValue Res = tryLowerToSLI(Op.getNode(), DAG); if (Res.getNode()) return Res; } BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); SDValue LHS = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); // OR commutes, so try swapping the operands. if (!BVN) { LHS = Op.getOperand(0); BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); } if (!BVN) return Op; APInt CnstBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); if (resolveBuildVector(BVN, CnstBits, UndefBits)) { // We make use of a little bit of goto ickiness in order to avoid having to // duplicate the immediate matching logic for the undef toggled case. bool SecondTry = false; AttemptModImm: if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { CnstBits = CnstBits.zextOrTrunc(64); uint64_t CnstVal = CnstBits.getZExtValue(); if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(0, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(8, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(16, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(24, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(0, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(8, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } } if (SecondTry) goto FailedModImm; SecondTry = true; CnstBits = UndefBits; goto AttemptModImm; } // We can always fall back to a non-immediate OR. FailedModImm: return Op; } // Normalize the operands of BUILD_VECTOR. The value of constant operands will // be truncated to fit element width. static SDValue NormalizeBuildVector(SDValue Op, SelectionDAG &DAG) { assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); SDLoc dl(Op); EVT VT = Op.getValueType(); EVT EltTy= VT.getVectorElementType(); if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) return Op; SmallVector<SDValue, 16> Ops; for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) { SDValue Lane = Op.getOperand(I); if (Lane.getOpcode() == ISD::Constant) { APInt LowBits(EltTy.getSizeInBits(), cast<ConstantSDNode>(Lane)->getZExtValue()); Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32); } Ops.push_back(Lane); } return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); } SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); Op = NormalizeBuildVector(Op, DAG); BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); APInt CnstBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); if (resolveBuildVector(BVN, CnstBits, UndefBits)) { // We make use of a little bit of goto ickiness in order to avoid having to // duplicate the immediate matching logic for the undef toggled case. bool SecondTry = false; AttemptModImm: if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { CnstBits = CnstBits.zextOrTrunc(64); uint64_t CnstVal = CnstBits.getZExtValue(); // Certain magic vector constants (used to express things like NOT // and NEG) are passed through unmodified. This allows codegen patterns // for these operations to match. Special-purpose patterns will lower // these immediates to MOVIs if it proves necessary. if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL)) return Op; // The many faces of MOVI... if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal); if (VT.getSizeInBits() == 128) { SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64, DAG.getConstant(CnstVal, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } // Support the V64 version via subregister insertion. SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64, DAG.getConstant(CnstVal, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(0, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(8, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(16, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(24, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(0, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(8, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(264, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(272, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } // The few faces of FMOV... if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32; SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) && VT.getSizeInBits() == 128) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal); SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64, DAG.getConstant(CnstVal, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } // The many faces of MVNI... CnstVal = ~CnstVal; if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(0, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(8, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(16, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(24, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(0, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(8, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(264, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) { CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy, DAG.getConstant(CnstVal, MVT::i32), DAG.getConstant(272, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Mov); } } if (SecondTry) goto FailedModImm; SecondTry = true; CnstBits = UndefBits; goto AttemptModImm; } FailedModImm: // Scan through the operands to find some interesting properties we can // exploit: // 1) If only one value is used, we can use a DUP, or // 2) if only the low element is not undef, we can just insert that, or // 3) if only one constant value is used (w/ some non-constant lanes), // we can splat the constant value into the whole vector then fill // in the non-constant lanes. // 4) FIXME: If different constant values are used, but we can intelligently // select the values we'll be overwriting for the non-constant // lanes such that we can directly materialize the vector // some other way (MOVI, e.g.), we can be sneaky. unsigned NumElts = VT.getVectorNumElements(); bool isOnlyLowElement = true; bool usesOnlyOneValue = true; bool usesOnlyOneConstantValue = true; bool isConstant = true; unsigned NumConstantLanes = 0; SDValue Value; SDValue ConstantValue; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; if (i > 0) isOnlyLowElement = false; if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) isConstant = false; if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) { ++NumConstantLanes; if (!ConstantValue.getNode()) ConstantValue = V; else if (ConstantValue != V) usesOnlyOneConstantValue = false; } if (!Value.getNode()) Value = V; else if (V != Value) usesOnlyOneValue = false; } if (!Value.getNode()) return DAG.getUNDEF(VT); if (isOnlyLowElement) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); // Use DUP for non-constant splats. For f32 constant splats, reduce to // i32 and try again. if (usesOnlyOneValue) { if (!isConstant) { if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || Value.getValueType() != VT) return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); // This is actually a DUPLANExx operation, which keeps everything vectory. // DUPLANE works on 128-bit vectors, widen it if necessary. SDValue Lane = Value.getOperand(1); Value = Value.getOperand(0); if (Value.getValueType().getSizeInBits() == 64) Value = WidenVector(Value, DAG); unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); return DAG.getNode(Opcode, dl, VT, Value, Lane); } if (VT.getVectorElementType().isFloatingPoint()) { SmallVector<SDValue, 8> Ops; MVT NewType = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; for (unsigned i = 0; i < NumElts; ++i) Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); Val = LowerBUILD_VECTOR(Val, DAG); if (Val.getNode()) return DAG.getNode(ISD::BITCAST, dl, VT, Val); } } // If there was only one constant value used and for more than one lane, // start by splatting that value, then replace the non-constant lanes. This // is better than the default, which will perform a separate initialization // for each lane. if (NumConstantLanes > 0 && usesOnlyOneConstantValue) { SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); // Now insert the non-constant lanes. for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); SDValue LaneIdx = DAG.getConstant(i, MVT::i64); if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) { // Note that type legalization likely mucked about with the VT of the // source operand, so we may have to convert it here before inserting. Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); } } return Val; } // If all elements are constants and the case above didn't get hit, fall back // to the default expansion, which will generate a load from the constant // pool. if (isConstant) return SDValue(); // Empirical tests suggest this is rarely worth it for vectors of length <= 2. if (NumElts >= 4) { SDValue shuffle = ReconstructShuffle(Op, DAG); if (shuffle != SDValue()) return shuffle; } // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we // know the default expansion would otherwise fall back on something even // worse. For a vector with one or two non-undef values, that's // scalar_to_vector for the elements followed by a shuffle (provided the // shuffle is valid for the target) and materialization element by element // on the stack followed by a load for everything else. if (!isConstant && !usesOnlyOneValue) { SDValue Vec = DAG.getUNDEF(VT); SDValue Op0 = Op.getOperand(0); unsigned ElemSize = VT.getVectorElementType().getSizeInBits(); unsigned i = 0; // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to // a) Avoid a RMW dependency on the full vector register, and // b) Allow the register coalescer to fold away the copy if the // value is already in an S or D register. if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) { unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub; MachineSDNode *N = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0, DAG.getTargetConstant(SubIdx, MVT::i32)); Vec = SDValue(N, 0); ++i; } for (; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; SDValue LaneIdx = DAG.getConstant(i, MVT::i64); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); } return Vec; } // Just use the default expansion. We failed to find a better alternative. return SDValue(); } SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); // Check for non-constant lane. if (!isa<ConstantSDNode>(Op.getOperand(2))) return SDValue(); EVT VT = Op.getOperand(0).getValueType(); // Insertion/extraction are legal for V128 types. if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) return Op; if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && VT != MVT::v1i64 && VT != MVT::v2f32) return SDValue(); // For V64 types, we perform insertion by expanding the value // to a V128 type and perform the insertion on that. SDLoc DL(Op); SDValue WideVec = WidenVector(Op.getOperand(0), DAG); EVT WideTy = WideVec.getValueType(); SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, Op.getOperand(1), Op.getOperand(2)); // Re-narrow the resultant vector. return NarrowVector(Node, DAG); } SDValue AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); // Check for non-constant lane. if (!isa<ConstantSDNode>(Op.getOperand(1))) return SDValue(); EVT VT = Op.getOperand(0).getValueType(); // Insertion/extraction are legal for V128 types. if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) return Op; if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && VT != MVT::v1i64 && VT != MVT::v2f32) return SDValue(); // For V64 types, we perform extraction by expanding the value // to a V128 type and perform the extraction on that. SDLoc DL(Op); SDValue WideVec = WidenVector(Op.getOperand(0), DAG); EVT WideTy = WideVec.getValueType(); EVT ExtrTy = WideTy.getVectorElementType(); if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) ExtrTy = MVT::i32; // For extractions, we just return the result directly. return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, Op.getOperand(1)); } SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getOperand(0).getValueType(); SDLoc dl(Op); // Just in case... if (!VT.isVector()) return SDValue(); ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1)); if (!Cst) return SDValue(); unsigned Val = Cst->getZExtValue(); unsigned Size = Op.getValueType().getSizeInBits(); if (Val == 0) { switch (Size) { case 8: return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(), Op.getOperand(0)); case 16: return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(), Op.getOperand(0)); case 32: return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(), Op.getOperand(0)); case 64: return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(), Op.getOperand(0)); default: llvm_unreachable("Unexpected vector type in extract_subvector!"); } } // If this is extracting the upper 64-bits of a 128-bit vector, we match // that directly. if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64) return Op; return SDValue(); } bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, EVT VT) const { if (VT.getVectorNumElements() == 4 && (VT.is128BitVector() || VT.is64BitVector())) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (M[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = M[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + PFIndexes[2] * 9 + PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); if (Cost <= 4) return true; } bool DummyBool; int DummyInt; unsigned DummyUnsigned; return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || isEXTMask(M, VT, DummyBool, DummyUnsigned) || // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || isZIPMask(M, VT, DummyUnsigned) || isTRN_v_undef_Mask(M, VT, DummyUnsigned) || isUZP_v_undef_Mask(M, VT, DummyUnsigned) || isZIP_v_undef_Mask(M, VT, DummyUnsigned) || isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || isConcatMask(M, VT, VT.getSizeInBits() == 128)); } /// getVShiftImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift operation, where all the elements of the /// build_vector must have the same constant integer value. static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { // Ignore bit_converts. while (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, ElementBits) || SplatBitSize > ElementBits) return false; Cnt = SplatBits.getSExtValue(); return true; } /// isVShiftLImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift left operation. That value must be in the range: /// 0 <= Value < ElementBits for a left shift; or /// 0 <= Value <= ElementBits for a long left shift. static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); if (!getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); } /// isVShiftRImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift right operation. For a shift opcode, the value /// is positive, but for an intrinsic the value count must be negative. The /// absolute value must be in the range: /// 1 <= |Value| <= ElementBits for a right shift; or /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); if (!getVShiftImm(Op, ElementBits, Cnt)) return false; if (isIntrinsic) Cnt = -Cnt; return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); } SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); int64_t Cnt; if (!Op.getOperand(1).getValueType().isVector()) return Op; unsigned EltSize = VT.getVectorElementType().getSizeInBits(); switch (Op.getOpcode()) { default: llvm_unreachable("unexpected shift opcode"); case ISD::SHL: if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0), DAG.getConstant(Cnt, MVT::i32)); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32), Op.getOperand(0), Op.getOperand(1)); case ISD::SRA: case ISD::SRL: // Right shift immediate if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) && Cnt < EltSize) { unsigned Opc = (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0), DAG.getConstant(Cnt, MVT::i32)); } // Right shift register. Note, there is not a shift right register // instruction, but the shift left register instruction takes a signed // value, where negative numbers specify a right shift. unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl : Intrinsic::aarch64_neon_ushl; // negate the shift amount SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1)); SDValue NegShiftLeft = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift); return NegShiftLeft; } return SDValue(); } static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, AArch64CC::CondCode CC, bool NoNans, EVT VT, SDLoc dl, SelectionDAG &DAG) { EVT SrcVT = LHS.getValueType(); BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); APInt CnstBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); bool IsZero = IsCnst && (CnstBits == 0); if (SrcVT.getVectorElementType().isFloatingPoint()) { switch (CC) { default: return SDValue(); case AArch64CC::NE: { SDValue Fcmeq; if (IsZero) Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); else Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq); } case AArch64CC::EQ: if (IsZero) return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); case AArch64CC::GE: if (IsZero) return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); case AArch64CC::GT: if (IsZero) return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); case AArch64CC::LS: if (IsZero) return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); case AArch64CC::LT: if (!NoNans) return SDValue(); // If we ignore NaNs then we can use to the MI implementation. // Fallthrough. case AArch64CC::MI: if (IsZero) return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); } } switch (CC) { default: return SDValue(); case AArch64CC::NE: { SDValue Cmeq; if (IsZero) Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); else Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq); } case AArch64CC::EQ: if (IsZero) return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); case AArch64CC::GE: if (IsZero) return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); case AArch64CC::GT: if (IsZero) return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); case AArch64CC::LE: if (IsZero) return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); case AArch64CC::LS: return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); case AArch64CC::LO: return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); case AArch64CC::LT: if (IsZero) return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); case AArch64CC::HI: return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); case AArch64CC::HS: return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); } } SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDLoc dl(Op); if (LHS.getValueType().getVectorElementType().isInteger()) { assert(LHS.getValueType() == RHS.getValueType()); AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(), dl, DAG); } assert(LHS.getValueType().getVectorElementType() == MVT::f32 || LHS.getValueType().getVectorElementType() == MVT::f64); // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally // clean. Some of them require two branches to implement. AArch64CC::CondCode CC1, CC2; bool ShouldInvert; changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; SDValue Cmp = EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG); if (!Cmp.getNode()) return SDValue(); if (CC2 != AArch64CC::AL) { SDValue Cmp2 = EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG); if (!Cmp2.getNode()) return SDValue(); Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2); } if (ShouldInvert) return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); return Cmp; } /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment /// specified in the intrinsic calls. bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const { switch (Intrinsic) { case Intrinsic::aarch64_neon_ld2: case Intrinsic::aarch64_neon_ld3: case Intrinsic::aarch64_neon_ld4: case Intrinsic::aarch64_neon_ld1x2: case Intrinsic::aarch64_neon_ld1x3: case Intrinsic::aarch64_neon_ld1x4: case Intrinsic::aarch64_neon_ld2lane: case Intrinsic::aarch64_neon_ld3lane: case Intrinsic::aarch64_neon_ld4lane: case Intrinsic::aarch64_neon_ld2r: case Intrinsic::aarch64_neon_ld3r: case Intrinsic::aarch64_neon_ld4r: { Info.opc = ISD::INTRINSIC_W_CHAIN; // Conservatively set memVT to the entire set of vectors loaded. uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8; Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); Info.offset = 0; Info.align = 0; Info.vol = false; // volatile loads with NEON intrinsics not supported Info.readMem = true; Info.writeMem = false; return true; } case Intrinsic::aarch64_neon_st2: case Intrinsic::aarch64_neon_st3: case Intrinsic::aarch64_neon_st4: case Intrinsic::aarch64_neon_st1x2: case Intrinsic::aarch64_neon_st1x3: case Intrinsic::aarch64_neon_st1x4: case Intrinsic::aarch64_neon_st2lane: case Intrinsic::aarch64_neon_st3lane: case Intrinsic::aarch64_neon_st4lane: { Info.opc = ISD::INTRINSIC_VOID; // Conservatively set memVT to the entire set of vectors stored. unsigned NumElts = 0; for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { Type *ArgTy = I.getArgOperand(ArgI)->getType(); if (!ArgTy->isVectorTy()) break; NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8; } Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); Info.offset = 0; Info.align = 0; Info.vol = false; // volatile stores with NEON intrinsics not supported Info.readMem = false; Info.writeMem = true; return true; } case Intrinsic::aarch64_ldaxr: case Intrinsic::aarch64_ldxr: { PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(PtrTy->getElementType()); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); Info.vol = true; Info.readMem = true; Info.writeMem = false; return true; } case Intrinsic::aarch64_stlxr: case Intrinsic::aarch64_stxr: { PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(PtrTy->getElementType()); Info.ptrVal = I.getArgOperand(1); Info.offset = 0; Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); Info.vol = true; Info.readMem = false; Info.writeMem = true; return true; } case Intrinsic::aarch64_ldaxp: case Intrinsic::aarch64_ldxp: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i128; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = 16; Info.vol = true; Info.readMem = true; Info.writeMem = false; return true; } case Intrinsic::aarch64_stlxp: case Intrinsic::aarch64_stxp: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i128; Info.ptrVal = I.getArgOperand(2); Info.offset = 0; Info.align = 16; Info.vol = true; Info.readMem = false; Info.writeMem = true; return true; } default: break; } return false; } // Truncations from 64-bit GPR to 32-bit GPR is free. bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 > NumBits2; } bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 > NumBits2; } // All 32-bit GPR operations implicitly zero the high-half of the corresponding // 64-bit GPR. bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 == 32 && NumBits2 == 64; } bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 == 32 && NumBits2 == 64; } bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { EVT VT1 = Val.getValueType(); if (isZExtFree(VT1, VT2)) { return true; } if (Val.getOpcode() != ISD::LOAD) return false; // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && VT1.getSizeInBits() <= 32); } bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType, unsigned &RequiredAligment) const { if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy()) return false; // Cyclone supports unaligned accesses. RequiredAligment = 0; unsigned NumBits = LoadedType->getPrimitiveSizeInBits(); return NumBits == 32 || NumBits == 64; } bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, unsigned &RequiredAligment) const { if (!LoadedType.isSimple() || (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) return false; // Cyclone supports unaligned accesses. RequiredAligment = 0; unsigned NumBits = LoadedType.getSizeInBits(); return NumBits == 32 || NumBits == 64; } static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, unsigned AlignCheck) { return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && (DstAlign == 0 || DstAlign % AlignCheck == 0)); } EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { // Don't use AdvSIMD to implement 16-byte memset. It would have taken one // instruction to materialize the v2i64 zero and one store (with restrictive // addressing mode). Just do two i64 store of zero-registers. bool Fast; const Function *F = MF.getFunction(); if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 && !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat) && (memOpAlign(SrcAlign, DstAlign, 16) || (allowsUnalignedMemoryAccesses(MVT::f128, 0, &Fast) && Fast))) return MVT::f128; return Size >= 8 ? MVT::i64 : MVT::i32; } // 12-bit optionally shifted immediates are legal for adds. bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0)) return true; return false; } // Integer comparisons are implemented with ADDS/SUBS, so the range of valid // immediates is the same as for an add or a sub. bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { if (Immed < 0) Immed *= -1; return isLegalAddImmediate(Immed); } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { // AArch64 has five basic addressing modes: // reg // reg + 9-bit signed offset // reg + SIZE_IN_BYTES * 12-bit unsigned offset // reg1 + reg2 // reg + SIZE_IN_BYTES * reg // No global is ever allowed as a base. if (AM.BaseGV) return false; // No reg+reg+imm addressing. if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) return false; // check reg + imm case: // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 uint64_t NumBytes = 0; if (Ty->isSized()) { uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty); NumBytes = NumBits / 8; if (!isPowerOf2_64(NumBits)) NumBytes = 0; } if (!AM.Scale) { int64_t Offset = AM.BaseOffs; // 9-bit signed offset if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1) return true; // 12-bit unsigned offset unsigned shift = Log2_64(NumBytes); if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && // Must be a multiple of NumBytes (NumBytes is a power of 2) (Offset >> shift) << shift == Offset) return true; return false; } // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 if (!AM.Scale || AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes)) return true; return false; } int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM, Type *Ty) const { // Scaling factors are not free at all. // Operands | Rt Latency // ------------------------------------------- // Rt, [Xn, Xm] | 4 // ------------------------------------------- // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 // Rt, [Xn, Wm, <extend> #imm] | if (isLegalAddressingMode(AM, Ty)) // Scale represents reg2 * scale, thus account for 1 if // it is not equal to 0 or 1. return AM.Scale != 0 && AM.Scale != 1; return -1; } bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: case MVT::f64: return true; default: break; } return false; } const MCPhysReg * AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { // LR is a callee-save register, but we must treat it as clobbered by any call // site. Hence we include LR in the scratch registers, which are in turn added // as implicit-defs for stackmaps and patchpoints. static const MCPhysReg ScratchRegs[] = { AArch64::X16, AArch64::X17, AArch64::LR, 0 }; return ScratchRegs; } bool AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const { EVT VT = N->getValueType(0); // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine // it with shift to let it be lowered to UBFX. if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && isa<ConstantSDNode>(N->getOperand(1))) { uint64_t TruncMask = N->getConstantOperandVal(1); if (isMask_64(TruncMask) && N->getOperand(0).getOpcode() == ISD::SRL && isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) return false; } return true; } bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return false; int64_t Val = Imm.getSExtValue(); if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) return true; if ((int64_t)Val < 0) Val = ~Val; if (BitSize == 32) Val &= (1LL << 32) - 1; unsigned LZ = countLeadingZeros((uint64_t)Val); unsigned Shift = (63 - LZ) / 16; // MOVZ is free so return true for one or fewer MOVK. return (Shift < 3) ? true : false; } // Generate SUBS and CSEL for integer abs. static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDLoc DL(N); // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) // and change it to SUB and CSEL. if (VT.isInteger() && N->getOpcode() == ISD::XOR && N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) { SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), N0.getOperand(0)); // Generate SUBS & CSEL. SDValue Cmp = DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), N0.getOperand(0), DAG.getConstant(0, VT)); return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg, DAG.getConstant(AArch64CC::PL, MVT::i32), SDValue(Cmp.getNode(), 1)); } return SDValue(); } // performXorCombine - Attempts to handle integer ABS. static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); return performIntegerAbsCombine(N, DAG); } static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); // Multiplication of a power of two plus/minus one can be done more // cheaply as as shift+add/sub. For now, this is true unilaterally. If // future CPUs have a cheaper MADD instruction, this may need to be // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and // 64-bit is 5 cycles, so this is always a win. if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { APInt Value = C->getAPIntValue(); EVT VT = N->getValueType(0); if (Value.isNonNegative()) { // (mul x, 2^N + 1) => (add (shl x, N), x) APInt VM1 = Value - 1; if (VM1.isPowerOf2()) { SDValue ShiftedVal = DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), DAG.getConstant(VM1.logBase2(), MVT::i64)); return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0)); } // (mul x, 2^N - 1) => (sub (shl x, N), x) APInt VP1 = Value + 1; if (VP1.isPowerOf2()) { SDValue ShiftedVal = DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), DAG.getConstant(VP1.logBase2(), MVT::i64)); return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal, N->getOperand(0)); } } else { // (mul x, -(2^N + 1)) => - (add (shl x, N), x) APInt VNM1 = -Value - 1; if (VNM1.isPowerOf2()) { SDValue ShiftedVal = DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), DAG.getConstant(VNM1.logBase2(), MVT::i64)); SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0)); return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add); } // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) APInt VNP1 = -Value + 1; if (VNP1.isPowerOf2()) { SDValue ShiftedVal = DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), DAG.getConstant(VNP1.logBase2(), MVT::i64)); return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0), ShiftedVal); } } } return SDValue(); } static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (VT != MVT::f32 && VT != MVT::f64) return SDValue(); // Only optimize when the source and destination types have the same width. if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits()) return SDValue(); // If the result of an integer load is only used by an integer-to-float // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. // This eliminates an "integer-to-vector-move UOP and improve throughput. SDValue N0 = N->getOperand(0); if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && // Do not change the width of a volatile load. !cast<LoadSDNode>(N0)->isVolatile()) { LoadSDNode *LN0 = cast<LoadSDNode>(N0); SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), LN0->getAlignment()); // Make sure successors of the original load stay after it by updating them // to use the new Chain. DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); unsigned Opcode = (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; return DAG.getNode(Opcode, SDLoc(N), VT, Load); } return SDValue(); } /// An EXTR instruction is made up of two shifts, ORed together. This helper /// searches for and classifies those shifts. static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, bool &FromHi) { if (N.getOpcode() == ISD::SHL) FromHi = false; else if (N.getOpcode() == ISD::SRL) FromHi = true; else return false; if (!isa<ConstantSDNode>(N.getOperand(1))) return false; ShiftAmount = N->getConstantOperandVal(1); Src = N->getOperand(0); return true; } /// EXTR instruction extracts a contiguous chunk of bits from two existing /// registers viewed as a high/low pair. This function looks for the pattern: /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an /// EXTR. Can't quite be done in TableGen because the two immediates aren't /// independent. static SDValue tryCombineToEXTR(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); EVT VT = N->getValueType(0); assert(N->getOpcode() == ISD::OR && "Unexpected root"); if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); SDValue LHS; uint32_t ShiftLHS = 0; bool LHSFromHi = 0; if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) return SDValue(); SDValue RHS; uint32_t ShiftRHS = 0; bool RHSFromHi = 0; if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) return SDValue(); // If they're both trying to come from the high part of the register, they're // not really an EXTR. if (LHSFromHi == RHSFromHi) return SDValue(); if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) return SDValue(); if (LHSFromHi) { std::swap(LHS, RHS); std::swap(ShiftLHS, ShiftRHS); } return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, DAG.getConstant(ShiftRHS, MVT::i64)); } static SDValue tryCombineToBSL(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); if (!VT.isVector()) return SDValue(); SDValue N0 = N->getOperand(0); if (N0.getOpcode() != ISD::AND) return SDValue(); SDValue N1 = N->getOperand(1); if (N1.getOpcode() != ISD::AND) return SDValue(); // We only have to look for constant vectors here since the general, variable // case can be handled in TableGen. unsigned Bits = VT.getVectorElementType().getSizeInBits(); uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); for (int i = 1; i >= 0; --i) for (int j = 1; j >= 0; --j) { BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); if (!BVN0 || !BVN1) continue; bool FoundMatch = true; for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); if (!CN0 || !CN1 || CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { FoundMatch = false; break; } } if (FoundMatch) return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0), N0->getOperand(1 - i), N1->getOperand(1 - j)); } return SDValue(); } static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) if (!EnableAArch64ExtrGeneration) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); SDValue Res = tryCombineToEXTR(N, DCI); if (Res.getNode()) return Res; Res = tryCombineToBSL(N, DCI); if (Res.getNode()) return Res; return SDValue(); } static SDValue performBitcastCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // Wait 'til after everything is legalized to try this. That way we have // legal vector types and such. if (DCI.isBeforeLegalizeOps()) return SDValue(); // Remove extraneous bitcasts around an extract_subvector. // For example, // (v4i16 (bitconvert // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1))))) // becomes // (extract_subvector ((v8i16 ...), (i64 4))) // Only interested in 64-bit vectors as the ultimate result. EVT VT = N->getValueType(0); if (!VT.isVector()) return SDValue(); if (VT.getSimpleVT().getSizeInBits() != 64) return SDValue(); // Is the operand an extract_subvector starting at the beginning or halfway // point of the vector? A low half may also come through as an // EXTRACT_SUBREG, so look for that, too. SDValue Op0 = N->getOperand(0); if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR && !(Op0->isMachineOpcode() && Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG)) return SDValue(); uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue(); if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) { if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0) return SDValue(); } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) { if (idx != AArch64::dsub) return SDValue(); // The dsub reference is equivalent to a lane zero subvector reference. idx = 0; } // Look through the bitcast of the input to the extract. if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST) return SDValue(); SDValue Source = Op0->getOperand(0)->getOperand(0); // If the source type has twice the number of elements as our destination // type, we know this is an extract of the high or low half of the vector. EVT SVT = Source->getValueType(0); if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2) return SDValue(); DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n"); // Create the simplified form to just extract the low or high half of the // vector directly rather than bothering with the bitcasts. SDLoc dl(N); unsigned NumElements = VT.getVectorNumElements(); if (idx) { SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx); } else { SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32); return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT, Source, SubReg), 0); } } static SDValue performConcatVectorsCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // Wait 'til after everything is legalized to try this. That way we have // legal vector types and such. if (DCI.isBeforeLegalizeOps()) return SDValue(); SDLoc dl(N); EVT VT = N->getValueType(0); // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector // splat. The indexed instructions are going to be expecting a DUPLANE64, so // canonicalise to that. if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) { assert(VT.getVectorElementType().getSizeInBits() == 64); return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N->getOperand(0), DAG), DAG.getConstant(0, MVT::i64)); } // Canonicalise concat_vectors so that the right-hand vector has as few // bit-casts as possible before its real operation. The primary matching // destination for these operations will be the narrowing "2" instructions, // which depend on the operation being performed on this right-hand vector. // For example, // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) // becomes // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) SDValue Op1 = N->getOperand(1); if (Op1->getOpcode() != ISD::BITCAST) return SDValue(); SDValue RHS = Op1->getOperand(0); MVT RHSTy = RHS.getValueType().getSimpleVT(); // If the RHS is not a vector, this is not the pattern we're looking for. if (!RHSTy.isVector()) return SDValue(); DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), RHSTy.getVectorNumElements() * 2); return DAG.getNode( ISD::BITCAST, dl, VT, DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS)); } static SDValue tryCombineFixedPointConvert(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // Wait 'til after everything is legalized to try this. That way we have // legal vector types and such. if (DCI.isBeforeLegalizeOps()) return SDValue(); // Transform a scalar conversion of a value from a lane extract into a // lane extract of a vector conversion. E.g., from foo1 to foo2: // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } // // The second form interacts better with instruction selection and the // register allocator to avoid cross-class register copies that aren't // coalescable due to a lane reference. // Check the operand and see if it originates from a lane extract. SDValue Op1 = N->getOperand(1); if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { // Yep, no additional predication needed. Perform the transform. SDValue IID = N->getOperand(0); SDValue Shift = N->getOperand(2); SDValue Vec = Op1.getOperand(0); SDValue Lane = Op1.getOperand(1); EVT ResTy = N->getValueType(0); EVT VecResTy; SDLoc DL(N); // The vector width should be 128 bits by the time we get here, even // if it started as 64 bits (the extract_vector handling will have // done so). assert(Vec.getValueType().getSizeInBits() == 128 && "unexpected vector size on extract_vector_elt!"); if (Vec.getValueType() == MVT::v4i32) VecResTy = MVT::v4f32; else if (Vec.getValueType() == MVT::v2i64) VecResTy = MVT::v2f64; else llvm_unreachable("unexpected vector type!"); SDValue Convert = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); } return SDValue(); } // AArch64 high-vector "long" operations are formed by performing the non-high // version on an extract_subvector of each operand which gets the high half: // // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) // // However, there are cases which don't have an extract_high explicitly, but // have another operation that can be made compatible with one for free. For // example: // // (dupv64 scalar) --> (extract_high (dup128 scalar)) // // This routine does the actual conversion of such DUPs, once outer routines // have determined that everything else is in order. static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { // We can handle most types of duplicate, but the lane ones have an extra // operand saying *which* lane, so we need to know. bool IsDUPLANE; switch (N.getOpcode()) { case AArch64ISD::DUP: IsDUPLANE = false; break; case AArch64ISD::DUPLANE8: case AArch64ISD::DUPLANE16: case AArch64ISD::DUPLANE32: case AArch64ISD::DUPLANE64: IsDUPLANE = true; break; default: return SDValue(); } MVT NarrowTy = N.getSimpleValueType(); if (!NarrowTy.is64BitVector()) return SDValue(); MVT ElementTy = NarrowTy.getVectorElementType(); unsigned NumElems = NarrowTy.getVectorNumElements(); MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2); SDValue NewDUP; if (IsDUPLANE) NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0), N.getOperand(1)); else NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0)); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy, NewDUP, DAG.getConstant(NumElems, MVT::i64)); } static bool isEssentiallyExtractSubvector(SDValue N) { if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR) return true; return N.getOpcode() == ISD::BITCAST && N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR; } /// \brief Helper structure to keep track of ISD::SET_CC operands. struct GenericSetCCInfo { const SDValue *Opnd0; const SDValue *Opnd1; ISD::CondCode CC; }; /// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code. struct AArch64SetCCInfo { const SDValue *Cmp; AArch64CC::CondCode CC; }; /// \brief Helper structure to keep track of SetCC information. union SetCCInfo { GenericSetCCInfo Generic; AArch64SetCCInfo AArch64; }; /// \brief Helper structure to be able to read SetCC information. If set to /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a /// GenericSetCCInfo. struct SetCCInfoAndKind { SetCCInfo Info; bool IsAArch64; }; /// \brief Check whether or not \p Op is a SET_CC operation, either a generic or /// an /// AArch64 lowered one. /// \p SetCCInfo is filled accordingly. /// \post SetCCInfo is meanginfull only when this function returns true. /// \return True when Op is a kind of SET_CC operation. static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { // If this is a setcc, this is straight forward. if (Op.getOpcode() == ISD::SETCC) { SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); SetCCInfo.IsAArch64 = false; return true; } // Otherwise, check if this is a matching csel instruction. // In other words: // - csel 1, 0, cc // - csel 0, 1, !cc if (Op.getOpcode() != AArch64ISD::CSEL) return false; // Set the information about the operands. // TODO: we want the operands of the Cmp not the csel SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); SetCCInfo.IsAArch64 = true; SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>( cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); // Check that the operands matches the constraints: // (1) Both operands must be constants. // (2) One must be 1 and the other must be 0. ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); // Check (1). if (!TValue || !FValue) return false; // Check (2). if (!TValue->isOne()) { // Update the comparison when we are interested in !cc. std::swap(TValue, FValue); SetCCInfo.Info.AArch64.CC = AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); } return TValue->isOne() && FValue->isNullValue(); } // Returns true if Op is setcc or zext of setcc. static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { if (isSetCC(Op, Info)) return true; return ((Op.getOpcode() == ISD::ZERO_EXTEND) && isSetCC(Op->getOperand(0), Info)); } // The folding we want to perform is: // (add x, [zext] (setcc cc ...) ) // --> // (csel x, (add x, 1), !cc ...) // // The latter will get matched to a CSINC instruction. static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); SDValue LHS = Op->getOperand(0); SDValue RHS = Op->getOperand(1); SetCCInfoAndKind InfoAndKind; // If neither operand is a SET_CC, give up. if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { std::swap(LHS, RHS); if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) return SDValue(); } // FIXME: This could be generatized to work for FP comparisons. EVT CmpVT = InfoAndKind.IsAArch64 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() : InfoAndKind.Info.Generic.Opnd0->getValueType(); if (CmpVT != MVT::i32 && CmpVT != MVT::i64) return SDValue(); SDValue CCVal; SDValue Cmp; SDLoc dl(Op); if (InfoAndKind.IsAArch64) { CCVal = DAG.getConstant( AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32); Cmp = *InfoAndKind.Info.AArch64.Cmp; } else Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1, ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true), CCVal, DAG, dl); EVT VT = Op->getValueType(0); LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT)); return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); } // The basic add/sub long vector instructions have variants with "2" on the end // which act on the high-half of their inputs. They are normally matched by // patterns like: // // (add (zeroext (extract_high LHS)), // (zeroext (extract_high RHS))) // -> uaddl2 vD, vN, vM // // However, if one of the extracts is something like a duplicate, this // instruction can still be used profitably. This function puts the DAG into a // more appropriate form for those patterns to trigger. static SDValue performAddSubLongCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalizeOps()) return SDValue(); MVT VT = N->getSimpleValueType(0); if (!VT.is128BitVector()) { if (N->getOpcode() == ISD::ADD) return performSetccAddFolding(N, DAG); return SDValue(); } // Make sure both branches are extended in the same way. SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if ((LHS.getOpcode() != ISD::ZERO_EXTEND && LHS.getOpcode() != ISD::SIGN_EXTEND) || LHS.getOpcode() != RHS.getOpcode()) return SDValue(); unsigned ExtType = LHS.getOpcode(); // It's not worth doing if at least one of the inputs isn't already an // extract, but we don't know which it'll be so we have to try both. if (isEssentiallyExtractSubvector(LHS.getOperand(0))) { RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); if (!RHS.getNode()) return SDValue(); RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) { LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); if (!LHS.getNode()) return SDValue(); LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); } return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); } // Massage DAGs which we can use the high-half "long" operations on into // something isel will recognize better. E.g. // // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> // (aarch64_neon_umull (extract_high (v2i64 vec))) // (extract_high (v2i64 (dup128 scalar))))) // static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); assert(LHS.getValueType().is64BitVector() && RHS.getValueType().is64BitVector() && "unexpected shape for long operation"); // Either node could be a DUP, but it's not worth doing both of them (you'd // just as well use the non-high version) so look for a corresponding extract // operation on the other "wing". if (isEssentiallyExtractSubvector(LHS)) { RHS = tryExtendDUPToExtractHigh(RHS, DAG); if (!RHS.getNode()) return SDValue(); } else if (isEssentiallyExtractSubvector(RHS)) { LHS = tryExtendDUPToExtractHigh(LHS, DAG); if (!LHS.getNode()) return SDValue(); } return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), N->getOperand(0), LHS, RHS); } static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { MVT ElemTy = N->getSimpleValueType(0).getScalarType(); unsigned ElemBits = ElemTy.getSizeInBits(); int64_t ShiftAmount; if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, ElemBits) || SplatBitSize != ElemBits) return SDValue(); ShiftAmount = SplatValue.getSExtValue(); } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { ShiftAmount = CVN->getSExtValue(); } else return SDValue(); unsigned Opcode; bool IsRightShift; switch (IID) { default: llvm_unreachable("Unknown shift intrinsic"); case Intrinsic::aarch64_neon_sqshl: Opcode = AArch64ISD::SQSHL_I; IsRightShift = false; break; case Intrinsic::aarch64_neon_uqshl: Opcode = AArch64ISD::UQSHL_I; IsRightShift = false; break; case Intrinsic::aarch64_neon_srshl: Opcode = AArch64ISD::SRSHR_I; IsRightShift = true; break; case Intrinsic::aarch64_neon_urshl: Opcode = AArch64ISD::URSHR_I; IsRightShift = true; break; case Intrinsic::aarch64_neon_sqshlu: Opcode = AArch64ISD::SQSHLU_I; IsRightShift = false; break; } if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1), DAG.getConstant(-ShiftAmount, MVT::i32)); else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1), DAG.getConstant(ShiftAmount, MVT::i32)); return SDValue(); } // The CRC32[BH] instructions ignore the high bits of their data operand. Since // the intrinsics must be legal and take an i32, this means there's almost // certainly going to be a zext in the DAG which we can eliminate. static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { SDValue AndN = N->getOperand(2); if (AndN.getOpcode() != ISD::AND) return SDValue(); ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); if (!CMask || CMask->getZExtValue() != Mask) return SDValue(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); } static SDValue performIntrinsicCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; unsigned IID = getIntrinsicID(N); switch (IID) { default: break; case Intrinsic::aarch64_neon_vcvtfxs2fp: case Intrinsic::aarch64_neon_vcvtfxu2fp: return tryCombineFixedPointConvert(N, DCI, DAG); break; case Intrinsic::aarch64_neon_fmax: return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_fmin: return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_smull: case Intrinsic::aarch64_neon_umull: case Intrinsic::aarch64_neon_pmull: case Intrinsic::aarch64_neon_sqdmull: return tryCombineLongOpWithDup(IID, N, DCI, DAG); case Intrinsic::aarch64_neon_sqshl: case Intrinsic::aarch64_neon_uqshl: case Intrinsic::aarch64_neon_sqshlu: case Intrinsic::aarch64_neon_srshl: case Intrinsic::aarch64_neon_urshl: return tryCombineShiftImm(IID, N, DAG); case Intrinsic::aarch64_crc32b: case Intrinsic::aarch64_crc32cb: return tryCombineCRC32(0xff, N, DAG); case Intrinsic::aarch64_crc32h: case Intrinsic::aarch64_crc32ch: return tryCombineCRC32(0xffff, N, DAG); } return SDValue(); } static SDValue performExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then // we can convert that DUP into another extract_high (of a bigger DUP), which // helps the backend to decide that an sabdl2 would be useful, saving a real // extract_high operation. if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) { SDNode *ABDNode = N->getOperand(0).getNode(); unsigned IID = getIntrinsicID(ABDNode); if (IID == Intrinsic::aarch64_neon_sabd || IID == Intrinsic::aarch64_neon_uabd) { SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG); if (!NewABD.getNode()) return SDValue(); return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), NewABD); } } // This is effectively a custom type legalization for AArch64. // // Type legalization will split an extend of a small, legal, type to a larger // illegal type by first splitting the destination type, often creating // illegal source types, which then get legalized in isel-confusing ways, // leading to really terrible codegen. E.g., // %result = v8i32 sext v8i8 %value // becomes // %losrc = extract_subreg %value, ... // %hisrc = extract_subreg %value, ... // %lo = v4i32 sext v4i8 %losrc // %hi = v4i32 sext v4i8 %hisrc // Things go rapidly downhill from there. // // For AArch64, the [sz]ext vector instructions can only go up one element // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 // take two instructions. // // This implies that the most efficient way to do the extend from v8i8 // to two v4i32 values is to first extend the v8i8 to v8i16, then do // the normal splitting to happen for the v8i16->v8i32. // This is pre-legalization to catch some cases where the default // type legalization will create ill-tempered code. if (!DCI.isBeforeLegalizeOps()) return SDValue(); // We're only interested in cleaning things up for non-legal vector types // here. If both the source and destination are legal, things will just // work naturally without any fiddling. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT ResVT = N->getValueType(0); if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) return SDValue(); // If the vector type isn't a simple VT, it's beyond the scope of what // we're worried about here. Let legalization do its thing and hope for // the best. if (!ResVT.isSimple()) return SDValue(); SDValue Src = N->getOperand(0); MVT SrcVT = Src->getValueType(0).getSimpleVT(); // If the source VT is a 64-bit vector, we can play games and get the // better results we want. if (SrcVT.getSizeInBits() != 64) return SDValue(); unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits(); unsigned ElementCount = SrcVT.getVectorNumElements(); SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount); SDLoc DL(N); Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); // Now split the rest of the operation into two halves, each with a 64 // bit source. EVT LoVT, HiVT; SDValue Lo, Hi; unsigned NumElements = ResVT.getVectorNumElements(); assert(!(NumElements & 1) && "Splitting vector, but not in half!"); LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(), NumElements / 2); EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), LoVT.getVectorNumElements()); Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, DAG.getIntPtrConstant(0)); Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, DAG.getIntPtrConstant(InNVT.getVectorNumElements())); Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); // Now combine the parts back together so we still have a single result // like the combiner expects. return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); } /// Replace a splat of a scalar to a vector store by scalar stores of the scalar /// value. The load store optimizer pass will merge them to store pair stores. /// This has better performance than a splat of the scalar followed by a split /// vector store. Even if the stores are not merged it is four stores vs a dup, /// followed by an ext.b and two stores. static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) { SDValue StVal = St->getValue(); EVT VT = StVal.getValueType(); // Don't replace floating point stores, they possibly won't be transformed to // stp because of the store pair suppress pass. if (VT.isFloatingPoint()) return SDValue(); // Check for insert vector elements. if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) return SDValue(); // We can express a splat as store pair(s) for 2 or 4 elements. unsigned NumVecElts = VT.getVectorNumElements(); if (NumVecElts != 4 && NumVecElts != 2) return SDValue(); SDValue SplatVal = StVal.getOperand(1); unsigned RemainInsertElts = NumVecElts - 1; // Check that this is a splat. while (--RemainInsertElts) { SDValue NextInsertElt = StVal.getOperand(0); if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT) return SDValue(); if (NextInsertElt.getOperand(1) != SplatVal) return SDValue(); StVal = NextInsertElt; } unsigned OrigAlignment = St->getAlignment(); unsigned EltOffset = NumVecElts == 4 ? 4 : 8; unsigned Alignment = std::min(OrigAlignment, EltOffset); // Create scalar stores. This is at least as good as the code sequence for a // split unaligned store wich is a dup.s, ext.b, and two stores. // Most of the time the three stores should be replaced by store pair // instructions (stp). SDLoc DL(St); SDValue BasePtr = St->getBasePtr(); SDValue NewST1 = DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); unsigned Offset = EltOffset; while (--NumVecElts) { SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, DAG.getConstant(Offset, MVT::i64)); NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), Alignment); Offset += EltOffset; } return NewST1; } static SDValue performSTORECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { if (!DCI.isBeforeLegalize()) return SDValue(); StoreSDNode *S = cast<StoreSDNode>(N); if (S->isVolatile()) return SDValue(); // Cyclone has bad performance on unaligned 16B stores when crossing line and // page boundries. We want to split such stores. if (!Subtarget->isCyclone()) return SDValue(); // Don't split at Oz. MachineFunction &MF = DAG.getMachineFunction(); bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute( AttributeSet::FunctionIndex, Attribute::MinSize); if (IsMinSize) return SDValue(); SDValue StVal = S->getValue(); EVT VT = StVal.getValueType(); // Don't split v2i64 vectors. Memcpy lowering produces those and splitting // those up regresses performance on micro-benchmarks and olden/bh. if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64) return SDValue(); // Split unaligned 16B stores. They are terrible for performance. // Don't split stores with alignment of 1 or 2. Code that uses clang vector // extensions can use this to mark that it does not want splitting to happen // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of // eliminating alignment hazards is only 1 in 8 for alignment of 2. if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || S->getAlignment() <= 2) return SDValue(); // If we get a splat of a scalar convert this vector store to a store of // scalars. They will be merged into store pairs thereby removing two // instructions. SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S); if (ReplacedSplat != SDValue()) return ReplacedSplat; SDLoc DL(S); unsigned NumElts = VT.getVectorNumElements() / 2; // Split VT into two. EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts); SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, DAG.getIntPtrConstant(0)); SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, DAG.getIntPtrConstant(NumElts)); SDValue BasePtr = S->getBasePtr(); SDValue NewST1 = DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(), S->getAlignment()); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, DAG.getConstant(8, MVT::i64)); return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(), S->getAlignment()); } /// Target-specific DAG combine function for post-increment LD1 (lane) and /// post-increment LD1R. static SDValue performPostLD1Combine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, bool IsLaneOp) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); unsigned LoadIdx = IsLaneOp ? 1 : 0; SDNode *LD = N->getOperand(LoadIdx).getNode(); // If it is not LOAD, can not do such combine. if (LD->getOpcode() != ISD::LOAD) return SDValue(); LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); EVT MemVT = LoadSDN->getMemoryVT(); // Check if memory operand is the same type as the vector element. if (MemVT != VT.getVectorElementType()) return SDValue(); // Check if there are other uses. If so, do not combine as it will introduce // an extra load. for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; ++UI) { if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. continue; if (*UI != N) return SDValue(); } SDValue Addr = LD->getOperand(1); SDValue Vector = N->getOperand(0); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // Check that the add is independent of the load. Otherwise, folding it // would create a cycle. if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User)) continue; // Also check that add is not used in the vector operand. This would also // create a cycle. if (User->isPredecessorOf(Vector.getNode())) continue; // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { uint32_t IncVal = CInc->getZExtValue(); unsigned NumBytes = VT.getScalarSizeInBits() / 8; if (IncVal != NumBytes) continue; Inc = DAG.getRegister(AArch64::XZR, MVT::i64); } SmallVector<SDValue, 8> Ops; Ops.push_back(LD->getOperand(0)); // Chain if (IsLaneOp) { Ops.push_back(Vector); // The vector to be inserted Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector } Ops.push_back(Addr); Ops.push_back(Inc); EVT Tys[3] = { VT, MVT::i64, MVT::Other }; SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, 3)); unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, MemVT, LoadSDN->getMemOperand()); // Update the uses. std::vector<SDValue> NewResults; NewResults.push_back(SDValue(LD, 0)); // The result of load NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain DCI.CombineTo(LD, NewResults); DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register break; } return SDValue(); } /// Target-specific DAG combine function for NEON load/store intrinsics /// to merge base address updates. static SDValue performNEONPostLDSTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); unsigned AddrOpIdx = N->getNumOperands() - 1; SDValue Addr = N->getOperand(AddrOpIdx); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // Check that the add is independent of the load/store. Otherwise, folding // it would create a cycle. if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) continue; // Find the new opcode for the updating load/store. bool IsStore = false; bool IsLaneOp = false; bool IsDupOp = false; unsigned NewOpc = 0; unsigned NumVecs = 0; unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); switch (IntNo) { default: llvm_unreachable("unexpected intrinsic for Neon base update"); case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; NumVecs = 2; break; case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; NumVecs = 3; break; case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; NumVecs = 4; break; case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; NumVecs = 2; IsStore = true; break; case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; NumVecs = 3; IsStore = true; break; case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; NumVecs = 4; IsStore = true; break; case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; NumVecs = 2; break; case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; NumVecs = 3; break; case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; NumVecs = 4; break; case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; NumVecs = 2; IsStore = true; break; case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; NumVecs = 3; IsStore = true; break; case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; NumVecs = 4; IsStore = true; break; case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; NumVecs = 2; IsDupOp = true; break; case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; NumVecs = 3; IsDupOp = true; break; case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; NumVecs = 4; IsDupOp = true; break; case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; NumVecs = 2; IsLaneOp = true; break; case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; NumVecs = 3; IsLaneOp = true; break; case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; NumVecs = 4; IsLaneOp = true; break; case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; NumVecs = 2; IsStore = true; IsLaneOp = true; break; case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; NumVecs = 3; IsStore = true; IsLaneOp = true; break; case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; NumVecs = 4; IsStore = true; IsLaneOp = true; break; } EVT VecTy; if (IsStore) VecTy = N->getOperand(2).getValueType(); else VecTy = N->getValueType(0); // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { uint32_t IncVal = CInc->getZExtValue(); unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; if (IsLaneOp || IsDupOp) NumBytes /= VecTy.getVectorNumElements(); if (IncVal != NumBytes) continue; Inc = DAG.getRegister(AArch64::XZR, MVT::i64); } SmallVector<SDValue, 8> Ops; Ops.push_back(N->getOperand(0)); // Incoming chain // Load lane and store have vector list as input. if (IsLaneOp || IsStore) for (unsigned i = 2; i < AddrOpIdx; ++i) Ops.push_back(N->getOperand(i)); Ops.push_back(Addr); // Base register Ops.push_back(Inc); // Return Types. EVT Tys[6]; unsigned NumResultVecs = (IsStore ? 0 : NumVecs); unsigned n; for (n = 0; n < NumResultVecs; ++n) Tys[n] = VecTy; Tys[n++] = MVT::i64; // Type of write back register Tys[n] = MVT::Other; // Type of the chain SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2)); MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, MemInt->getMemoryVT(), MemInt->getMemOperand()); // Update the uses. std::vector<SDValue> NewResults; for (unsigned i = 0; i < NumResultVecs; ++i) { NewResults.push_back(SDValue(UpdN.getNode(), i)); } NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); DCI.CombineTo(N, NewResults); DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); break; } return SDValue(); } // Optimize compare with zero and branch. static SDValue performBRCONDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { SDValue Chain = N->getOperand(0); SDValue Dest = N->getOperand(1); SDValue CCVal = N->getOperand(2); SDValue Cmp = N->getOperand(3); assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!"); unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); if (CC != AArch64CC::EQ && CC != AArch64CC::NE) return SDValue(); unsigned CmpOpc = Cmp.getOpcode(); if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) return SDValue(); // Only attempt folding if there is only one use of the flag and no use of the // value. if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) return SDValue(); SDValue LHS = Cmp.getOperand(0); SDValue RHS = Cmp.getOperand(1); assert(LHS.getValueType() == RHS.getValueType() && "Expected the value type to be the same for both operands!"); if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) return SDValue(); if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue()) std::swap(LHS, RHS); if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue()) return SDValue(); if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || LHS.getOpcode() == ISD::SRL) return SDValue(); // Fold the compare into the branch instruction. SDValue BR; if (CC == AArch64CC::EQ) BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); else BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, BR, false); return SDValue(); } // vselect (v1i1 setcc) -> // vselect (v1iXX setcc) (XX is the size of the compared operand type) // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine // such VSELECT. static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); EVT CCVT = N0.getValueType(); if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || CCVT.getVectorElementType() != MVT::i1) return SDValue(); EVT ResVT = N->getValueType(0); EVT CmpVT = N0.getOperand(0).getValueType(); // Only combine when the result type is of the same size as the compared // operands. if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) return SDValue(); SDValue IfTrue = N->getOperand(1); SDValue IfFalse = N->getOperand(2); SDValue SetCC = DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), N0.getOperand(0), N0.getOperand(1), cast<CondCodeSDNode>(N0.getOperand(2))->get()); return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, IfTrue, IfFalse); } /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with /// the compare-mask instructions rather than going via NZCV, even if LHS and /// RHS are really scalar. This replaces any scalar setcc in the above pattern /// with a vector one followed by a DUP shuffle on the result. static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); EVT ResVT = N->getValueType(0); if (!N->getOperand(1).getValueType().isVector()) return SDValue(); if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1) return SDValue(); SDLoc DL(N0); EVT SrcVT = N0.getOperand(0).getValueType(); SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, ResVT.getSizeInBits() / SrcVT.getSizeInBits()); EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); // First perform a vector comparison, where lane 0 is the one we're interested // in. SDValue LHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); SDValue RHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); // Now duplicate the comparison mask we want across all other lanes. SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data()); Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(), Mask); return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); } SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { default: break; case ISD::ADD: case ISD::SUB: return performAddSubLongCombine(N, DCI, DAG); case ISD::XOR: return performXorCombine(N, DAG, DCI, Subtarget); case ISD::MUL: return performMulCombine(N, DAG, DCI, Subtarget); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return performIntToFpCombine(N, DAG); case ISD::OR: return performORCombine(N, DCI, Subtarget); case ISD::INTRINSIC_WO_CHAIN: return performIntrinsicCombine(N, DCI, Subtarget); case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: return performExtendCombine(N, DCI, DAG); case ISD::BITCAST: return performBitcastCombine(N, DCI, DAG); case ISD::CONCAT_VECTORS: return performConcatVectorsCombine(N, DCI, DAG); case ISD::SELECT: return performSelectCombine(N, DAG); case ISD::VSELECT: return performVSelectCombine(N, DCI.DAG); case ISD::STORE: return performSTORECombine(N, DCI, DAG, Subtarget); case AArch64ISD::BRCOND: return performBRCONDCombine(N, DCI, DAG); case AArch64ISD::DUP: return performPostLD1Combine(N, DCI, false); case ISD::INSERT_VECTOR_ELT: return performPostLD1Combine(N, DCI, true); case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { case Intrinsic::aarch64_neon_ld2: case Intrinsic::aarch64_neon_ld3: case Intrinsic::aarch64_neon_ld4: case Intrinsic::aarch64_neon_ld1x2: case Intrinsic::aarch64_neon_ld1x3: case Intrinsic::aarch64_neon_ld1x4: case Intrinsic::aarch64_neon_ld2lane: case Intrinsic::aarch64_neon_ld3lane: case Intrinsic::aarch64_neon_ld4lane: case Intrinsic::aarch64_neon_ld2r: case Intrinsic::aarch64_neon_ld3r: case Intrinsic::aarch64_neon_ld4r: case Intrinsic::aarch64_neon_st2: case Intrinsic::aarch64_neon_st3: case Intrinsic::aarch64_neon_st4: case Intrinsic::aarch64_neon_st1x2: case Intrinsic::aarch64_neon_st1x3: case Intrinsic::aarch64_neon_st1x4: case Intrinsic::aarch64_neon_st2lane: case Intrinsic::aarch64_neon_st3lane: case Intrinsic::aarch64_neon_st4lane: return performNEONPostLDSTCombine(N, DCI, DAG); default: break; } } return SDValue(); } // Check if the return value is used as only a return value, as otherwise // we can't perform a tail-call. In particular, we need to check for // target ISD nodes that are returns and any other "odd" constructs // that the generic analysis code won't necessarily catch. bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { if (N->getNumValues() != 1) return false; if (!N->hasNUsesOfValue(1, 0)) return false; SDValue TCChain = Chain; SDNode *Copy = *N->use_begin(); if (Copy->getOpcode() == ISD::CopyToReg) { // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else if (Copy->getOpcode() != ISD::FP_EXTEND) return false; bool HasRet = false; for (SDNode *Node : Copy->uses()) { if (Node->getOpcode() != AArch64ISD::RET_FLAG) return false; HasRet = true; } if (!HasRet) return false; Chain = TCChain; return true; } // Return whether the an instruction can potentially be optimized to a tail // call. This will cause the optimizers to attempt to move, or duplicate, // return instructions to help enable tail call optimizations for this // instruction. bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { if (!CI->isTailCall()) return false; return true; } bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, bool &IsInc, SelectionDAG &DAG) const { if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) return false; Base = Op->getOperand(0); // All of the indexed addressing mode instructions take a signed // 9 bit immediate offset. if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { int64_t RHSC = (int64_t)RHS->getZExtValue(); if (RHSC >= 256 || RHSC <= -256) return false; IsInc = (Op->getOpcode() == ISD::ADD); Offset = Op->getOperand(1); return true; } return false; } bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); } else return false; bool IsInc; if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) return false; AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; return true; } bool AArch64TargetLowering::getPostIndexedAddressParts( SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); } else return false; bool IsInc; if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) return false; // Post-indexing updates the base, so it's not a valid transform // if that's not the same as the load's pointer. if (Ptr != Base) return false; AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; return true; } void AArch64TargetLowering::ReplaceNodeResults( SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { default: llvm_unreachable("Don't know how to custom expand this"); case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); // Let normal code take care of it by not adding anything to Results. return; } } bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const { // Loads and stores less than 128-bits are already atomic; ones above that // are doomed anyway, so defer to the default libcall and blame the OS when // things go wrong: if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128; else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) return LI->getType()->getPrimitiveSizeInBits() == 128; // For the real atomic operations, we have ldxr/stxr up to 128 bits. return Inst->getType()->getPrimitiveSizeInBits() <= 128; } TargetLoweringBase::LegalizeTypeAction AArch64TargetLowering::getPreferredVectorAction(EVT VT) const { MVT SVT = VT.getSimpleVT(); // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8, // v4i16, v2i32 instead of to promote. if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32 || SVT == MVT::v1f32) return TypeWidenVector; return TargetLoweringBase::getPreferredVectorAction(VT); } Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, AtomicOrdering Ord) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); bool IsAcquire = Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent; // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd // intrinsic must return {i64, i64} and we have to recombine them into a // single i128 here. if (ValTy->getPrimitiveSizeInBits() == 128) { Intrinsic::ID Int = IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int); Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); return Builder.CreateOr( Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); } Type *Tys[] = { Addr->getType() }; Intrinsic::ID Int = IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys); return Builder.CreateTruncOrBitCast( Builder.CreateCall(Ldxr, Addr), cast<PointerType>(Addr->getType())->getElementType()); } Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); bool IsRelease = Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent; // Since the intrinsics must have legal type, the i128 intrinsics take two // parameters: "i64, i64". We must marshal Val into the appropriate form // before the call. if (Val->getType()->getPrimitiveSizeInBits() == 128) { Intrinsic::ID Int = IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; Function *Stxr = Intrinsic::getDeclaration(M, Int); Type *Int64Ty = Type::getInt64Ty(M->getContext()); Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); return Builder.CreateCall3(Stxr, Lo, Hi, Addr); } Intrinsic::ID Int = IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; Type *Tys[] = { Addr->getType() }; Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); return Builder.CreateCall2( Stxr, Builder.CreateZExtOrBitCast( Val, Stxr->getFunctionType()->getParamType(0)), Addr); }