//===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the AArch64 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "AArch64InstrInfo.h" #include "AArch64Subtarget.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; #define GET_INSTRINFO_CTOR_DTOR #include "AArch64GenInstrInfo.inc" AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI) : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP), RI(this, &STI), Subtarget(STI) {} /// GetInstSize - Return the number of bytes of code the specified /// instruction may be. This returns the maximum number of bytes. unsigned AArch64InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { const MachineBasicBlock &MBB = *MI->getParent(); const MachineFunction *MF = MBB.getParent(); const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); if (MI->getOpcode() == AArch64::INLINEASM) return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI); const MCInstrDesc &Desc = MI->getDesc(); switch (Desc.getOpcode()) { default: // Anything not explicitly designated otherwise is a nomal 4-byte insn. return 4; case TargetOpcode::DBG_VALUE: case TargetOpcode::EH_LABEL: case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: return 0; } llvm_unreachable("GetInstSizeInBytes()- Unable to determin insn size"); } static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target, SmallVectorImpl<MachineOperand> &Cond) { // Block ends with fall-through condbranch. switch (LastInst->getOpcode()) { default: llvm_unreachable("Unknown branch instruction?"); case AArch64::Bcc: Target = LastInst->getOperand(1).getMBB(); Cond.push_back(LastInst->getOperand(0)); break; case AArch64::CBZW: case AArch64::CBZX: case AArch64::CBNZW: case AArch64::CBNZX: Target = LastInst->getOperand(1).getMBB(); Cond.push_back(MachineOperand::CreateImm(-1)); Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); Cond.push_back(LastInst->getOperand(0)); break; case AArch64::TBZW: case AArch64::TBZX: case AArch64::TBNZW: case AArch64::TBNZX: Target = LastInst->getOperand(2).getMBB(); Cond.push_back(MachineOperand::CreateImm(-1)); Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); Cond.push_back(LastInst->getOperand(0)); Cond.push_back(LastInst->getOperand(1)); } } // Branch analysis. bool AArch64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const { // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return false; --I; while (I->isDebugValue()) { if (I == MBB.begin()) return false; --I; } if (!isUnpredicatedTerminator(I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. unsigned LastOpc = LastInst->getOpcode(); if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { if (isUncondBranchOpcode(LastOpc)) { TBB = LastInst->getOperand(0).getMBB(); return false; } if (isCondBranchOpcode(LastOpc)) { // Block ends with fall-through condbranch. parseCondBranch(LastInst, TBB, Cond); return false; } return true; // Can't handle indirect branch. } // Get the instruction before it if it is a terminator. MachineInstr *SecondLastInst = I; unsigned SecondLastOpc = SecondLastInst->getOpcode(); // If AllowModify is true and the block ends with two or more unconditional // branches, delete all but the first unconditional branch. if (AllowModify && isUncondBranchOpcode(LastOpc)) { while (isUncondBranchOpcode(SecondLastOpc)) { LastInst->eraseFromParent(); LastInst = SecondLastInst; LastOpc = LastInst->getOpcode(); if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { // Return now the only terminator is an unconditional branch. TBB = LastInst->getOperand(0).getMBB(); return false; } else { SecondLastInst = I; SecondLastOpc = SecondLastInst->getOpcode(); } } } // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) return true; // If the block ends with a B and a Bcc, handle it. if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { parseCondBranch(SecondLastInst, TBB, Cond); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two unconditional branches, handle it. The second // one is not executed, so remove it. if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { TBB = SecondLastInst->getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // ...likewise if it ends with an indirect branch followed by an unconditional // branch. if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { I = LastInst; if (AllowModify) I->eraseFromParent(); return true; } // Otherwise, can't handle this. return true; } bool AArch64InstrInfo::ReverseBranchCondition( SmallVectorImpl<MachineOperand> &Cond) const { if (Cond[0].getImm() != -1) { // Regular Bcc AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm(); Cond[0].setImm(AArch64CC::getInvertedCondCode(CC)); } else { // Folded compare-and-branch switch (Cond[1].getImm()) { default: llvm_unreachable("Unknown conditional branch!"); case AArch64::CBZW: Cond[1].setImm(AArch64::CBNZW); break; case AArch64::CBNZW: Cond[1].setImm(AArch64::CBZW); break; case AArch64::CBZX: Cond[1].setImm(AArch64::CBNZX); break; case AArch64::CBNZX: Cond[1].setImm(AArch64::CBZX); break; case AArch64::TBZW: Cond[1].setImm(AArch64::TBNZW); break; case AArch64::TBNZW: Cond[1].setImm(AArch64::TBZW); break; case AArch64::TBZX: Cond[1].setImm(AArch64::TBNZX); break; case AArch64::TBNZX: Cond[1].setImm(AArch64::TBZX); break; } } return false; } unsigned AArch64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return 0; --I; while (I->isDebugValue()) { if (I == MBB.begin()) return 0; --I; } if (!isUncondBranchOpcode(I->getOpcode()) && !isCondBranchOpcode(I->getOpcode())) return 0; // Remove the branch. I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (!isCondBranchOpcode(I->getOpcode())) return 1; // Remove the branch. I->eraseFromParent(); return 2; } void AArch64InstrInfo::instantiateCondBranch( MachineBasicBlock &MBB, DebugLoc DL, MachineBasicBlock *TBB, const SmallVectorImpl<MachineOperand> &Cond) const { if (Cond[0].getImm() != -1) { // Regular Bcc BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB); } else { // Folded compare-and-branch const MachineInstrBuilder MIB = BuildMI(&MBB, DL, get(Cond[1].getImm())).addReg(Cond[2].getReg()); if (Cond.size() > 3) MIB.addImm(Cond[3].getImm()); MIB.addMBB(TBB); } } unsigned AArch64InstrInfo::InsertBranch( MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); if (!FBB) { if (Cond.empty()) // Unconditional branch? BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB); else instantiateCondBranch(MBB, DL, TBB, Cond); return 1; } // Two-way conditional branch. instantiateCondBranch(MBB, DL, TBB, Cond); BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB); return 2; } // Find the original register that VReg is copied from. static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) { while (TargetRegisterInfo::isVirtualRegister(VReg)) { const MachineInstr *DefMI = MRI.getVRegDef(VReg); if (!DefMI->isFullCopy()) return VReg; VReg = DefMI->getOperand(1).getReg(); } return VReg; } // Determine if VReg is defined by an instruction that can be folded into a // csel instruction. If so, return the folded opcode, and the replacement // register. static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg, unsigned *NewVReg = nullptr) { VReg = removeCopies(MRI, VReg); if (!TargetRegisterInfo::isVirtualRegister(VReg)) return 0; bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg)); const MachineInstr *DefMI = MRI.getVRegDef(VReg); unsigned Opc = 0; unsigned SrcOpNum = 0; switch (DefMI->getOpcode()) { case AArch64::ADDSXri: case AArch64::ADDSWri: // if NZCV is used, do not fold. if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1) return 0; // fall-through to ADDXri and ADDWri. case AArch64::ADDXri: case AArch64::ADDWri: // add x, 1 -> csinc. if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 || DefMI->getOperand(3).getImm() != 0) return 0; SrcOpNum = 1; Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr; break; case AArch64::ORNXrr: case AArch64::ORNWrr: { // not x -> csinv, represented as orn dst, xzr, src. unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg()); if (ZReg != AArch64::XZR && ZReg != AArch64::WZR) return 0; SrcOpNum = 2; Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr; break; } case AArch64::SUBSXrr: case AArch64::SUBSWrr: // if NZCV is used, do not fold. if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1) return 0; // fall-through to SUBXrr and SUBWrr. case AArch64::SUBXrr: case AArch64::SUBWrr: { // neg x -> csneg, represented as sub dst, xzr, src. unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg()); if (ZReg != AArch64::XZR && ZReg != AArch64::WZR) return 0; SrcOpNum = 2; Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr; break; } default: return 0; } assert(Opc && SrcOpNum && "Missing parameters"); if (NewVReg) *NewVReg = DefMI->getOperand(SrcOpNum).getReg(); return Opc; } bool AArch64InstrInfo::canInsertSelect( const MachineBasicBlock &MBB, const SmallVectorImpl<MachineOperand> &Cond, unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const { // Check register classes. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); if (!RC) return false; // Expanding cbz/tbz requires an extra cycle of latency on the condition. unsigned ExtraCondLat = Cond.size() != 1; // GPRs are handled by csel. // FIXME: Fold in x+1, -x, and ~x when applicable. if (AArch64::GPR64allRegClass.hasSubClassEq(RC) || AArch64::GPR32allRegClass.hasSubClassEq(RC)) { // Single-cycle csel, csinc, csinv, and csneg. CondCycles = 1 + ExtraCondLat; TrueCycles = FalseCycles = 1; if (canFoldIntoCSel(MRI, TrueReg)) TrueCycles = 0; else if (canFoldIntoCSel(MRI, FalseReg)) FalseCycles = 0; return true; } // Scalar floating point is handled by fcsel. // FIXME: Form fabs, fmin, and fmax when applicable. if (AArch64::FPR64RegClass.hasSubClassEq(RC) || AArch64::FPR32RegClass.hasSubClassEq(RC)) { CondCycles = 5 + ExtraCondLat; TrueCycles = FalseCycles = 2; return true; } // Can't do vectors. return false; } void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DstReg, const SmallVectorImpl<MachineOperand> &Cond, unsigned TrueReg, unsigned FalseReg) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); // Parse the condition code, see parseCondBranch() above. AArch64CC::CondCode CC; switch (Cond.size()) { default: llvm_unreachable("Unknown condition opcode in Cond"); case 1: // b.cc CC = AArch64CC::CondCode(Cond[0].getImm()); break; case 3: { // cbz/cbnz // We must insert a compare against 0. bool Is64Bit; switch (Cond[1].getImm()) { default: llvm_unreachable("Unknown branch opcode in Cond"); case AArch64::CBZW: Is64Bit = 0; CC = AArch64CC::EQ; break; case AArch64::CBZX: Is64Bit = 1; CC = AArch64CC::EQ; break; case AArch64::CBNZW: Is64Bit = 0; CC = AArch64CC::NE; break; case AArch64::CBNZX: Is64Bit = 1; CC = AArch64CC::NE; break; } unsigned SrcReg = Cond[2].getReg(); if (Is64Bit) { // cmp reg, #0 is actually subs xzr, reg, #0. MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass); BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR) .addReg(SrcReg) .addImm(0) .addImm(0); } else { MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass); BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR) .addReg(SrcReg) .addImm(0) .addImm(0); } break; } case 4: { // tbz/tbnz // We must insert a tst instruction. switch (Cond[1].getImm()) { default: llvm_unreachable("Unknown branch opcode in Cond"); case AArch64::TBZW: case AArch64::TBZX: CC = AArch64CC::EQ; break; case AArch64::TBNZW: case AArch64::TBNZX: CC = AArch64CC::NE; break; } // cmp reg, #foo is actually ands xzr, reg, #1<<foo. if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW) BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR) .addReg(Cond[2].getReg()) .addImm( AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32)); else BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR) .addReg(Cond[2].getReg()) .addImm( AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64)); break; } } unsigned Opc = 0; const TargetRegisterClass *RC = nullptr; bool TryFold = false; if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) { RC = &AArch64::GPR64RegClass; Opc = AArch64::CSELXr; TryFold = true; } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) { RC = &AArch64::GPR32RegClass; Opc = AArch64::CSELWr; TryFold = true; } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) { RC = &AArch64::FPR64RegClass; Opc = AArch64::FCSELDrrr; } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) { RC = &AArch64::FPR32RegClass; Opc = AArch64::FCSELSrrr; } assert(RC && "Unsupported regclass"); // Try folding simple instructions into the csel. if (TryFold) { unsigned NewVReg = 0; unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg); if (FoldedOpc) { // The folded opcodes csinc, csinc and csneg apply the operation to // FalseReg, so we need to invert the condition. CC = AArch64CC::getInvertedCondCode(CC); TrueReg = FalseReg; } else FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg); // Fold the operation. Leave any dead instructions for DCE to clean up. if (FoldedOpc) { FalseReg = NewVReg; Opc = FoldedOpc; // The extends the live range of NewVReg. MRI.clearKillFlags(NewVReg); } } // Pull all virtual register into the appropriate class. MRI.constrainRegClass(TrueReg, RC); MRI.constrainRegClass(FalseReg, RC); // Insert the csel. BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(TrueReg).addReg(FalseReg).addImm( CC); } // FIXME: this implementation should be micro-architecture dependent, so a // micro-architecture target hook should be introduced here in future. bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr *MI) const { if (!Subtarget.isCortexA57() && !Subtarget.isCortexA53()) return MI->isAsCheapAsAMove(); switch (MI->getOpcode()) { default: return false; // add/sub on register without shift case AArch64::ADDWri: case AArch64::ADDXri: case AArch64::SUBWri: case AArch64::SUBXri: return (MI->getOperand(3).getImm() == 0); // logical ops on immediate case AArch64::ANDWri: case AArch64::ANDXri: case AArch64::EORWri: case AArch64::EORXri: case AArch64::ORRWri: case AArch64::ORRXri: return true; // logical ops on register without shift case AArch64::ANDWrr: case AArch64::ANDXrr: case AArch64::BICWrr: case AArch64::BICXrr: case AArch64::EONWrr: case AArch64::EONXrr: case AArch64::EORWrr: case AArch64::EORXrr: case AArch64::ORNWrr: case AArch64::ORNXrr: case AArch64::ORRWrr: case AArch64::ORRXrr: return true; } llvm_unreachable("Unknown opcode to check as cheap as a move!"); } bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const { switch (MI.getOpcode()) { default: return false; case AArch64::SBFMXri: // aka sxtw case AArch64::UBFMXri: // aka uxtw // Check for the 32 -> 64 bit extension case, these instructions can do // much more. if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31) return false; // This is a signed or unsigned 32 -> 64 bit extension. SrcReg = MI.getOperand(1).getReg(); DstReg = MI.getOperand(0).getReg(); SubIdx = AArch64::sub_32; return true; } } /// analyzeCompare - For a comparison instruction, return the source registers /// in SrcReg and SrcReg2, and the value it compares against in CmpValue. /// Return true if the comparison instruction can be analyzed. bool AArch64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, int &CmpMask, int &CmpValue) const { switch (MI->getOpcode()) { default: break; case AArch64::SUBSWrr: case AArch64::SUBSWrs: case AArch64::SUBSWrx: case AArch64::SUBSXrr: case AArch64::SUBSXrs: case AArch64::SUBSXrx: case AArch64::ADDSWrr: case AArch64::ADDSWrs: case AArch64::ADDSWrx: case AArch64::ADDSXrr: case AArch64::ADDSXrs: case AArch64::ADDSXrx: // Replace SUBSWrr with SUBWrr if NZCV is not used. SrcReg = MI->getOperand(1).getReg(); SrcReg2 = MI->getOperand(2).getReg(); CmpMask = ~0; CmpValue = 0; return true; case AArch64::SUBSWri: case AArch64::ADDSWri: case AArch64::SUBSXri: case AArch64::ADDSXri: SrcReg = MI->getOperand(1).getReg(); SrcReg2 = 0; CmpMask = ~0; CmpValue = MI->getOperand(2).getImm(); return true; case AArch64::ANDSWri: case AArch64::ANDSXri: // ANDS does not use the same encoding scheme as the others xxxS // instructions. SrcReg = MI->getOperand(1).getReg(); SrcReg2 = 0; CmpMask = ~0; CmpValue = AArch64_AM::decodeLogicalImmediate( MI->getOperand(2).getImm(), MI->getOpcode() == AArch64::ANDSWri ? 32 : 64); return true; } return false; } static bool UpdateOperandRegClass(MachineInstr *Instr) { MachineBasicBlock *MBB = Instr->getParent(); assert(MBB && "Can't get MachineBasicBlock here"); MachineFunction *MF = MBB->getParent(); assert(MF && "Can't get MachineFunction here"); const TargetMachine *TM = &MF->getTarget(); const TargetInstrInfo *TII = TM->getInstrInfo(); const TargetRegisterInfo *TRI = TM->getRegisterInfo(); MachineRegisterInfo *MRI = &MF->getRegInfo(); for (unsigned OpIdx = 0, EndIdx = Instr->getNumOperands(); OpIdx < EndIdx; ++OpIdx) { MachineOperand &MO = Instr->getOperand(OpIdx); const TargetRegisterClass *OpRegCstraints = Instr->getRegClassConstraint(OpIdx, TII, TRI); // If there's no constraint, there's nothing to do. if (!OpRegCstraints) continue; // If the operand is a frame index, there's nothing to do here. // A frame index operand will resolve correctly during PEI. if (MO.isFI()) continue; assert(MO.isReg() && "Operand has register constraints without being a register!"); unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (!OpRegCstraints->contains(Reg)) return false; } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) && !MRI->constrainRegClass(Reg, OpRegCstraints)) return false; } return true; } /// optimizeCompareInstr - Convert the instruction supplying the argument to the /// comparison into one that sets the zero bit in the flags register. bool AArch64InstrInfo::optimizeCompareInstr( MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, int CmpValue, const MachineRegisterInfo *MRI) const { // Replace SUBSWrr with SUBWrr if NZCV is not used. int Cmp_NZCV = CmpInstr->findRegisterDefOperandIdx(AArch64::NZCV, true); if (Cmp_NZCV != -1) { unsigned NewOpc; switch (CmpInstr->getOpcode()) { default: return false; case AArch64::ADDSWrr: NewOpc = AArch64::ADDWrr; break; case AArch64::ADDSWri: NewOpc = AArch64::ADDWri; break; case AArch64::ADDSWrs: NewOpc = AArch64::ADDWrs; break; case AArch64::ADDSWrx: NewOpc = AArch64::ADDWrx; break; case AArch64::ADDSXrr: NewOpc = AArch64::ADDXrr; break; case AArch64::ADDSXri: NewOpc = AArch64::ADDXri; break; case AArch64::ADDSXrs: NewOpc = AArch64::ADDXrs; break; case AArch64::ADDSXrx: NewOpc = AArch64::ADDXrx; break; case AArch64::SUBSWrr: NewOpc = AArch64::SUBWrr; break; case AArch64::SUBSWri: NewOpc = AArch64::SUBWri; break; case AArch64::SUBSWrs: NewOpc = AArch64::SUBWrs; break; case AArch64::SUBSWrx: NewOpc = AArch64::SUBWrx; break; case AArch64::SUBSXrr: NewOpc = AArch64::SUBXrr; break; case AArch64::SUBSXri: NewOpc = AArch64::SUBXri; break; case AArch64::SUBSXrs: NewOpc = AArch64::SUBXrs; break; case AArch64::SUBSXrx: NewOpc = AArch64::SUBXrx; break; } const MCInstrDesc &MCID = get(NewOpc); CmpInstr->setDesc(MCID); CmpInstr->RemoveOperand(Cmp_NZCV); bool succeeded = UpdateOperandRegClass(CmpInstr); (void)succeeded; assert(succeeded && "Some operands reg class are incompatible!"); return true; } // Continue only if we have a "ri" where immediate is zero. if (CmpValue != 0 || SrcReg2 != 0) return false; // CmpInstr is a Compare instruction if destination register is not used. if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg())) return false; // Get the unique definition of SrcReg. MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); if (!MI) return false; // We iterate backward, starting from the instruction before CmpInstr and // stop when reaching the definition of the source register or done with the // basic block, to check whether NZCV is used or modified in between. MachineBasicBlock::iterator I = CmpInstr, E = MI, B = CmpInstr->getParent()->begin(); // Early exit if CmpInstr is at the beginning of the BB. if (I == B) return false; // Check whether the definition of SrcReg is in the same basic block as // Compare. If not, we can't optimize away the Compare. if (MI->getParent() != CmpInstr->getParent()) return false; // Check that NZCV isn't set between the comparison instruction and the one we // want to change. const TargetRegisterInfo *TRI = &getRegisterInfo(); for (--I; I != E; --I) { const MachineInstr &Instr = *I; if (Instr.modifiesRegister(AArch64::NZCV, TRI) || Instr.readsRegister(AArch64::NZCV, TRI)) // This instruction modifies or uses NZCV after the one we want to // change. We can't do this transformation. return false; if (I == B) // The 'and' is below the comparison instruction. return false; } unsigned NewOpc = MI->getOpcode(); switch (MI->getOpcode()) { default: return false; case AArch64::ADDSWrr: case AArch64::ADDSWri: case AArch64::ADDSXrr: case AArch64::ADDSXri: case AArch64::SUBSWrr: case AArch64::SUBSWri: case AArch64::SUBSXrr: case AArch64::SUBSXri: break; case AArch64::ADDWrr: NewOpc = AArch64::ADDSWrr; break; case AArch64::ADDWri: NewOpc = AArch64::ADDSWri; break; case AArch64::ADDXrr: NewOpc = AArch64::ADDSXrr; break; case AArch64::ADDXri: NewOpc = AArch64::ADDSXri; break; case AArch64::ADCWr: NewOpc = AArch64::ADCSWr; break; case AArch64::ADCXr: NewOpc = AArch64::ADCSXr; break; case AArch64::SUBWrr: NewOpc = AArch64::SUBSWrr; break; case AArch64::SUBWri: NewOpc = AArch64::SUBSWri; break; case AArch64::SUBXrr: NewOpc = AArch64::SUBSXrr; break; case AArch64::SUBXri: NewOpc = AArch64::SUBSXri; break; case AArch64::SBCWr: NewOpc = AArch64::SBCSWr; break; case AArch64::SBCXr: NewOpc = AArch64::SBCSXr; break; case AArch64::ANDWri: NewOpc = AArch64::ANDSWri; break; case AArch64::ANDXri: NewOpc = AArch64::ANDSXri; break; } // Scan forward for the use of NZCV. // When checking against MI: if it's a conditional code requires // checking of V bit, then this is not safe to do. // It is safe to remove CmpInstr if NZCV is redefined or killed. // If we are done with the basic block, we need to check whether NZCV is // live-out. bool IsSafe = false; for (MachineBasicBlock::iterator I = CmpInstr, E = CmpInstr->getParent()->end(); !IsSafe && ++I != E;) { const MachineInstr &Instr = *I; for (unsigned IO = 0, EO = Instr.getNumOperands(); !IsSafe && IO != EO; ++IO) { const MachineOperand &MO = Instr.getOperand(IO); if (MO.isRegMask() && MO.clobbersPhysReg(AArch64::NZCV)) { IsSafe = true; break; } if (!MO.isReg() || MO.getReg() != AArch64::NZCV) continue; if (MO.isDef()) { IsSafe = true; break; } // Decode the condition code. unsigned Opc = Instr.getOpcode(); AArch64CC::CondCode CC; switch (Opc) { default: return false; case AArch64::Bcc: CC = (AArch64CC::CondCode)Instr.getOperand(IO - 2).getImm(); break; case AArch64::CSINVWr: case AArch64::CSINVXr: case AArch64::CSINCWr: case AArch64::CSINCXr: case AArch64::CSELWr: case AArch64::CSELXr: case AArch64::CSNEGWr: case AArch64::CSNEGXr: case AArch64::FCSELSrrr: case AArch64::FCSELDrrr: CC = (AArch64CC::CondCode)Instr.getOperand(IO - 1).getImm(); break; } // It is not safe to remove Compare instruction if Overflow(V) is used. switch (CC) { default: // NZCV can be used multiple times, we should continue. break; case AArch64CC::VS: case AArch64CC::VC: case AArch64CC::GE: case AArch64CC::LT: case AArch64CC::GT: case AArch64CC::LE: return false; } } } // If NZCV is not killed nor re-defined, we should check whether it is // live-out. If it is live-out, do not optimize. if (!IsSafe) { MachineBasicBlock *ParentBlock = CmpInstr->getParent(); for (auto *MBB : ParentBlock->successors()) if (MBB->isLiveIn(AArch64::NZCV)) return false; } // Update the instruction to set NZCV. MI->setDesc(get(NewOpc)); CmpInstr->eraseFromParent(); bool succeeded = UpdateOperandRegClass(MI); (void)succeeded; assert(succeeded && "Some operands reg class are incompatible!"); MI->addRegisterDefined(AArch64::NZCV, TRI); return true; } /// Return true if this is this instruction has a non-zero immediate bool AArch64InstrInfo::hasShiftedReg(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: break; case AArch64::ADDSWrs: case AArch64::ADDSXrs: case AArch64::ADDWrs: case AArch64::ADDXrs: case AArch64::ANDSWrs: case AArch64::ANDSXrs: case AArch64::ANDWrs: case AArch64::ANDXrs: case AArch64::BICSWrs: case AArch64::BICSXrs: case AArch64::BICWrs: case AArch64::BICXrs: case AArch64::CRC32Brr: case AArch64::CRC32CBrr: case AArch64::CRC32CHrr: case AArch64::CRC32CWrr: case AArch64::CRC32CXrr: case AArch64::CRC32Hrr: case AArch64::CRC32Wrr: case AArch64::CRC32Xrr: case AArch64::EONWrs: case AArch64::EONXrs: case AArch64::EORWrs: case AArch64::EORXrs: case AArch64::ORNWrs: case AArch64::ORNXrs: case AArch64::ORRWrs: case AArch64::ORRXrs: case AArch64::SUBSWrs: case AArch64::SUBSXrs: case AArch64::SUBWrs: case AArch64::SUBXrs: if (MI->getOperand(3).isImm()) { unsigned val = MI->getOperand(3).getImm(); return (val != 0); } break; } return false; } /// Return true if this is this instruction has a non-zero immediate bool AArch64InstrInfo::hasExtendedReg(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: break; case AArch64::ADDSWrx: case AArch64::ADDSXrx: case AArch64::ADDSXrx64: case AArch64::ADDWrx: case AArch64::ADDXrx: case AArch64::ADDXrx64: case AArch64::SUBSWrx: case AArch64::SUBSXrx: case AArch64::SUBSXrx64: case AArch64::SUBWrx: case AArch64::SUBXrx: case AArch64::SUBXrx64: if (MI->getOperand(3).isImm()) { unsigned val = MI->getOperand(3).getImm(); return (val != 0); } break; } return false; } // Return true if this instruction simply sets its single destination register // to zero. This is equivalent to a register rename of the zero-register. bool AArch64InstrInfo::isGPRZero(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: break; case AArch64::MOVZWi: case AArch64::MOVZXi: // movz Rd, #0 (LSL #0) if (MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) { assert(MI->getDesc().getNumOperands() == 3 && MI->getOperand(2).getImm() == 0 && "invalid MOVZi operands"); return true; } break; case AArch64::ANDWri: // and Rd, Rzr, #imm return MI->getOperand(1).getReg() == AArch64::WZR; case AArch64::ANDXri: return MI->getOperand(1).getReg() == AArch64::XZR; case TargetOpcode::COPY: return MI->getOperand(1).getReg() == AArch64::WZR; } return false; } // Return true if this instruction simply renames a general register without // modifying bits. bool AArch64InstrInfo::isGPRCopy(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: break; case TargetOpcode::COPY: { // GPR32 copies will by lowered to ORRXrs unsigned DstReg = MI->getOperand(0).getReg(); return (AArch64::GPR32RegClass.contains(DstReg) || AArch64::GPR64RegClass.contains(DstReg)); } case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0) if (MI->getOperand(1).getReg() == AArch64::XZR) { assert(MI->getDesc().getNumOperands() == 4 && MI->getOperand(3).getImm() == 0 && "invalid ORRrs operands"); return true; } case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0) if (MI->getOperand(2).getImm() == 0) { assert(MI->getDesc().getNumOperands() == 4 && MI->getOperand(3).getImm() == 0 && "invalid ADDXri operands"); return true; } } return false; } // Return true if this instruction simply renames a general register without // modifying bits. bool AArch64InstrInfo::isFPRCopy(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: break; case TargetOpcode::COPY: { // FPR64 copies will by lowered to ORR.16b unsigned DstReg = MI->getOperand(0).getReg(); return (AArch64::FPR64RegClass.contains(DstReg) || AArch64::FPR128RegClass.contains(DstReg)); } case AArch64::ORRv16i8: if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) { assert(MI->getDesc().getNumOperands() == 3 && MI->getOperand(0).isReg() && "invalid ORRv16i8 operands"); return true; } } return false; } unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case AArch64::LDRWui: case AArch64::LDRXui: case AArch64::LDRBui: case AArch64::LDRHui: case AArch64::LDRSui: case AArch64::LDRDui: case AArch64::LDRQui: if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() && MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case AArch64::STRWui: case AArch64::STRXui: case AArch64::STRBui: case AArch64::STRHui: case AArch64::STRSui: case AArch64::STRDui: case AArch64::STRQui: if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() && MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } /// Return true if this is load/store scales or extends its register offset. /// This refers to scaling a dynamic index as opposed to scaled immediates. /// MI should be a memory op that allows scaled addressing. bool AArch64InstrInfo::isScaledAddr(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: break; case AArch64::LDRBBroW: case AArch64::LDRBroW: case AArch64::LDRDroW: case AArch64::LDRHHroW: case AArch64::LDRHroW: case AArch64::LDRQroW: case AArch64::LDRSBWroW: case AArch64::LDRSBXroW: case AArch64::LDRSHWroW: case AArch64::LDRSHXroW: case AArch64::LDRSWroW: case AArch64::LDRSroW: case AArch64::LDRWroW: case AArch64::LDRXroW: case AArch64::STRBBroW: case AArch64::STRBroW: case AArch64::STRDroW: case AArch64::STRHHroW: case AArch64::STRHroW: case AArch64::STRQroW: case AArch64::STRSroW: case AArch64::STRWroW: case AArch64::STRXroW: case AArch64::LDRBBroX: case AArch64::LDRBroX: case AArch64::LDRDroX: case AArch64::LDRHHroX: case AArch64::LDRHroX: case AArch64::LDRQroX: case AArch64::LDRSBWroX: case AArch64::LDRSBXroX: case AArch64::LDRSHWroX: case AArch64::LDRSHXroX: case AArch64::LDRSWroX: case AArch64::LDRSroX: case AArch64::LDRWroX: case AArch64::LDRXroX: case AArch64::STRBBroX: case AArch64::STRBroX: case AArch64::STRDroX: case AArch64::STRHHroX: case AArch64::STRHroX: case AArch64::STRQroX: case AArch64::STRSroX: case AArch64::STRWroX: case AArch64::STRXroX: unsigned Val = MI->getOperand(3).getImm(); AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getMemExtendType(Val); return (ExtType != AArch64_AM::UXTX) || AArch64_AM::getMemDoShift(Val); } return false; } /// Check all MachineMemOperands for a hint to suppress pairing. bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr *MI) const { assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) && "Too many target MO flags"); for (auto *MM : MI->memoperands()) { if (MM->getFlags() & (MOSuppressPair << MachineMemOperand::MOTargetStartBit)) { return true; } } return false; } /// Set a flag on the first MachineMemOperand to suppress pairing. void AArch64InstrInfo::suppressLdStPair(MachineInstr *MI) const { if (MI->memoperands_empty()) return; assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) && "Too many target MO flags"); (*MI->memoperands_begin()) ->setFlags(MOSuppressPair << MachineMemOperand::MOTargetStartBit); } bool AArch64InstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg, unsigned &Offset, const TargetRegisterInfo *TRI) const { switch (LdSt->getOpcode()) { default: return false; case AArch64::STRSui: case AArch64::STRDui: case AArch64::STRQui: case AArch64::STRXui: case AArch64::STRWui: case AArch64::LDRSui: case AArch64::LDRDui: case AArch64::LDRQui: case AArch64::LDRXui: case AArch64::LDRWui: if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm()) return false; BaseReg = LdSt->getOperand(1).getReg(); MachineFunction &MF = *LdSt->getParent()->getParent(); unsigned Width = getRegClass(LdSt->getDesc(), 0, TRI, MF)->getSize(); Offset = LdSt->getOperand(2).getImm() * Width; return true; }; } /// Detect opportunities for ldp/stp formation. /// /// Only called for LdSt for which getLdStBaseRegImmOfs returns true. bool AArch64InstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt, MachineInstr *SecondLdSt, unsigned NumLoads) const { // Only cluster up to a single pair. if (NumLoads > 1) return false; if (FirstLdSt->getOpcode() != SecondLdSt->getOpcode()) return false; // getLdStBaseRegImmOfs guarantees that oper 2 isImm. unsigned Ofs1 = FirstLdSt->getOperand(2).getImm(); // Allow 6 bits of positive range. if (Ofs1 > 64) return false; // The caller should already have ordered First/SecondLdSt by offset. unsigned Ofs2 = SecondLdSt->getOperand(2).getImm(); return Ofs1 + 1 == Ofs2; } bool AArch64InstrInfo::shouldScheduleAdjacent(MachineInstr *First, MachineInstr *Second) const { // Cyclone can fuse CMN, CMP followed by Bcc. // FIXME: B0 can also fuse: // AND, BIC, ORN, ORR, or EOR (optional S) followed by Bcc or CBZ or CBNZ. if (Second->getOpcode() != AArch64::Bcc) return false; switch (First->getOpcode()) { default: return false; case AArch64::SUBSWri: case AArch64::ADDSWri: case AArch64::ANDSWri: case AArch64::SUBSXri: case AArch64::ADDSXri: case AArch64::ANDSXri: return true; } } MachineInstr *AArch64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *MDPtr, DebugLoc DL) const { MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE)) .addFrameIndex(FrameIx) .addImm(0) .addImm(Offset) .addMetadata(MDPtr); return &*MIB; } static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB, unsigned Reg, unsigned SubIdx, unsigned State, const TargetRegisterInfo *TRI) { if (!SubIdx) return MIB.addReg(Reg, State); if (TargetRegisterInfo::isPhysicalRegister(Reg)) return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); return MIB.addReg(Reg, State, SubIdx); } static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg, unsigned NumRegs) { // We really want the positive remainder mod 32 here, that happens to be // easily obtainable with a mask. return ((DestReg - SrcReg) & 0x1f) < NumRegs; } void AArch64InstrInfo::copyPhysRegTuple( MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc, unsigned Opcode, llvm::ArrayRef<unsigned> Indices) const { assert(Subtarget.hasNEON() && "Unexpected register copy without NEON"); const TargetRegisterInfo *TRI = &getRegisterInfo(); uint16_t DestEncoding = TRI->getEncodingValue(DestReg); uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg); unsigned NumRegs = Indices.size(); int SubReg = 0, End = NumRegs, Incr = 1; if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) { SubReg = NumRegs - 1; End = -1; Incr = -1; } for (; SubReg != End; SubReg += Incr) { const MachineInstrBuilder &MIB = BuildMI(MBB, I, DL, get(Opcode)); AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI); AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI); AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI); } } void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { if (AArch64::GPR32spRegClass.contains(DestReg) && (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) { const TargetRegisterInfo *TRI = &getRegisterInfo(); if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) { // If either operand is WSP, expand to ADD #0. if (Subtarget.hasZeroCycleRegMove()) { // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move. unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass); unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass); // This instruction is reading and writing X registers. This may upset // the register scavenger and machine verifier, so we need to indicate // that we are reading an undefined value from SrcRegX, but a proper // value from SrcReg. BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX) .addReg(SrcRegX, RegState::Undef) .addImm(0) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc)); } else { BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)) .addImm(0) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); } } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) { BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg).addImm(0).addImm( AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); } else { if (Subtarget.hasZeroCycleRegMove()) { // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move. unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass); unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass); // This instruction is reading and writing X registers. This may upset // the register scavenger and machine verifier, so we need to indicate // that we are reading an undefined value from SrcRegX, but a proper // value from SrcReg. BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX) .addReg(AArch64::XZR) .addReg(SrcRegX, RegState::Undef) .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc)); } else { // Otherwise, expand to ORR WZR. BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg) .addReg(AArch64::WZR) .addReg(SrcReg, getKillRegState(KillSrc)); } } return; } if (AArch64::GPR64spRegClass.contains(DestReg) && (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) { if (DestReg == AArch64::SP || SrcReg == AArch64::SP) { // If either operand is SP, expand to ADD #0. BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)) .addImm(0) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) { BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg).addImm(0).addImm( AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); } else { // Otherwise, expand to ORR XZR. BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg) .addReg(AArch64::XZR) .addReg(SrcReg, getKillRegState(KillSrc)); } return; } // Copy a DDDD register quad by copying the individual sub-registers. if (AArch64::DDDDRegClass.contains(DestReg) && AArch64::DDDDRegClass.contains(SrcReg)) { static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1, AArch64::dsub2, AArch64::dsub3 }; copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8, Indices); return; } // Copy a DDD register triple by copying the individual sub-registers. if (AArch64::DDDRegClass.contains(DestReg) && AArch64::DDDRegClass.contains(SrcReg)) { static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1, AArch64::dsub2 }; copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8, Indices); return; } // Copy a DD register pair by copying the individual sub-registers. if (AArch64::DDRegClass.contains(DestReg) && AArch64::DDRegClass.contains(SrcReg)) { static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1 }; copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8, Indices); return; } // Copy a QQQQ register quad by copying the individual sub-registers. if (AArch64::QQQQRegClass.contains(DestReg) && AArch64::QQQQRegClass.contains(SrcReg)) { static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1, AArch64::qsub2, AArch64::qsub3 }; copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8, Indices); return; } // Copy a QQQ register triple by copying the individual sub-registers. if (AArch64::QQQRegClass.contains(DestReg) && AArch64::QQQRegClass.contains(SrcReg)) { static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1, AArch64::qsub2 }; copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8, Indices); return; } // Copy a QQ register pair by copying the individual sub-registers. if (AArch64::QQRegClass.contains(DestReg) && AArch64::QQRegClass.contains(SrcReg)) { static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1 }; copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8, Indices); return; } if (AArch64::FPR128RegClass.contains(DestReg) && AArch64::FPR128RegClass.contains(SrcReg)) { if(Subtarget.hasNEON()) { BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) .addReg(SrcReg) .addReg(SrcReg, getKillRegState(KillSrc)); } else { BuildMI(MBB, I, DL, get(AArch64::STRQpre)) .addReg(AArch64::SP, RegState::Define) .addReg(SrcReg, getKillRegState(KillSrc)) .addReg(AArch64::SP) .addImm(-16); BuildMI(MBB, I, DL, get(AArch64::LDRQpre)) .addReg(AArch64::SP, RegState::Define) .addReg(DestReg, RegState::Define) .addReg(AArch64::SP) .addImm(16); } return; } if (AArch64::FPR64RegClass.contains(DestReg) && AArch64::FPR64RegClass.contains(SrcReg)) { if(Subtarget.hasNEON()) { DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub, &AArch64::FPR128RegClass); SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub, &AArch64::FPR128RegClass); BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) .addReg(SrcReg) .addReg(SrcReg, getKillRegState(KillSrc)); } else { BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } return; } if (AArch64::FPR32RegClass.contains(DestReg) && AArch64::FPR32RegClass.contains(SrcReg)) { if(Subtarget.hasNEON()) { DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub, &AArch64::FPR128RegClass); SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub, &AArch64::FPR128RegClass); BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) .addReg(SrcReg) .addReg(SrcReg, getKillRegState(KillSrc)); } else { BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } return; } if (AArch64::FPR16RegClass.contains(DestReg) && AArch64::FPR16RegClass.contains(SrcReg)) { if(Subtarget.hasNEON()) { DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub, &AArch64::FPR128RegClass); SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub, &AArch64::FPR128RegClass); BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) .addReg(SrcReg) .addReg(SrcReg, getKillRegState(KillSrc)); } else { DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub, &AArch64::FPR32RegClass); SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub, &AArch64::FPR32RegClass); BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } return; } if (AArch64::FPR8RegClass.contains(DestReg) && AArch64::FPR8RegClass.contains(SrcReg)) { if(Subtarget.hasNEON()) { DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub, &AArch64::FPR128RegClass); SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub, &AArch64::FPR128RegClass); BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) .addReg(SrcReg) .addReg(SrcReg, getKillRegState(KillSrc)); } else { DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub, &AArch64::FPR32RegClass); SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub, &AArch64::FPR32RegClass); BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } return; } // Copies between GPR64 and FPR64. if (AArch64::FPR64RegClass.contains(DestReg) && AArch64::GPR64RegClass.contains(SrcReg)) { BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (AArch64::GPR64RegClass.contains(DestReg) && AArch64::FPR64RegClass.contains(SrcReg)) { BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } // Copies between GPR32 and FPR32. if (AArch64::FPR32RegClass.contains(DestReg) && AArch64::GPR32RegClass.contains(SrcReg)) { BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (AArch64::GPR32RegClass.contains(DestReg) && AArch64::FPR32RegClass.contains(SrcReg)) { BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (DestReg == AArch64::NZCV) { assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy"); BuildMI(MBB, I, DL, get(AArch64::MSR)) .addImm(AArch64SysReg::NZCV) .addReg(SrcReg, getKillRegState(KillSrc)) .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define); return; } if (SrcReg == AArch64::NZCV) { assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy"); BuildMI(MBB, I, DL, get(AArch64::MRS)) .addReg(DestReg) .addImm(AArch64SysReg::NZCV) .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc)); return; } llvm_unreachable("unimplemented reg-to-reg copy"); } void AArch64InstrInfo::storeRegToStackSlot( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (MBBI != MBB.end()) DL = MBBI->getDebugLoc(); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned Align = MFI.getObjectAlignment(FI); MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI)); MachineMemOperand *MMO = MF.getMachineMemOperand( PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align); unsigned Opc = 0; bool Offset = true; switch (RC->getSize()) { case 1: if (AArch64::FPR8RegClass.hasSubClassEq(RC)) Opc = AArch64::STRBui; break; case 2: if (AArch64::FPR16RegClass.hasSubClassEq(RC)) Opc = AArch64::STRHui; break; case 4: if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) { Opc = AArch64::STRWui; if (TargetRegisterInfo::isVirtualRegister(SrcReg)) MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass); else assert(SrcReg != AArch64::WSP); } else if (AArch64::FPR32RegClass.hasSubClassEq(RC)) Opc = AArch64::STRSui; break; case 8: if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) { Opc = AArch64::STRXui; if (TargetRegisterInfo::isVirtualRegister(SrcReg)) MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass); else assert(SrcReg != AArch64::SP); } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) Opc = AArch64::STRDui; break; case 16: if (AArch64::FPR128RegClass.hasSubClassEq(RC)) Opc = AArch64::STRQui; else if (AArch64::DDRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); Opc = AArch64::ST1Twov1d, Offset = false; } break; case 24: if (AArch64::DDDRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); Opc = AArch64::ST1Threev1d, Offset = false; } break; case 32: if (AArch64::DDDDRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); Opc = AArch64::ST1Fourv1d, Offset = false; } else if (AArch64::QQRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); Opc = AArch64::ST1Twov2d, Offset = false; } break; case 48: if (AArch64::QQQRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); Opc = AArch64::ST1Threev2d, Offset = false; } break; case 64: if (AArch64::QQQQRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); Opc = AArch64::ST1Fourv2d, Offset = false; } break; } assert(Opc && "Unknown register class"); const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI); if (Offset) MI.addImm(0); MI.addMemOperand(MMO); } void AArch64InstrInfo::loadRegFromStackSlot( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (MBBI != MBB.end()) DL = MBBI->getDebugLoc(); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned Align = MFI.getObjectAlignment(FI); MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI)); MachineMemOperand *MMO = MF.getMachineMemOperand( PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align); unsigned Opc = 0; bool Offset = true; switch (RC->getSize()) { case 1: if (AArch64::FPR8RegClass.hasSubClassEq(RC)) Opc = AArch64::LDRBui; break; case 2: if (AArch64::FPR16RegClass.hasSubClassEq(RC)) Opc = AArch64::LDRHui; break; case 4: if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) { Opc = AArch64::LDRWui; if (TargetRegisterInfo::isVirtualRegister(DestReg)) MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass); else assert(DestReg != AArch64::WSP); } else if (AArch64::FPR32RegClass.hasSubClassEq(RC)) Opc = AArch64::LDRSui; break; case 8: if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) { Opc = AArch64::LDRXui; if (TargetRegisterInfo::isVirtualRegister(DestReg)) MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass); else assert(DestReg != AArch64::SP); } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) Opc = AArch64::LDRDui; break; case 16: if (AArch64::FPR128RegClass.hasSubClassEq(RC)) Opc = AArch64::LDRQui; else if (AArch64::DDRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); Opc = AArch64::LD1Twov1d, Offset = false; } break; case 24: if (AArch64::DDDRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); Opc = AArch64::LD1Threev1d, Offset = false; } break; case 32: if (AArch64::DDDDRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); Opc = AArch64::LD1Fourv1d, Offset = false; } else if (AArch64::QQRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); Opc = AArch64::LD1Twov2d, Offset = false; } break; case 48: if (AArch64::QQQRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); Opc = AArch64::LD1Threev2d, Offset = false; } break; case 64: if (AArch64::QQQQRegClass.hasSubClassEq(RC)) { assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); Opc = AArch64::LD1Fourv2d, Offset = false; } break; } assert(Opc && "Unknown register class"); const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc)) .addReg(DestReg, getDefRegState(true)) .addFrameIndex(FI); if (Offset) MI.addImm(0); MI.addMemOperand(MMO); } void llvm::emitFrameOffset(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL, unsigned DestReg, unsigned SrcReg, int Offset, const TargetInstrInfo *TII, MachineInstr::MIFlag Flag, bool SetNZCV) { if (DestReg == SrcReg && Offset == 0) return; bool isSub = Offset < 0; if (isSub) Offset = -Offset; // FIXME: If the offset won't fit in 24-bits, compute the offset into a // scratch register. If DestReg is a virtual register, use it as the // scratch register; otherwise, create a new virtual register (to be // replaced by the scavenger at the end of PEI). That case can be optimized // slightly if DestReg is SP which is always 16-byte aligned, so the scratch // register can be loaded with offset%8 and the add/sub can use an extending // instruction with LSL#3. // Currently the function handles any offsets but generates a poor sequence // of code. // assert(Offset < (1 << 24) && "unimplemented reg plus immediate"); unsigned Opc; if (SetNZCV) Opc = isSub ? AArch64::SUBSXri : AArch64::ADDSXri; else Opc = isSub ? AArch64::SUBXri : AArch64::ADDXri; const unsigned MaxEncoding = 0xfff; const unsigned ShiftSize = 12; const unsigned MaxEncodableValue = MaxEncoding << ShiftSize; while (((unsigned)Offset) >= (1 << ShiftSize)) { unsigned ThisVal; if (((unsigned)Offset) > MaxEncodableValue) { ThisVal = MaxEncodableValue; } else { ThisVal = Offset & MaxEncodableValue; } assert((ThisVal >> ShiftSize) <= MaxEncoding && "Encoding cannot handle value that big"); BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg) .addReg(SrcReg) .addImm(ThisVal >> ShiftSize) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftSize)) .setMIFlag(Flag); SrcReg = DestReg; Offset -= ThisVal; if (Offset == 0) return; } BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg) .addReg(SrcReg) .addImm(Offset) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) .setMIFlag(Flag); } MachineInstr * AArch64InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl<unsigned> &Ops, int FrameIndex) const { // This is a bit of a hack. Consider this instruction: // // %vreg0<def> = COPY %SP; GPR64all:%vreg0 // // We explicitly chose GPR64all for the virtual register so such a copy might // be eliminated by RegisterCoalescer. However, that may not be possible, and // %vreg0 may even spill. We can't spill %SP, and since it is in the GPR64all // register class, TargetInstrInfo::foldMemoryOperand() is going to try. // // To prevent that, we are going to constrain the %vreg0 register class here. // // <rdar://problem/11522048> // if (MI->isCopy()) { unsigned DstReg = MI->getOperand(0).getReg(); unsigned SrcReg = MI->getOperand(1).getReg(); if (SrcReg == AArch64::SP && TargetRegisterInfo::isVirtualRegister(DstReg)) { MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass); return nullptr; } if (DstReg == AArch64::SP && TargetRegisterInfo::isVirtualRegister(SrcReg)) { MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass); return nullptr; } } // Cannot fold. return nullptr; } int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset, bool *OutUseUnscaledOp, unsigned *OutUnscaledOp, int *EmittableOffset) { int Scale = 1; bool IsSigned = false; // The ImmIdx should be changed case by case if it is not 2. unsigned ImmIdx = 2; unsigned UnscaledOp = 0; // Set output values in case of early exit. if (EmittableOffset) *EmittableOffset = 0; if (OutUseUnscaledOp) *OutUseUnscaledOp = false; if (OutUnscaledOp) *OutUnscaledOp = 0; switch (MI.getOpcode()) { default: llvm_unreachable("unhandled opcode in rewriteAArch64FrameIndex"); // Vector spills/fills can't take an immediate offset. case AArch64::LD1Twov2d: case AArch64::LD1Threev2d: case AArch64::LD1Fourv2d: case AArch64::LD1Twov1d: case AArch64::LD1Threev1d: case AArch64::LD1Fourv1d: case AArch64::ST1Twov2d: case AArch64::ST1Threev2d: case AArch64::ST1Fourv2d: case AArch64::ST1Twov1d: case AArch64::ST1Threev1d: case AArch64::ST1Fourv1d: return AArch64FrameOffsetCannotUpdate; case AArch64::PRFMui: Scale = 8; UnscaledOp = AArch64::PRFUMi; break; case AArch64::LDRXui: Scale = 8; UnscaledOp = AArch64::LDURXi; break; case AArch64::LDRWui: Scale = 4; UnscaledOp = AArch64::LDURWi; break; case AArch64::LDRBui: Scale = 1; UnscaledOp = AArch64::LDURBi; break; case AArch64::LDRHui: Scale = 2; UnscaledOp = AArch64::LDURHi; break; case AArch64::LDRSui: Scale = 4; UnscaledOp = AArch64::LDURSi; break; case AArch64::LDRDui: Scale = 8; UnscaledOp = AArch64::LDURDi; break; case AArch64::LDRQui: Scale = 16; UnscaledOp = AArch64::LDURQi; break; case AArch64::LDRBBui: Scale = 1; UnscaledOp = AArch64::LDURBBi; break; case AArch64::LDRHHui: Scale = 2; UnscaledOp = AArch64::LDURHHi; break; case AArch64::LDRSBXui: Scale = 1; UnscaledOp = AArch64::LDURSBXi; break; case AArch64::LDRSBWui: Scale = 1; UnscaledOp = AArch64::LDURSBWi; break; case AArch64::LDRSHXui: Scale = 2; UnscaledOp = AArch64::LDURSHXi; break; case AArch64::LDRSHWui: Scale = 2; UnscaledOp = AArch64::LDURSHWi; break; case AArch64::LDRSWui: Scale = 4; UnscaledOp = AArch64::LDURSWi; break; case AArch64::STRXui: Scale = 8; UnscaledOp = AArch64::STURXi; break; case AArch64::STRWui: Scale = 4; UnscaledOp = AArch64::STURWi; break; case AArch64::STRBui: Scale = 1; UnscaledOp = AArch64::STURBi; break; case AArch64::STRHui: Scale = 2; UnscaledOp = AArch64::STURHi; break; case AArch64::STRSui: Scale = 4; UnscaledOp = AArch64::STURSi; break; case AArch64::STRDui: Scale = 8; UnscaledOp = AArch64::STURDi; break; case AArch64::STRQui: Scale = 16; UnscaledOp = AArch64::STURQi; break; case AArch64::STRBBui: Scale = 1; UnscaledOp = AArch64::STURBBi; break; case AArch64::STRHHui: Scale = 2; UnscaledOp = AArch64::STURHHi; break; case AArch64::LDPXi: case AArch64::LDPDi: case AArch64::STPXi: case AArch64::STPDi: IsSigned = true; Scale = 8; break; case AArch64::LDPQi: case AArch64::STPQi: IsSigned = true; Scale = 16; break; case AArch64::LDPWi: case AArch64::LDPSi: case AArch64::STPWi: case AArch64::STPSi: IsSigned = true; Scale = 4; break; case AArch64::LDURXi: case AArch64::LDURWi: case AArch64::LDURBi: case AArch64::LDURHi: case AArch64::LDURSi: case AArch64::LDURDi: case AArch64::LDURQi: case AArch64::LDURHHi: case AArch64::LDURBBi: case AArch64::LDURSBXi: case AArch64::LDURSBWi: case AArch64::LDURSHXi: case AArch64::LDURSHWi: case AArch64::LDURSWi: case AArch64::STURXi: case AArch64::STURWi: case AArch64::STURBi: case AArch64::STURHi: case AArch64::STURSi: case AArch64::STURDi: case AArch64::STURQi: case AArch64::STURBBi: case AArch64::STURHHi: Scale = 1; break; } Offset += MI.getOperand(ImmIdx).getImm() * Scale; bool useUnscaledOp = false; // If the offset doesn't match the scale, we rewrite the instruction to // use the unscaled instruction instead. Likewise, if we have a negative // offset (and have an unscaled op to use). if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0)) useUnscaledOp = true; // Use an unscaled addressing mode if the instruction has a negative offset // (or if the instruction is already using an unscaled addressing mode). unsigned MaskBits; if (IsSigned) { // ldp/stp instructions. MaskBits = 7; Offset /= Scale; } else if (UnscaledOp == 0 || useUnscaledOp) { MaskBits = 9; IsSigned = true; Scale = 1; } else { MaskBits = 12; IsSigned = false; Offset /= Scale; } // Attempt to fold address computation. int MaxOff = (1 << (MaskBits - IsSigned)) - 1; int MinOff = (IsSigned ? (-MaxOff - 1) : 0); if (Offset >= MinOff && Offset <= MaxOff) { if (EmittableOffset) *EmittableOffset = Offset; Offset = 0; } else { int NewOff = Offset < 0 ? MinOff : MaxOff; if (EmittableOffset) *EmittableOffset = NewOff; Offset = (Offset - NewOff) * Scale; } if (OutUseUnscaledOp) *OutUseUnscaledOp = useUnscaledOp; if (OutUnscaledOp) *OutUnscaledOp = UnscaledOp; return AArch64FrameOffsetCanUpdate | (Offset == 0 ? AArch64FrameOffsetIsLegal : 0); } bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, int &Offset, const AArch64InstrInfo *TII) { unsigned Opcode = MI.getOpcode(); unsigned ImmIdx = FrameRegIdx + 1; if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) { Offset += MI.getOperand(ImmIdx).getImm(); emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(), MI.getOperand(0).getReg(), FrameReg, Offset, TII, MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri)); MI.eraseFromParent(); Offset = 0; return true; } int NewOffset; unsigned UnscaledOp; bool UseUnscaledOp; int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp, &UnscaledOp, &NewOffset); if (Status & AArch64FrameOffsetCanUpdate) { if (Status & AArch64FrameOffsetIsLegal) // Replace the FrameIndex with FrameReg. MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); if (UseUnscaledOp) MI.setDesc(TII->get(UnscaledOp)); MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset); return Offset == 0; } return false; } void AArch64InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { NopInst.setOpcode(AArch64::HINT); NopInst.addOperand(MCOperand::CreateImm(0)); }