//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI pass --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements a TargetTransformInfo analysis pass specific to the /// AArch64 target machine. It uses the target's detailed information to provide /// more precise answers to certain TTI queries, while letting the target /// independent and default TTI implementations handle the rest. /// //===----------------------------------------------------------------------===// #include "AArch64.h" #include "AArch64TargetMachine.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" #include "llvm/Target/TargetLowering.h" #include <algorithm> using namespace llvm; #define DEBUG_TYPE "aarch64tti" // Declare the pass initialization routine locally as target-specific passes // don't have a target-wide initialization entry point, and so we rely on the // pass constructor initialization. namespace llvm { void initializeAArch64TTIPass(PassRegistry &); } namespace { class AArch64TTI final : public ImmutablePass, public TargetTransformInfo { const AArch64TargetMachine *TM; const AArch64Subtarget *ST; const AArch64TargetLowering *TLI; /// Estimate the overhead of scalarizing an instruction. Insert and Extract /// are set if the result needs to be inserted and/or extracted from vectors. unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; public: AArch64TTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) { llvm_unreachable("This pass cannot be directly constructed"); } AArch64TTI(const AArch64TargetMachine *TM) : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()), TLI(TM->getTargetLowering()) { initializeAArch64TTIPass(*PassRegistry::getPassRegistry()); } void initializePass() override { pushTTIStack(this); } void getAnalysisUsage(AnalysisUsage &AU) const override { TargetTransformInfo::getAnalysisUsage(AU); } /// Pass identification. static char ID; /// Provide necessary pointer adjustments for the two base classes. void *getAdjustedAnalysisPointer(const void *ID) override { if (ID == &TargetTransformInfo::ID) return (TargetTransformInfo *)this; return this; } /// \name Scalar TTI Implementations /// @{ unsigned getIntImmCost(int64_t Val) const; unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override; unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) const override; unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty) const override; PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override; /// @} /// \name Vector TTI Implementations /// @{ unsigned getNumberOfRegisters(bool Vector) const override { if (Vector) { if (ST->hasNEON()) return 32; return 0; } return 31; } unsigned getRegisterBitWidth(bool Vector) const override { if (Vector) { if (ST->hasNEON()) return 128; return 0; } return 64; } unsigned getMaximumUnrollFactor() const override { return 2; } unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const override; unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const override; unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue, OperandValueKind Opd2Info = OK_AnyValue) const override; unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override; unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const override; unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const override; /// @} }; } // end anonymous namespace INITIALIZE_AG_PASS(AArch64TTI, TargetTransformInfo, "aarch64tti", "AArch64 Target Transform Info", true, true, false) char AArch64TTI::ID = 0; ImmutablePass * llvm::createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM) { return new AArch64TTI(TM); } /// \brief Calculate the cost of materializing a 64-bit value. This helper /// method might only calculate a fraction of a larger immediate. Therefore it /// is valid to return a cost of ZERO. unsigned AArch64TTI::getIntImmCost(int64_t Val) const { // Check if the immediate can be encoded within an instruction. if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) return 0; if (Val < 0) Val = ~Val; // Calculate how many moves we will need to materialize this constant. unsigned LZ = countLeadingZeros((uint64_t)Val); return (64 - LZ + 15) / 16; } /// \brief Calculate the cost of materializing the given constant. unsigned AArch64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return ~0U; // Sign-extend all constants to a multiple of 64-bit. APInt ImmVal = Imm; if (BitSize & 0x3f) ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); // Split the constant into 64-bit chunks and calculate the cost for each // chunk. unsigned Cost = 0; for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); int64_t Val = Tmp.getSExtValue(); Cost += getIntImmCost(Val); } // We need at least one instruction to materialze the constant. return std::max(1U, Cost); } unsigned AArch64TTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); // There is no cost model for constants with a bit size of 0. Return TCC_Free // here, so that constant hoisting will ignore this constant. if (BitSize == 0) return TCC_Free; unsigned ImmIdx = ~0U; switch (Opcode) { default: return TCC_Free; case Instruction::GetElementPtr: // Always hoist the base address of a GetElementPtr. if (Idx == 0) return 2 * TCC_Basic; return TCC_Free; case Instruction::Store: ImmIdx = 0; break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::ICmp: ImmIdx = 1; break; // Always return TCC_Free for the shift value of a shift instruction. case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: if (Idx == 1) return TCC_Free; break; case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::IntToPtr: case Instruction::PtrToInt: case Instruction::BitCast: case Instruction::PHI: case Instruction::Call: case Instruction::Select: case Instruction::Ret: case Instruction::Load: break; } if (Idx == ImmIdx) { unsigned NumConstants = (BitSize + 63) / 64; unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty); return (Cost <= NumConstants * TCC_Basic) ? static_cast<unsigned>(TCC_Free) : Cost; } return AArch64TTI::getIntImmCost(Imm, Ty); } unsigned AArch64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); // There is no cost model for constants with a bit size of 0. Return TCC_Free // here, so that constant hoisting will ignore this constant. if (BitSize == 0) return TCC_Free; switch (IID) { default: return TCC_Free; case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: if (Idx == 1) { unsigned NumConstants = (BitSize + 63) / 64; unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty); return (Cost <= NumConstants * TCC_Basic) ? static_cast<unsigned>(TCC_Free) : Cost; } break; case Intrinsic::experimental_stackmap: if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TCC_Free; break; case Intrinsic::experimental_patchpoint_void: case Intrinsic::experimental_patchpoint_i64: if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TCC_Free; break; } return AArch64TTI::getIntImmCost(Imm, Ty); } AArch64TTI::PopcntSupportKind AArch64TTI::getPopcntSupport(unsigned TyWidth) const { assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); if (TyWidth == 32 || TyWidth == 64) return PSK_FastHardware; // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. return PSK_Software; } unsigned AArch64TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); EVT SrcTy = TLI->getValueType(Src); EVT DstTy = TLI->getValueType(Dst); if (!SrcTy.isSimple() || !DstTy.isSimple()) return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = { // LowerVectorINT_TO_FP: { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, // Complex: to v2f32 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, // Complex: to v4f32 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, // Complex: to v2f64 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, // LowerVectorFP_TO_INT { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, }; int Idx = ConvertCostTableLookup<MVT>( ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); if (Idx != -1) return ConversionTbl[Idx].Cost; return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); } unsigned AArch64TTI::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const { assert(Val->isVectorTy() && "This must be a vector type"); if (Index != -1U) { // Legalize the type. std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val); // This type is legalized to a scalar type. if (!LT.second.isVector()) return 0; // The type may be split. Normalize the index to the new type. unsigned Width = LT.second.getVectorNumElements(); Index = Index % Width; // The element at index zero is already inside the vector. if (Index == 0) return 0; } // All other insert/extracts cost this much. return 2; } unsigned AArch64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, OperandValueKind Opd2Info) const { // Legalize the type. std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); int ISD = TLI->InstructionOpcodeToISD(Opcode); switch (ISD) { default: return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info); case ISD::ADD: case ISD::MUL: case ISD::XOR: case ISD::OR: case ISD::AND: // These nodes are marked as 'custom' for combining purposes only. // We know that they are legal. See LowerAdd in ISelLowering. return 1 * LT.first; } } unsigned AArch64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const { // Address computations in vectorized code with non-consecutive addresses will // likely result in more instructions compared to scalar code where the // computation can more often be merged into the index mode. The resulting // extra micro-ops can significantly decrease throughput. unsigned NumVectorInstToHideOverhead = 10; if (Ty->isVectorTy() && IsComplex) return NumVectorInstToHideOverhead; // In many cases the address computation is not merged into the instruction // addressing mode. return 1; } unsigned AArch64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const { int ISD = TLI->InstructionOpcodeToISD(Opcode); // We don't lower vector selects well that are wider than the register width. if (ValTy->isVectorTy() && ISD == ISD::SELECT) { // We would need this many instructions to hide the scalarization happening. unsigned AmortizationCost = 20; static const TypeConversionCostTblEntry<MVT::SimpleValueType> VectorSelectTbl[] = { { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost }, { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost }, { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost }, { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } }; EVT SelCondTy = TLI->getValueType(CondTy); EVT SelValTy = TLI->getValueType(ValTy); if (SelCondTy.isSimple() && SelValTy.isSimple()) { int Idx = ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(), SelValTy.getSimpleVT()); if (Idx != -1) return VectorSelectTbl[Idx].Cost; } } return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); } unsigned AArch64TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const { std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 && Src->getVectorElementType()->isIntegerTy(64)) { // Unaligned stores are extremely inefficient. We don't split // unaligned v2i64 stores because the negative impact that has shown in // practice on inlined memcpy code. // We make v2i64 stores expensive so that we will only vectorize if there // are 6 other instructions getting vectorized. unsigned AmortizationCost = 6; return LT.first * 2 * AmortizationCost; } if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) && Src->getVectorNumElements() < 8) { // We scalarize the loads/stores because there is not v.4b register and we // have to promote the elements to v.4h. unsigned NumVecElts = Src->getVectorNumElements(); unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; // We generate 2 instructions per vector element. return NumVectorizableInstsToAmortize * NumVecElts * 2; } return LT.first; }