//==- AArch64AsmParser.cpp - Parse AArch64 assembly to MCInst instructions -==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/AArch64AddressingModes.h" #include "MCTargetDesc/AArch64MCExpr.h" #include "Utils/AArch64BaseInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include <cstdio> using namespace llvm; namespace { class AArch64Operand; class AArch64AsmParser : public MCTargetAsmParser { private: StringRef Mnemonic; ///< Instruction mnemonic. MCSubtargetInfo &STI; MCAsmParser &Parser; // Map of register aliases registers via the .req directive. StringMap<std::pair<bool, unsigned> > RegisterReqs; AArch64TargetStreamer &getTargetStreamer() { MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); return static_cast<AArch64TargetStreamer &>(TS); } MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } SMLoc getLoc() const { return Parser.getTok().getLoc(); } bool parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands); AArch64CC::CondCode parseCondCodeString(StringRef Cond); bool parseCondCode(OperandVector &Operands, bool invertCondCode); unsigned matchRegisterNameAlias(StringRef Name, bool isVector); int tryParseRegister(); int tryMatchVectorRegister(StringRef &Kind, bool expected); bool parseRegister(OperandVector &Operands); bool parseSymbolicImmVal(const MCExpr *&ImmVal); bool parseVectorList(OperandVector &Operands); bool parseOperand(OperandVector &Operands, bool isCondCode, bool invertCondCode); void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } bool showMatchError(SMLoc Loc, unsigned ErrCode); bool parseDirectiveWord(unsigned Size, SMLoc L); bool parseDirectiveTLSDescCall(SMLoc L); bool parseDirectiveLOH(StringRef LOH, SMLoc L); bool parseDirectiveLtorg(SMLoc L); bool parseDirectiveReq(StringRef Name, SMLoc L); bool parseDirectiveUnreq(SMLoc L); bool validateInstruction(MCInst &Inst, SmallVectorImpl<SMLoc> &Loc); bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, unsigned &ErrorInfo, bool MatchingInlineAsm) override; /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "AArch64GenAsmMatcher.inc" /// } OperandMatchResultTy tryParseOptionalShiftExtend(OperandVector &Operands); OperandMatchResultTy tryParseBarrierOperand(OperandVector &Operands); OperandMatchResultTy tryParseMRSSystemRegister(OperandVector &Operands); OperandMatchResultTy tryParseSysReg(OperandVector &Operands); OperandMatchResultTy tryParseSysCROperand(OperandVector &Operands); OperandMatchResultTy tryParsePrefetch(OperandVector &Operands); OperandMatchResultTy tryParseAdrpLabel(OperandVector &Operands); OperandMatchResultTy tryParseAdrLabel(OperandVector &Operands); OperandMatchResultTy tryParseFPImm(OperandVector &Operands); OperandMatchResultTy tryParseAddSubImm(OperandVector &Operands); OperandMatchResultTy tryParseGPR64sp0Operand(OperandVector &Operands); bool tryParseVectorRegister(OperandVector &Operands); public: enum AArch64MatchResultTy { Match_InvalidSuffix = FIRST_TARGET_MATCH_RESULT_TY, #define GET_OPERAND_DIAGNOSTIC_TYPES #include "AArch64GenAsmMatcher.inc" }; AArch64AsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(), STI(_STI), Parser(_Parser) { MCAsmParserExtension::Initialize(_Parser); if (Parser.getStreamer().getTargetStreamer() == nullptr) new AArch64TargetStreamer(Parser.getStreamer()); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); } bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseDirective(AsmToken DirectiveID) override; unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override; static bool classifySymbolRef(const MCExpr *Expr, AArch64MCExpr::VariantKind &ELFRefKind, MCSymbolRefExpr::VariantKind &DarwinRefKind, int64_t &Addend); }; } // end anonymous namespace namespace { /// AArch64Operand - Instances of this class represent a parsed AArch64 machine /// instruction. class AArch64Operand : public MCParsedAsmOperand { private: enum KindTy { k_Immediate, k_ShiftedImm, k_CondCode, k_Register, k_VectorList, k_VectorIndex, k_Token, k_SysReg, k_SysCR, k_Prefetch, k_ShiftExtend, k_FPImm, k_Barrier } Kind; SMLoc StartLoc, EndLoc; struct TokOp { const char *Data; unsigned Length; bool IsSuffix; // Is the operand actually a suffix on the mnemonic. }; struct RegOp { unsigned RegNum; bool isVector; }; struct VectorListOp { unsigned RegNum; unsigned Count; unsigned NumElements; unsigned ElementKind; }; struct VectorIndexOp { unsigned Val; }; struct ImmOp { const MCExpr *Val; }; struct ShiftedImmOp { const MCExpr *Val; unsigned ShiftAmount; }; struct CondCodeOp { AArch64CC::CondCode Code; }; struct FPImmOp { unsigned Val; // Encoded 8-bit representation. }; struct BarrierOp { unsigned Val; // Not the enum since not all values have names. }; struct SysRegOp { const char *Data; unsigned Length; uint64_t FeatureBits; // We need to pass through information about which // core we are compiling for so that the SysReg // Mappers can appropriately conditionalize. }; struct SysCRImmOp { unsigned Val; }; struct PrefetchOp { unsigned Val; }; struct ShiftExtendOp { AArch64_AM::ShiftExtendType Type; unsigned Amount; bool HasExplicitAmount; }; struct ExtendOp { unsigned Val; }; union { struct TokOp Tok; struct RegOp Reg; struct VectorListOp VectorList; struct VectorIndexOp VectorIndex; struct ImmOp Imm; struct ShiftedImmOp ShiftedImm; struct CondCodeOp CondCode; struct FPImmOp FPImm; struct BarrierOp Barrier; struct SysRegOp SysReg; struct SysCRImmOp SysCRImm; struct PrefetchOp Prefetch; struct ShiftExtendOp ShiftExtend; }; // Keep the MCContext around as the MCExprs may need manipulated during // the add<>Operands() calls. MCContext &Ctx; public: AArch64Operand(KindTy K, MCContext &_Ctx) : MCParsedAsmOperand(), Kind(K), Ctx(_Ctx) {} AArch64Operand(const AArch64Operand &o) : MCParsedAsmOperand(), Ctx(o.Ctx) { Kind = o.Kind; StartLoc = o.StartLoc; EndLoc = o.EndLoc; switch (Kind) { case k_Token: Tok = o.Tok; break; case k_Immediate: Imm = o.Imm; break; case k_ShiftedImm: ShiftedImm = o.ShiftedImm; break; case k_CondCode: CondCode = o.CondCode; break; case k_FPImm: FPImm = o.FPImm; break; case k_Barrier: Barrier = o.Barrier; break; case k_Register: Reg = o.Reg; break; case k_VectorList: VectorList = o.VectorList; break; case k_VectorIndex: VectorIndex = o.VectorIndex; break; case k_SysReg: SysReg = o.SysReg; break; case k_SysCR: SysCRImm = o.SysCRImm; break; case k_Prefetch: Prefetch = o.Prefetch; break; case k_ShiftExtend: ShiftExtend = o.ShiftExtend; break; } } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const override { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const override { return EndLoc; } StringRef getToken() const { assert(Kind == k_Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } bool isTokenSuffix() const { assert(Kind == k_Token && "Invalid access!"); return Tok.IsSuffix; } const MCExpr *getImm() const { assert(Kind == k_Immediate && "Invalid access!"); return Imm.Val; } const MCExpr *getShiftedImmVal() const { assert(Kind == k_ShiftedImm && "Invalid access!"); return ShiftedImm.Val; } unsigned getShiftedImmShift() const { assert(Kind == k_ShiftedImm && "Invalid access!"); return ShiftedImm.ShiftAmount; } AArch64CC::CondCode getCondCode() const { assert(Kind == k_CondCode && "Invalid access!"); return CondCode.Code; } unsigned getFPImm() const { assert(Kind == k_FPImm && "Invalid access!"); return FPImm.Val; } unsigned getBarrier() const { assert(Kind == k_Barrier && "Invalid access!"); return Barrier.Val; } unsigned getReg() const override { assert(Kind == k_Register && "Invalid access!"); return Reg.RegNum; } unsigned getVectorListStart() const { assert(Kind == k_VectorList && "Invalid access!"); return VectorList.RegNum; } unsigned getVectorListCount() const { assert(Kind == k_VectorList && "Invalid access!"); return VectorList.Count; } unsigned getVectorIndex() const { assert(Kind == k_VectorIndex && "Invalid access!"); return VectorIndex.Val; } StringRef getSysReg() const { assert(Kind == k_SysReg && "Invalid access!"); return StringRef(SysReg.Data, SysReg.Length); } uint64_t getSysRegFeatureBits() const { assert(Kind == k_SysReg && "Invalid access!"); return SysReg.FeatureBits; } unsigned getSysCR() const { assert(Kind == k_SysCR && "Invalid access!"); return SysCRImm.Val; } unsigned getPrefetch() const { assert(Kind == k_Prefetch && "Invalid access!"); return Prefetch.Val; } AArch64_AM::ShiftExtendType getShiftExtendType() const { assert(Kind == k_ShiftExtend && "Invalid access!"); return ShiftExtend.Type; } unsigned getShiftExtendAmount() const { assert(Kind == k_ShiftExtend && "Invalid access!"); return ShiftExtend.Amount; } bool hasShiftExtendAmount() const { assert(Kind == k_ShiftExtend && "Invalid access!"); return ShiftExtend.HasExplicitAmount; } bool isImm() const override { return Kind == k_Immediate; } bool isMem() const override { return false; } bool isSImm9() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= -256 && Val < 256); } bool isSImm7s4() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= -256 && Val <= 252 && (Val & 3) == 0); } bool isSImm7s8() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= -512 && Val <= 504 && (Val & 7) == 0); } bool isSImm7s16() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= -1024 && Val <= 1008 && (Val & 15) == 0); } bool isSymbolicUImm12Offset(const MCExpr *Expr, unsigned Scale) const { AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (!AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { // If we don't understand the expression, assume the best and // let the fixup and relocation code deal with it. return true; } if (DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF || ELFRefKind == AArch64MCExpr::VK_LO12 || ELFRefKind == AArch64MCExpr::VK_GOT_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_GOTTPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12) { // Note that we don't range-check the addend. It's adjusted modulo page // size when converted, so there is no "out of range" condition when using // @pageoff. return Addend >= 0 && (Addend % Scale) == 0; } else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) { // @gotpageoff/@tlvppageoff can only be used directly, not with an addend. return Addend == 0; } return false; } template <int Scale> bool isUImm12Offset() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return isSymbolicUImm12Offset(getImm(), Scale); int64_t Val = MCE->getValue(); return (Val % Scale) == 0 && Val >= 0 && (Val / Scale) < 0x1000; } bool isImm0_7() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 8); } bool isImm1_8() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val > 0 && Val < 9); } bool isImm0_15() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 16); } bool isImm1_16() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val > 0 && Val < 17); } bool isImm0_31() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 32); } bool isImm1_31() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 1 && Val < 32); } bool isImm1_32() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 1 && Val < 33); } bool isImm0_63() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 64); } bool isImm1_63() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 1 && Val < 64); } bool isImm1_64() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 1 && Val < 65); } bool isImm0_127() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 128); } bool isImm0_255() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 256); } bool isImm0_65535() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 65536); } bool isImm32_63() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 32 && Val < 64); } bool isLogicalImm32() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); if (Val >> 32 != 0 && Val >> 32 != ~0LL) return false; Val &= 0xFFFFFFFF; return AArch64_AM::isLogicalImmediate(Val, 32); } bool isLogicalImm64() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; return AArch64_AM::isLogicalImmediate(MCE->getValue(), 64); } bool isLogicalImm32Not() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; int64_t Val = ~MCE->getValue() & 0xFFFFFFFF; return AArch64_AM::isLogicalImmediate(Val, 32); } bool isLogicalImm64Not() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; return AArch64_AM::isLogicalImmediate(~MCE->getValue(), 64); } bool isShiftedImm() const { return Kind == k_ShiftedImm; } bool isAddSubImm() const { if (!isShiftedImm() && !isImm()) return false; const MCExpr *Expr; // An ADD/SUB shifter is either 'lsl #0' or 'lsl #12'. if (isShiftedImm()) { unsigned Shift = ShiftedImm.ShiftAmount; Expr = ShiftedImm.Val; if (Shift != 0 && Shift != 12) return false; } else { Expr = getImm(); } AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { return DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF || (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF && Addend == 0) || ELFRefKind == AArch64MCExpr::VK_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TPREL_HI12 || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12; } // Otherwise it should be a real immediate in range: const MCConstantExpr *CE = cast<MCConstantExpr>(Expr); return CE->getValue() >= 0 && CE->getValue() <= 0xfff; } bool isCondCode() const { return Kind == k_CondCode; } bool isSIMDImmType10() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return false; return AArch64_AM::isAdvSIMDModImmType10(MCE->getValue()); } bool isBranchTarget26() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return true; int64_t Val = MCE->getValue(); if (Val & 0x3) return false; return (Val >= -(0x2000000 << 2) && Val <= (0x1ffffff << 2)); } bool isPCRelLabel19() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return true; int64_t Val = MCE->getValue(); if (Val & 0x3) return false; return (Val >= -(0x40000 << 2) && Val <= (0x3ffff << 2)); } bool isBranchTarget14() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) return true; int64_t Val = MCE->getValue(); if (Val & 0x3) return false; return (Val >= -(0x2000 << 2) && Val <= (0x1fff << 2)); } bool isMovWSymbol(ArrayRef<AArch64MCExpr::VariantKind> AllowedModifiers) const { if (!isImm()) return false; AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (!AArch64AsmParser::classifySymbolRef(getImm(), ELFRefKind, DarwinRefKind, Addend)) { return false; } if (DarwinRefKind != MCSymbolRefExpr::VK_None) return false; for (unsigned i = 0; i != AllowedModifiers.size(); ++i) { if (ELFRefKind == AllowedModifiers[i]) return Addend == 0; } return false; } bool isMovZSymbolG3() const { static AArch64MCExpr::VariantKind Variants[] = { AArch64MCExpr::VK_ABS_G3 }; return isMovWSymbol(Variants); } bool isMovZSymbolG2() const { static AArch64MCExpr::VariantKind Variants[] = { AArch64MCExpr::VK_ABS_G2, AArch64MCExpr::VK_ABS_G2_S, AArch64MCExpr::VK_TPREL_G2, AArch64MCExpr::VK_DTPREL_G2}; return isMovWSymbol(Variants); } bool isMovZSymbolG1() const { static AArch64MCExpr::VariantKind Variants[] = { AArch64MCExpr::VK_ABS_G1, AArch64MCExpr::VK_ABS_G1_S, AArch64MCExpr::VK_GOTTPREL_G1, AArch64MCExpr::VK_TPREL_G1, AArch64MCExpr::VK_DTPREL_G1, }; return isMovWSymbol(Variants); } bool isMovZSymbolG0() const { static AArch64MCExpr::VariantKind Variants[] = { AArch64MCExpr::VK_ABS_G0, AArch64MCExpr::VK_ABS_G0_S, AArch64MCExpr::VK_TPREL_G0, AArch64MCExpr::VK_DTPREL_G0}; return isMovWSymbol(Variants); } bool isMovKSymbolG3() const { static AArch64MCExpr::VariantKind Variants[] = { AArch64MCExpr::VK_ABS_G3 }; return isMovWSymbol(Variants); } bool isMovKSymbolG2() const { static AArch64MCExpr::VariantKind Variants[] = { AArch64MCExpr::VK_ABS_G2_NC}; return isMovWSymbol(Variants); } bool isMovKSymbolG1() const { static AArch64MCExpr::VariantKind Variants[] = { AArch64MCExpr::VK_ABS_G1_NC, AArch64MCExpr::VK_TPREL_G1_NC, AArch64MCExpr::VK_DTPREL_G1_NC }; return isMovWSymbol(Variants); } bool isMovKSymbolG0() const { static AArch64MCExpr::VariantKind Variants[] = { AArch64MCExpr::VK_ABS_G0_NC, AArch64MCExpr::VK_GOTTPREL_G0_NC, AArch64MCExpr::VK_TPREL_G0_NC, AArch64MCExpr::VK_DTPREL_G0_NC }; return isMovWSymbol(Variants); } template<int RegWidth, int Shift> bool isMOVZMovAlias() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; uint64_t Value = CE->getValue(); if (RegWidth == 32) Value &= 0xffffffffULL; // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0". if (Value == 0 && Shift != 0) return false; return (Value & ~(0xffffULL << Shift)) == 0; } template<int RegWidth, int Shift> bool isMOVNMovAlias() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); if (!CE) return false; uint64_t Value = CE->getValue(); // MOVZ takes precedence over MOVN. for (int MOVZShift = 0; MOVZShift <= 48; MOVZShift += 16) if ((Value & ~(0xffffULL << MOVZShift)) == 0) return false; Value = ~Value; if (RegWidth == 32) Value &= 0xffffffffULL; return (Value & ~(0xffffULL << Shift)) == 0; } bool isFPImm() const { return Kind == k_FPImm; } bool isBarrier() const { return Kind == k_Barrier; } bool isSysReg() const { return Kind == k_SysReg; } bool isMRSSystemRegister() const { if (!isSysReg()) return false; bool IsKnownRegister; auto Mapper = AArch64SysReg::MRSMapper(getSysRegFeatureBits()); Mapper.fromString(getSysReg(), IsKnownRegister); return IsKnownRegister; } bool isMSRSystemRegister() const { if (!isSysReg()) return false; bool IsKnownRegister; auto Mapper = AArch64SysReg::MSRMapper(getSysRegFeatureBits()); Mapper.fromString(getSysReg(), IsKnownRegister); return IsKnownRegister; } bool isSystemPStateField() const { if (!isSysReg()) return false; bool IsKnownRegister; AArch64PState::PStateMapper().fromString(getSysReg(), IsKnownRegister); return IsKnownRegister; } bool isReg() const override { return Kind == k_Register && !Reg.isVector; } bool isVectorReg() const { return Kind == k_Register && Reg.isVector; } bool isVectorRegLo() const { return Kind == k_Register && Reg.isVector && AArch64MCRegisterClasses[AArch64::FPR128_loRegClassID].contains( Reg.RegNum); } bool isGPR32as64() const { return Kind == k_Register && !Reg.isVector && AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(Reg.RegNum); } bool isGPR64sp0() const { return Kind == k_Register && !Reg.isVector && AArch64MCRegisterClasses[AArch64::GPR64spRegClassID].contains(Reg.RegNum); } /// Is this a vector list with the type implicit (presumably attached to the /// instruction itself)? template <unsigned NumRegs> bool isImplicitlyTypedVectorList() const { return Kind == k_VectorList && VectorList.Count == NumRegs && !VectorList.ElementKind; } template <unsigned NumRegs, unsigned NumElements, char ElementKind> bool isTypedVectorList() const { if (Kind != k_VectorList) return false; if (VectorList.Count != NumRegs) return false; if (VectorList.ElementKind != ElementKind) return false; return VectorList.NumElements == NumElements; } bool isVectorIndex1() const { return Kind == k_VectorIndex && VectorIndex.Val == 1; } bool isVectorIndexB() const { return Kind == k_VectorIndex && VectorIndex.Val < 16; } bool isVectorIndexH() const { return Kind == k_VectorIndex && VectorIndex.Val < 8; } bool isVectorIndexS() const { return Kind == k_VectorIndex && VectorIndex.Val < 4; } bool isVectorIndexD() const { return Kind == k_VectorIndex && VectorIndex.Val < 2; } bool isToken() const override { return Kind == k_Token; } bool isTokenEqual(StringRef Str) const { return Kind == k_Token && getToken() == Str; } bool isSysCR() const { return Kind == k_SysCR; } bool isPrefetch() const { return Kind == k_Prefetch; } bool isShiftExtend() const { return Kind == k_ShiftExtend; } bool isShifter() const { if (!isShiftExtend()) return false; AArch64_AM::ShiftExtendType ST = getShiftExtendType(); return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR || ST == AArch64_AM::ASR || ST == AArch64_AM::ROR || ST == AArch64_AM::MSL); } bool isExtend() const { if (!isShiftExtend()) return false; AArch64_AM::ShiftExtendType ET = getShiftExtendType(); return (ET == AArch64_AM::UXTB || ET == AArch64_AM::SXTB || ET == AArch64_AM::UXTH || ET == AArch64_AM::SXTH || ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW || ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX || ET == AArch64_AM::LSL) && getShiftExtendAmount() <= 4; } bool isExtend64() const { if (!isExtend()) return false; // UXTX and SXTX require a 64-bit source register (the ExtendLSL64 class). AArch64_AM::ShiftExtendType ET = getShiftExtendType(); return ET != AArch64_AM::UXTX && ET != AArch64_AM::SXTX; } bool isExtendLSL64() const { if (!isExtend()) return false; AArch64_AM::ShiftExtendType ET = getShiftExtendType(); return (ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX || ET == AArch64_AM::LSL) && getShiftExtendAmount() <= 4; } template<int Width> bool isMemXExtend() const { if (!isExtend()) return false; AArch64_AM::ShiftExtendType ET = getShiftExtendType(); return (ET == AArch64_AM::LSL || ET == AArch64_AM::SXTX) && (getShiftExtendAmount() == Log2_32(Width / 8) || getShiftExtendAmount() == 0); } template<int Width> bool isMemWExtend() const { if (!isExtend()) return false; AArch64_AM::ShiftExtendType ET = getShiftExtendType(); return (ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW) && (getShiftExtendAmount() == Log2_32(Width / 8) || getShiftExtendAmount() == 0); } template <unsigned width> bool isArithmeticShifter() const { if (!isShifter()) return false; // An arithmetic shifter is LSL, LSR, or ASR. AArch64_AM::ShiftExtendType ST = getShiftExtendType(); return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR || ST == AArch64_AM::ASR) && getShiftExtendAmount() < width; } template <unsigned width> bool isLogicalShifter() const { if (!isShifter()) return false; // A logical shifter is LSL, LSR, ASR or ROR. AArch64_AM::ShiftExtendType ST = getShiftExtendType(); return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR || ST == AArch64_AM::ASR || ST == AArch64_AM::ROR) && getShiftExtendAmount() < width; } bool isMovImm32Shifter() const { if (!isShifter()) return false; // A MOVi shifter is LSL of 0, 16, 32, or 48. AArch64_AM::ShiftExtendType ST = getShiftExtendType(); if (ST != AArch64_AM::LSL) return false; uint64_t Val = getShiftExtendAmount(); return (Val == 0 || Val == 16); } bool isMovImm64Shifter() const { if (!isShifter()) return false; // A MOVi shifter is LSL of 0 or 16. AArch64_AM::ShiftExtendType ST = getShiftExtendType(); if (ST != AArch64_AM::LSL) return false; uint64_t Val = getShiftExtendAmount(); return (Val == 0 || Val == 16 || Val == 32 || Val == 48); } bool isLogicalVecShifter() const { if (!isShifter()) return false; // A logical vector shifter is a left shift by 0, 8, 16, or 24. unsigned Shift = getShiftExtendAmount(); return getShiftExtendType() == AArch64_AM::LSL && (Shift == 0 || Shift == 8 || Shift == 16 || Shift == 24); } bool isLogicalVecHalfWordShifter() const { if (!isLogicalVecShifter()) return false; // A logical vector shifter is a left shift by 0 or 8. unsigned Shift = getShiftExtendAmount(); return getShiftExtendType() == AArch64_AM::LSL && (Shift == 0 || Shift == 8); } bool isMoveVecShifter() const { if (!isShiftExtend()) return false; // A logical vector shifter is a left shift by 8 or 16. unsigned Shift = getShiftExtendAmount(); return getShiftExtendType() == AArch64_AM::MSL && (Shift == 8 || Shift == 16); } // Fallback unscaled operands are for aliases of LDR/STR that fall back // to LDUR/STUR when the offset is not legal for the former but is for // the latter. As such, in addition to checking for being a legal unscaled // address, also check that it is not a legal scaled address. This avoids // ambiguity in the matcher. template<int Width> bool isSImm9OffsetFB() const { return isSImm9() && !isUImm12Offset<Width / 8>(); } bool isAdrpLabel() const { // Validation was handled during parsing, so we just sanity check that // something didn't go haywire. if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { int64_t Val = CE->getValue(); int64_t Min = - (4096 * (1LL << (21 - 1))); int64_t Max = 4096 * ((1LL << (21 - 1)) - 1); return (Val % 4096) == 0 && Val >= Min && Val <= Max; } return true; } bool isAdrLabel() const { // Validation was handled during parsing, so we just sanity check that // something didn't go haywire. if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { int64_t Val = CE->getValue(); int64_t Min = - (1LL << (21 - 1)); int64_t Max = ((1LL << (21 - 1)) - 1); return Val >= Min && Val <= Max; } return true; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::CreateImm(0)); else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(Expr)); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addGPR32as64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); assert( AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(getReg())); const MCRegisterInfo *RI = Ctx.getRegisterInfo(); uint32_t Reg = RI->getRegClass(AArch64::GPR32RegClassID).getRegister( RI->getEncodingValue(getReg())); Inst.addOperand(MCOperand::CreateReg(Reg)); } void addVectorReg64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); assert( AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg())); Inst.addOperand(MCOperand::CreateReg(AArch64::D0 + getReg() - AArch64::Q0)); } void addVectorReg128Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); assert( AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg())); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addVectorRegLoOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } template <unsigned NumRegs> void addVectorList64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); static unsigned FirstRegs[] = { AArch64::D0, AArch64::D0_D1, AArch64::D0_D1_D2, AArch64::D0_D1_D2_D3 }; unsigned FirstReg = FirstRegs[NumRegs - 1]; Inst.addOperand( MCOperand::CreateReg(FirstReg + getVectorListStart() - AArch64::Q0)); } template <unsigned NumRegs> void addVectorList128Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); static unsigned FirstRegs[] = { AArch64::Q0, AArch64::Q0_Q1, AArch64::Q0_Q1_Q2, AArch64::Q0_Q1_Q2_Q3 }; unsigned FirstReg = FirstRegs[NumRegs - 1]; Inst.addOperand( MCOperand::CreateReg(FirstReg + getVectorListStart() - AArch64::Q0)); } void addVectorIndex1Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); } void addVectorIndexBOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); } void addVectorIndexHOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); } void addVectorIndexSOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); } void addVectorIndexDOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // If this is a pageoff symrefexpr with an addend, adjust the addend // to be only the page-offset portion. Otherwise, just add the expr // as-is. addExpr(Inst, getImm()); } void addAddSubImmOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); if (isShiftedImm()) { addExpr(Inst, getShiftedImmVal()); Inst.addOperand(MCOperand::CreateImm(getShiftedImmShift())); } else { addExpr(Inst, getImm()); Inst.addOperand(MCOperand::CreateImm(0)); } } void addCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getCondCode())); } void addAdrpLabelOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) addExpr(Inst, getImm()); else Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 12)); } void addAdrLabelOperands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } template<int Scale> void addUImm12OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) { Inst.addOperand(MCOperand::CreateExpr(getImm())); return; } Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / Scale)); } void addSImm9Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addSImm7s4Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 4)); } void addSImm7s8Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 8)); } void addSImm7s16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 16)); } void addImm0_7Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_8Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_15Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_31Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_31Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_63Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_63Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm1_64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_127Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_255Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm0_65535Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addImm32_63Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue())); } void addLogicalImm32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid logical immediate operand!"); uint64_t encoding = AArch64_AM::encodeLogicalImmediate(MCE->getValue() & 0xFFFFFFFF, 32); Inst.addOperand(MCOperand::CreateImm(encoding)); } void addLogicalImm64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid logical immediate operand!"); uint64_t encoding = AArch64_AM::encodeLogicalImmediate(MCE->getValue(), 64); Inst.addOperand(MCOperand::CreateImm(encoding)); } void addLogicalImm32NotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm()); int64_t Val = ~MCE->getValue() & 0xFFFFFFFF; uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, 32); Inst.addOperand(MCOperand::CreateImm(encoding)); } void addLogicalImm64NotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm()); uint64_t encoding = AArch64_AM::encodeLogicalImmediate(~MCE->getValue(), 64); Inst.addOperand(MCOperand::CreateImm(encoding)); } void addSIMDImmType10Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); assert(MCE && "Invalid immediate operand!"); uint64_t encoding = AArch64_AM::encodeAdvSIMDModImmType10(MCE->getValue()); Inst.addOperand(MCOperand::CreateImm(encoding)); } void addBranchTarget26Operands(MCInst &Inst, unsigned N) const { // Branch operands don't encode the low bits, so shift them off // here. If it's a label, however, just put it on directly as there's // not enough information now to do anything. assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) { addExpr(Inst, getImm()); return; } assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2)); } void addPCRelLabel19Operands(MCInst &Inst, unsigned N) const { // Branch operands don't encode the low bits, so shift them off // here. If it's a label, however, just put it on directly as there's // not enough information now to do anything. assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) { addExpr(Inst, getImm()); return; } assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2)); } void addBranchTarget14Operands(MCInst &Inst, unsigned N) const { // Branch operands don't encode the low bits, so shift them off // here. If it's a label, however, just put it on directly as there's // not enough information now to do anything. assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm()); if (!MCE) { addExpr(Inst, getImm()); return; } assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2)); } void addFPImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getFPImm())); } void addBarrierOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getBarrier())); } void addMRSSystemRegisterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); bool Valid; auto Mapper = AArch64SysReg::MRSMapper(getSysRegFeatureBits()); uint32_t Bits = Mapper.fromString(getSysReg(), Valid); Inst.addOperand(MCOperand::CreateImm(Bits)); } void addMSRSystemRegisterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); bool Valid; auto Mapper = AArch64SysReg::MSRMapper(getSysRegFeatureBits()); uint32_t Bits = Mapper.fromString(getSysReg(), Valid); Inst.addOperand(MCOperand::CreateImm(Bits)); } void addSystemPStateFieldOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); bool Valid; uint32_t Bits = AArch64PState::PStateMapper().fromString(getSysReg(), Valid); Inst.addOperand(MCOperand::CreateImm(Bits)); } void addSysCROperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getSysCR())); } void addPrefetchOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(getPrefetch())); } void addShifterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); unsigned Imm = AArch64_AM::getShifterImm(getShiftExtendType(), getShiftExtendAmount()); Inst.addOperand(MCOperand::CreateImm(Imm)); } void addExtendOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); AArch64_AM::ShiftExtendType ET = getShiftExtendType(); if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTW; unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount()); Inst.addOperand(MCOperand::CreateImm(Imm)); } void addExtend64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); AArch64_AM::ShiftExtendType ET = getShiftExtendType(); if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTX; unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount()); Inst.addOperand(MCOperand::CreateImm(Imm)); } void addMemExtendOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); AArch64_AM::ShiftExtendType ET = getShiftExtendType(); bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX; Inst.addOperand(MCOperand::CreateImm(IsSigned)); Inst.addOperand(MCOperand::CreateImm(getShiftExtendAmount() != 0)); } // For 8-bit load/store instructions with a register offset, both the // "DoShift" and "NoShift" variants have a shift of 0. Because of this, // they're disambiguated by whether the shift was explicit or implicit rather // than its size. void addMemExtend8Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); AArch64_AM::ShiftExtendType ET = getShiftExtendType(); bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX; Inst.addOperand(MCOperand::CreateImm(IsSigned)); Inst.addOperand(MCOperand::CreateImm(hasShiftExtendAmount())); } template<int Shift> void addMOVZMovAliasOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); uint64_t Value = CE->getValue(); Inst.addOperand(MCOperand::CreateImm((Value >> Shift) & 0xffff)); } template<int Shift> void addMOVNMovAliasOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); uint64_t Value = CE->getValue(); Inst.addOperand(MCOperand::CreateImm((~Value >> Shift) & 0xffff)); } void print(raw_ostream &OS) const override; static std::unique_ptr<AArch64Operand> CreateToken(StringRef Str, bool IsSuffix, SMLoc S, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_Token, Ctx); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->Tok.IsSuffix = IsSuffix; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<AArch64Operand> CreateReg(unsigned RegNum, bool isVector, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_Register, Ctx); Op->Reg.RegNum = RegNum; Op->Reg.isVector = isVector; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<AArch64Operand> CreateVectorList(unsigned RegNum, unsigned Count, unsigned NumElements, char ElementKind, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_VectorList, Ctx); Op->VectorList.RegNum = RegNum; Op->VectorList.Count = Count; Op->VectorList.NumElements = NumElements; Op->VectorList.ElementKind = ElementKind; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<AArch64Operand> CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_VectorIndex, Ctx); Op->VectorIndex.Val = Idx; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<AArch64Operand> CreateImm(const MCExpr *Val, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_Immediate, Ctx); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<AArch64Operand> CreateShiftedImm(const MCExpr *Val, unsigned ShiftAmount, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_ShiftedImm, Ctx); Op->ShiftedImm .Val = Val; Op->ShiftedImm.ShiftAmount = ShiftAmount; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<AArch64Operand> CreateCondCode(AArch64CC::CondCode Code, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_CondCode, Ctx); Op->CondCode.Code = Code; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<AArch64Operand> CreateFPImm(unsigned Val, SMLoc S, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_FPImm, Ctx); Op->FPImm.Val = Val; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<AArch64Operand> CreateBarrier(unsigned Val, SMLoc S, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_Barrier, Ctx); Op->Barrier.Val = Val; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<AArch64Operand> CreateSysReg(StringRef Str, SMLoc S, uint64_t FeatureBits, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_SysReg, Ctx); Op->SysReg.Data = Str.data(); Op->SysReg.Length = Str.size(); Op->SysReg.FeatureBits = FeatureBits; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<AArch64Operand> CreateSysCR(unsigned Val, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_SysCR, Ctx); Op->SysCRImm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<AArch64Operand> CreatePrefetch(unsigned Val, SMLoc S, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_Prefetch, Ctx); Op->Prefetch.Val = Val; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<AArch64Operand> CreateShiftExtend(AArch64_AM::ShiftExtendType ShOp, unsigned Val, bool HasExplicitAmount, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = make_unique<AArch64Operand>(k_ShiftExtend, Ctx); Op->ShiftExtend.Type = ShOp; Op->ShiftExtend.Amount = Val; Op->ShiftExtend.HasExplicitAmount = HasExplicitAmount; Op->StartLoc = S; Op->EndLoc = E; return Op; } }; } // end anonymous namespace. void AArch64Operand::print(raw_ostream &OS) const { switch (Kind) { case k_FPImm: OS << "<fpimm " << getFPImm() << "(" << AArch64_AM::getFPImmFloat(getFPImm()) << ") >"; break; case k_Barrier: { bool Valid; StringRef Name = AArch64DB::DBarrierMapper().toString(getBarrier(), Valid); if (Valid) OS << "<barrier " << Name << ">"; else OS << "<barrier invalid #" << getBarrier() << ">"; break; } case k_Immediate: getImm()->print(OS); break; case k_ShiftedImm: { unsigned Shift = getShiftedImmShift(); OS << "<shiftedimm "; getShiftedImmVal()->print(OS); OS << ", lsl #" << AArch64_AM::getShiftValue(Shift) << ">"; break; } case k_CondCode: OS << "<condcode " << getCondCode() << ">"; break; case k_Register: OS << "<register " << getReg() << ">"; break; case k_VectorList: { OS << "<vectorlist "; unsigned Reg = getVectorListStart(); for (unsigned i = 0, e = getVectorListCount(); i != e; ++i) OS << Reg + i << " "; OS << ">"; break; } case k_VectorIndex: OS << "<vectorindex " << getVectorIndex() << ">"; break; case k_SysReg: OS << "<sysreg: " << getSysReg() << '>'; break; case k_Token: OS << "'" << getToken() << "'"; break; case k_SysCR: OS << "c" << getSysCR(); break; case k_Prefetch: { bool Valid; StringRef Name = AArch64PRFM::PRFMMapper().toString(getPrefetch(), Valid); if (Valid) OS << "<prfop " << Name << ">"; else OS << "<prfop invalid #" << getPrefetch() << ">"; break; } case k_ShiftExtend: { OS << "<" << AArch64_AM::getShiftExtendName(getShiftExtendType()) << " #" << getShiftExtendAmount(); if (!hasShiftExtendAmount()) OS << "<imp>"; OS << '>'; break; } } } /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } static unsigned matchVectorRegName(StringRef Name) { return StringSwitch<unsigned>(Name) .Case("v0", AArch64::Q0) .Case("v1", AArch64::Q1) .Case("v2", AArch64::Q2) .Case("v3", AArch64::Q3) .Case("v4", AArch64::Q4) .Case("v5", AArch64::Q5) .Case("v6", AArch64::Q6) .Case("v7", AArch64::Q7) .Case("v8", AArch64::Q8) .Case("v9", AArch64::Q9) .Case("v10", AArch64::Q10) .Case("v11", AArch64::Q11) .Case("v12", AArch64::Q12) .Case("v13", AArch64::Q13) .Case("v14", AArch64::Q14) .Case("v15", AArch64::Q15) .Case("v16", AArch64::Q16) .Case("v17", AArch64::Q17) .Case("v18", AArch64::Q18) .Case("v19", AArch64::Q19) .Case("v20", AArch64::Q20) .Case("v21", AArch64::Q21) .Case("v22", AArch64::Q22) .Case("v23", AArch64::Q23) .Case("v24", AArch64::Q24) .Case("v25", AArch64::Q25) .Case("v26", AArch64::Q26) .Case("v27", AArch64::Q27) .Case("v28", AArch64::Q28) .Case("v29", AArch64::Q29) .Case("v30", AArch64::Q30) .Case("v31", AArch64::Q31) .Default(0); } static bool isValidVectorKind(StringRef Name) { return StringSwitch<bool>(Name.lower()) .Case(".8b", true) .Case(".16b", true) .Case(".4h", true) .Case(".8h", true) .Case(".2s", true) .Case(".4s", true) .Case(".1d", true) .Case(".2d", true) .Case(".1q", true) // Accept the width neutral ones, too, for verbose syntax. If those // aren't used in the right places, the token operand won't match so // all will work out. .Case(".b", true) .Case(".h", true) .Case(".s", true) .Case(".d", true) .Default(false); } static void parseValidVectorKind(StringRef Name, unsigned &NumElements, char &ElementKind) { assert(isValidVectorKind(Name)); ElementKind = Name.lower()[Name.size() - 1]; NumElements = 0; if (Name.size() == 2) return; // Parse the lane count Name = Name.drop_front(); while (isdigit(Name.front())) { NumElements = 10 * NumElements + (Name.front() - '0'); Name = Name.drop_front(); } } bool AArch64AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { StartLoc = getLoc(); RegNo = tryParseRegister(); EndLoc = SMLoc::getFromPointer(getLoc().getPointer() - 1); return (RegNo == (unsigned)-1); } // Matches a register name or register alias previously defined by '.req' unsigned AArch64AsmParser::matchRegisterNameAlias(StringRef Name, bool isVector) { unsigned RegNum = isVector ? matchVectorRegName(Name) : MatchRegisterName(Name); if (RegNum == 0) { // Check for aliases registered via .req. Canonicalize to lower case. // That's more consistent since register names are case insensitive, and // it's how the original entry was passed in from MC/MCParser/AsmParser. auto Entry = RegisterReqs.find(Name.lower()); if (Entry == RegisterReqs.end()) return 0; // set RegNum if the match is the right kind of register if (isVector == Entry->getValue().first) RegNum = Entry->getValue().second; } return RegNum; } /// tryParseRegister - Try to parse a register name. The token must be an /// Identifier when called, and if it is a register name the token is eaten and /// the register is added to the operand list. int AArch64AsmParser::tryParseRegister() { const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); std::string lowerCase = Tok.getString().lower(); unsigned RegNum = matchRegisterNameAlias(lowerCase, false); // Also handle a few aliases of registers. if (RegNum == 0) RegNum = StringSwitch<unsigned>(lowerCase) .Case("fp", AArch64::FP) .Case("lr", AArch64::LR) .Case("x31", AArch64::XZR) .Case("w31", AArch64::WZR) .Default(0); if (RegNum == 0) return -1; Parser.Lex(); // Eat identifier token. return RegNum; } /// tryMatchVectorRegister - Try to parse a vector register name with optional /// kind specifier. If it is a register specifier, eat the token and return it. int AArch64AsmParser::tryMatchVectorRegister(StringRef &Kind, bool expected) { if (Parser.getTok().isNot(AsmToken::Identifier)) { TokError("vector register expected"); return -1; } StringRef Name = Parser.getTok().getString(); // If there is a kind specifier, it's separated from the register name by // a '.'. size_t Start = 0, Next = Name.find('.'); StringRef Head = Name.slice(Start, Next); unsigned RegNum = matchRegisterNameAlias(Head, true); if (RegNum) { if (Next != StringRef::npos) { Kind = Name.slice(Next, StringRef::npos); if (!isValidVectorKind(Kind)) { TokError("invalid vector kind qualifier"); return -1; } } Parser.Lex(); // Eat the register token. return RegNum; } if (expected) TokError("vector register expected"); return -1; } /// tryParseSysCROperand - Try to parse a system instruction CR operand name. AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::tryParseSysCROperand(OperandVector &Operands) { SMLoc S = getLoc(); if (Parser.getTok().isNot(AsmToken::Identifier)) { Error(S, "Expected cN operand where 0 <= N <= 15"); return MatchOperand_ParseFail; } StringRef Tok = Parser.getTok().getIdentifier(); if (Tok[0] != 'c' && Tok[0] != 'C') { Error(S, "Expected cN operand where 0 <= N <= 15"); return MatchOperand_ParseFail; } uint32_t CRNum; bool BadNum = Tok.drop_front().getAsInteger(10, CRNum); if (BadNum || CRNum > 15) { Error(S, "Expected cN operand where 0 <= N <= 15"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat identifier token. Operands.push_back( AArch64Operand::CreateSysCR(CRNum, S, getLoc(), getContext())); return MatchOperand_Success; } /// tryParsePrefetch - Try to parse a prefetch operand. AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::tryParsePrefetch(OperandVector &Operands) { SMLoc S = getLoc(); const AsmToken &Tok = Parser.getTok(); // Either an identifier for named values or a 5-bit immediate. bool Hash = Tok.is(AsmToken::Hash); if (Hash || Tok.is(AsmToken::Integer)) { if (Hash) Parser.Lex(); // Eat hash token. const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return MatchOperand_ParseFail; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); if (!MCE) { TokError("immediate value expected for prefetch operand"); return MatchOperand_ParseFail; } unsigned prfop = MCE->getValue(); if (prfop > 31) { TokError("prefetch operand out of range, [0,31] expected"); return MatchOperand_ParseFail; } Operands.push_back(AArch64Operand::CreatePrefetch(prfop, S, getContext())); return MatchOperand_Success; } if (Tok.isNot(AsmToken::Identifier)) { TokError("pre-fetch hint expected"); return MatchOperand_ParseFail; } bool Valid; unsigned prfop = AArch64PRFM::PRFMMapper().fromString(Tok.getString(), Valid); if (!Valid) { TokError("pre-fetch hint expected"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat identifier token. Operands.push_back(AArch64Operand::CreatePrefetch(prfop, S, getContext())); return MatchOperand_Success; } /// tryParseAdrpLabel - Parse and validate a source label for the ADRP /// instruction. AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::tryParseAdrpLabel(OperandVector &Operands) { SMLoc S = getLoc(); const MCExpr *Expr; if (Parser.getTok().is(AsmToken::Hash)) { Parser.Lex(); // Eat hash token. } if (parseSymbolicImmVal(Expr)) return MatchOperand_ParseFail; AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { if (DarwinRefKind == MCSymbolRefExpr::VK_None && ELFRefKind == AArch64MCExpr::VK_INVALID) { // No modifier was specified at all; this is the syntax for an ELF basic // ADRP relocation (unfortunately). Expr = AArch64MCExpr::Create(Expr, AArch64MCExpr::VK_ABS_PAGE, getContext()); } else if ((DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGE || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGE) && Addend != 0) { Error(S, "gotpage label reference not allowed an addend"); return MatchOperand_ParseFail; } else if (DarwinRefKind != MCSymbolRefExpr::VK_PAGE && DarwinRefKind != MCSymbolRefExpr::VK_GOTPAGE && DarwinRefKind != MCSymbolRefExpr::VK_TLVPPAGE && ELFRefKind != AArch64MCExpr::VK_GOT_PAGE && ELFRefKind != AArch64MCExpr::VK_GOTTPREL_PAGE && ELFRefKind != AArch64MCExpr::VK_TLSDESC_PAGE) { // The operand must be an @page or @gotpage qualified symbolref. Error(S, "page or gotpage label reference expected"); return MatchOperand_ParseFail; } } // We have either a label reference possibly with addend or an immediate. The // addend is a raw value here. The linker will adjust it to only reference the // page. SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext())); return MatchOperand_Success; } /// tryParseAdrLabel - Parse and validate a source label for the ADR /// instruction. AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::tryParseAdrLabel(OperandVector &Operands) { SMLoc S = getLoc(); const MCExpr *Expr; if (Parser.getTok().is(AsmToken::Hash)) { Parser.Lex(); // Eat hash token. } if (getParser().parseExpression(Expr)) return MatchOperand_ParseFail; SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext())); return MatchOperand_Success; } /// tryParseFPImm - A floating point immediate expression operand. AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::tryParseFPImm(OperandVector &Operands) { SMLoc S = getLoc(); bool Hash = false; if (Parser.getTok().is(AsmToken::Hash)) { Parser.Lex(); // Eat '#' Hash = true; } // Handle negation, as that still comes through as a separate token. bool isNegative = false; if (Parser.getTok().is(AsmToken::Minus)) { isNegative = true; Parser.Lex(); } const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Real)) { APFloat RealVal(APFloat::IEEEdouble, Tok.getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); // If we had a '-' in front, toggle the sign bit. IntVal ^= (uint64_t)isNegative << 63; int Val = AArch64_AM::getFP64Imm(APInt(64, IntVal)); Parser.Lex(); // Eat the token. // Check for out of range values. As an exception, we let Zero through, // as we handle that special case in post-processing before matching in // order to use the zero register for it. if (Val == -1 && !RealVal.isZero()) { TokError("expected compatible register or floating-point constant"); return MatchOperand_ParseFail; } Operands.push_back(AArch64Operand::CreateFPImm(Val, S, getContext())); return MatchOperand_Success; } if (Tok.is(AsmToken::Integer)) { int64_t Val; if (!isNegative && Tok.getString().startswith("0x")) { Val = Tok.getIntVal(); if (Val > 255 || Val < 0) { TokError("encoded floating point value out of range"); return MatchOperand_ParseFail; } } else { APFloat RealVal(APFloat::IEEEdouble, Tok.getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); // If we had a '-' in front, toggle the sign bit. IntVal ^= (uint64_t)isNegative << 63; Val = AArch64_AM::getFP64Imm(APInt(64, IntVal)); } Parser.Lex(); // Eat the token. Operands.push_back(AArch64Operand::CreateFPImm(Val, S, getContext())); return MatchOperand_Success; } if (!Hash) return MatchOperand_NoMatch; TokError("invalid floating point immediate"); return MatchOperand_ParseFail; } /// tryParseAddSubImm - Parse ADD/SUB shifted immediate operand AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::tryParseAddSubImm(OperandVector &Operands) { SMLoc S = getLoc(); if (Parser.getTok().is(AsmToken::Hash)) Parser.Lex(); // Eat '#' else if (Parser.getTok().isNot(AsmToken::Integer)) // Operand should start from # or should be integer, emit error otherwise. return MatchOperand_NoMatch; const MCExpr *Imm; if (parseSymbolicImmVal(Imm)) return MatchOperand_ParseFail; else if (Parser.getTok().isNot(AsmToken::Comma)) { uint64_t ShiftAmount = 0; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Imm); if (MCE) { int64_t Val = MCE->getValue(); if (Val > 0xfff && (Val & 0xfff) == 0) { Imm = MCConstantExpr::Create(Val >> 12, getContext()); ShiftAmount = 12; } } SMLoc E = Parser.getTok().getLoc(); Operands.push_back(AArch64Operand::CreateShiftedImm(Imm, ShiftAmount, S, E, getContext())); return MatchOperand_Success; } // Eat ',' Parser.Lex(); // The optional operand must be "lsl #N" where N is non-negative. if (!Parser.getTok().is(AsmToken::Identifier) || !Parser.getTok().getIdentifier().equals_lower("lsl")) { Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate"); return MatchOperand_ParseFail; } // Eat 'lsl' Parser.Lex(); if (Parser.getTok().is(AsmToken::Hash)) { Parser.Lex(); } if (Parser.getTok().isNot(AsmToken::Integer)) { Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate"); return MatchOperand_ParseFail; } int64_t ShiftAmount = Parser.getTok().getIntVal(); if (ShiftAmount < 0) { Error(Parser.getTok().getLoc(), "positive shift amount required"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat the number SMLoc E = Parser.getTok().getLoc(); Operands.push_back(AArch64Operand::CreateShiftedImm(Imm, ShiftAmount, S, E, getContext())); return MatchOperand_Success; } /// parseCondCodeString - Parse a Condition Code string. AArch64CC::CondCode AArch64AsmParser::parseCondCodeString(StringRef Cond) { AArch64CC::CondCode CC = StringSwitch<AArch64CC::CondCode>(Cond.lower()) .Case("eq", AArch64CC::EQ) .Case("ne", AArch64CC::NE) .Case("cs", AArch64CC::HS) .Case("hs", AArch64CC::HS) .Case("cc", AArch64CC::LO) .Case("lo", AArch64CC::LO) .Case("mi", AArch64CC::MI) .Case("pl", AArch64CC::PL) .Case("vs", AArch64CC::VS) .Case("vc", AArch64CC::VC) .Case("hi", AArch64CC::HI) .Case("ls", AArch64CC::LS) .Case("ge", AArch64CC::GE) .Case("lt", AArch64CC::LT) .Case("gt", AArch64CC::GT) .Case("le", AArch64CC::LE) .Case("al", AArch64CC::AL) .Case("nv", AArch64CC::NV) .Default(AArch64CC::Invalid); return CC; } /// parseCondCode - Parse a Condition Code operand. bool AArch64AsmParser::parseCondCode(OperandVector &Operands, bool invertCondCode) { SMLoc S = getLoc(); const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); StringRef Cond = Tok.getString(); AArch64CC::CondCode CC = parseCondCodeString(Cond); if (CC == AArch64CC::Invalid) return TokError("invalid condition code"); Parser.Lex(); // Eat identifier token. if (invertCondCode) { if (CC == AArch64CC::AL || CC == AArch64CC::NV) return TokError("condition codes AL and NV are invalid for this instruction"); CC = AArch64CC::getInvertedCondCode(AArch64CC::CondCode(CC)); } Operands.push_back( AArch64Operand::CreateCondCode(CC, S, getLoc(), getContext())); return false; } /// tryParseOptionalShift - Some operands take an optional shift argument. Parse /// them if present. AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::tryParseOptionalShiftExtend(OperandVector &Operands) { const AsmToken &Tok = Parser.getTok(); std::string LowerID = Tok.getString().lower(); AArch64_AM::ShiftExtendType ShOp = StringSwitch<AArch64_AM::ShiftExtendType>(LowerID) .Case("lsl", AArch64_AM::LSL) .Case("lsr", AArch64_AM::LSR) .Case("asr", AArch64_AM::ASR) .Case("ror", AArch64_AM::ROR) .Case("msl", AArch64_AM::MSL) .Case("uxtb", AArch64_AM::UXTB) .Case("uxth", AArch64_AM::UXTH) .Case("uxtw", AArch64_AM::UXTW) .Case("uxtx", AArch64_AM::UXTX) .Case("sxtb", AArch64_AM::SXTB) .Case("sxth", AArch64_AM::SXTH) .Case("sxtw", AArch64_AM::SXTW) .Case("sxtx", AArch64_AM::SXTX) .Default(AArch64_AM::InvalidShiftExtend); if (ShOp == AArch64_AM::InvalidShiftExtend) return MatchOperand_NoMatch; SMLoc S = Tok.getLoc(); Parser.Lex(); bool Hash = getLexer().is(AsmToken::Hash); if (!Hash && getLexer().isNot(AsmToken::Integer)) { if (ShOp == AArch64_AM::LSL || ShOp == AArch64_AM::LSR || ShOp == AArch64_AM::ASR || ShOp == AArch64_AM::ROR || ShOp == AArch64_AM::MSL) { // We expect a number here. TokError("expected #imm after shift specifier"); return MatchOperand_ParseFail; } // "extend" type operatoins don't need an immediate, #0 is implicit. SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back( AArch64Operand::CreateShiftExtend(ShOp, 0, false, S, E, getContext())); return MatchOperand_Success; } if (Hash) Parser.Lex(); // Eat the '#'. // Make sure we do actually have a number if (!Parser.getTok().is(AsmToken::Integer)) { Error(Parser.getTok().getLoc(), "expected integer shift amount"); return MatchOperand_ParseFail; } const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return MatchOperand_ParseFail; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); if (!MCE) { TokError("expected #imm after shift specifier"); return MatchOperand_ParseFail; } SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateShiftExtend( ShOp, MCE->getValue(), true, S, E, getContext())); return MatchOperand_Success; } /// parseSysAlias - The IC, DC, AT, and TLBI instructions are simple aliases for /// the SYS instruction. Parse them specially so that we create a SYS MCInst. bool AArch64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands) { if (Name.find('.') != StringRef::npos) return TokError("invalid operand"); Mnemonic = Name; Operands.push_back( AArch64Operand::CreateToken("sys", false, NameLoc, getContext())); const AsmToken &Tok = Parser.getTok(); StringRef Op = Tok.getString(); SMLoc S = Tok.getLoc(); const MCExpr *Expr = nullptr; #define SYS_ALIAS(op1, Cn, Cm, op2) \ do { \ Expr = MCConstantExpr::Create(op1, getContext()); \ Operands.push_back( \ AArch64Operand::CreateImm(Expr, S, getLoc(), getContext())); \ Operands.push_back( \ AArch64Operand::CreateSysCR(Cn, S, getLoc(), getContext())); \ Operands.push_back( \ AArch64Operand::CreateSysCR(Cm, S, getLoc(), getContext())); \ Expr = MCConstantExpr::Create(op2, getContext()); \ Operands.push_back( \ AArch64Operand::CreateImm(Expr, S, getLoc(), getContext())); \ } while (0) if (Mnemonic == "ic") { if (!Op.compare_lower("ialluis")) { // SYS #0, C7, C1, #0 SYS_ALIAS(0, 7, 1, 0); } else if (!Op.compare_lower("iallu")) { // SYS #0, C7, C5, #0 SYS_ALIAS(0, 7, 5, 0); } else if (!Op.compare_lower("ivau")) { // SYS #3, C7, C5, #1 SYS_ALIAS(3, 7, 5, 1); } else { return TokError("invalid operand for IC instruction"); } } else if (Mnemonic == "dc") { if (!Op.compare_lower("zva")) { // SYS #3, C7, C4, #1 SYS_ALIAS(3, 7, 4, 1); } else if (!Op.compare_lower("ivac")) { // SYS #3, C7, C6, #1 SYS_ALIAS(0, 7, 6, 1); } else if (!Op.compare_lower("isw")) { // SYS #0, C7, C6, #2 SYS_ALIAS(0, 7, 6, 2); } else if (!Op.compare_lower("cvac")) { // SYS #3, C7, C10, #1 SYS_ALIAS(3, 7, 10, 1); } else if (!Op.compare_lower("csw")) { // SYS #0, C7, C10, #2 SYS_ALIAS(0, 7, 10, 2); } else if (!Op.compare_lower("cvau")) { // SYS #3, C7, C11, #1 SYS_ALIAS(3, 7, 11, 1); } else if (!Op.compare_lower("civac")) { // SYS #3, C7, C14, #1 SYS_ALIAS(3, 7, 14, 1); } else if (!Op.compare_lower("cisw")) { // SYS #0, C7, C14, #2 SYS_ALIAS(0, 7, 14, 2); } else { return TokError("invalid operand for DC instruction"); } } else if (Mnemonic == "at") { if (!Op.compare_lower("s1e1r")) { // SYS #0, C7, C8, #0 SYS_ALIAS(0, 7, 8, 0); } else if (!Op.compare_lower("s1e2r")) { // SYS #4, C7, C8, #0 SYS_ALIAS(4, 7, 8, 0); } else if (!Op.compare_lower("s1e3r")) { // SYS #6, C7, C8, #0 SYS_ALIAS(6, 7, 8, 0); } else if (!Op.compare_lower("s1e1w")) { // SYS #0, C7, C8, #1 SYS_ALIAS(0, 7, 8, 1); } else if (!Op.compare_lower("s1e2w")) { // SYS #4, C7, C8, #1 SYS_ALIAS(4, 7, 8, 1); } else if (!Op.compare_lower("s1e3w")) { // SYS #6, C7, C8, #1 SYS_ALIAS(6, 7, 8, 1); } else if (!Op.compare_lower("s1e0r")) { // SYS #0, C7, C8, #3 SYS_ALIAS(0, 7, 8, 2); } else if (!Op.compare_lower("s1e0w")) { // SYS #0, C7, C8, #3 SYS_ALIAS(0, 7, 8, 3); } else if (!Op.compare_lower("s12e1r")) { // SYS #4, C7, C8, #4 SYS_ALIAS(4, 7, 8, 4); } else if (!Op.compare_lower("s12e1w")) { // SYS #4, C7, C8, #5 SYS_ALIAS(4, 7, 8, 5); } else if (!Op.compare_lower("s12e0r")) { // SYS #4, C7, C8, #6 SYS_ALIAS(4, 7, 8, 6); } else if (!Op.compare_lower("s12e0w")) { // SYS #4, C7, C8, #7 SYS_ALIAS(4, 7, 8, 7); } else { return TokError("invalid operand for AT instruction"); } } else if (Mnemonic == "tlbi") { if (!Op.compare_lower("vmalle1is")) { // SYS #0, C8, C3, #0 SYS_ALIAS(0, 8, 3, 0); } else if (!Op.compare_lower("alle2is")) { // SYS #4, C8, C3, #0 SYS_ALIAS(4, 8, 3, 0); } else if (!Op.compare_lower("alle3is")) { // SYS #6, C8, C3, #0 SYS_ALIAS(6, 8, 3, 0); } else if (!Op.compare_lower("vae1is")) { // SYS #0, C8, C3, #1 SYS_ALIAS(0, 8, 3, 1); } else if (!Op.compare_lower("vae2is")) { // SYS #4, C8, C3, #1 SYS_ALIAS(4, 8, 3, 1); } else if (!Op.compare_lower("vae3is")) { // SYS #6, C8, C3, #1 SYS_ALIAS(6, 8, 3, 1); } else if (!Op.compare_lower("aside1is")) { // SYS #0, C8, C3, #2 SYS_ALIAS(0, 8, 3, 2); } else if (!Op.compare_lower("vaae1is")) { // SYS #0, C8, C3, #3 SYS_ALIAS(0, 8, 3, 3); } else if (!Op.compare_lower("alle1is")) { // SYS #4, C8, C3, #4 SYS_ALIAS(4, 8, 3, 4); } else if (!Op.compare_lower("vale1is")) { // SYS #0, C8, C3, #5 SYS_ALIAS(0, 8, 3, 5); } else if (!Op.compare_lower("vaale1is")) { // SYS #0, C8, C3, #7 SYS_ALIAS(0, 8, 3, 7); } else if (!Op.compare_lower("vmalle1")) { // SYS #0, C8, C7, #0 SYS_ALIAS(0, 8, 7, 0); } else if (!Op.compare_lower("alle2")) { // SYS #4, C8, C7, #0 SYS_ALIAS(4, 8, 7, 0); } else if (!Op.compare_lower("vale2is")) { // SYS #4, C8, C3, #5 SYS_ALIAS(4, 8, 3, 5); } else if (!Op.compare_lower("vale3is")) { // SYS #6, C8, C3, #5 SYS_ALIAS(6, 8, 3, 5); } else if (!Op.compare_lower("alle3")) { // SYS #6, C8, C7, #0 SYS_ALIAS(6, 8, 7, 0); } else if (!Op.compare_lower("vae1")) { // SYS #0, C8, C7, #1 SYS_ALIAS(0, 8, 7, 1); } else if (!Op.compare_lower("vae2")) { // SYS #4, C8, C7, #1 SYS_ALIAS(4, 8, 7, 1); } else if (!Op.compare_lower("vae3")) { // SYS #6, C8, C7, #1 SYS_ALIAS(6, 8, 7, 1); } else if (!Op.compare_lower("aside1")) { // SYS #0, C8, C7, #2 SYS_ALIAS(0, 8, 7, 2); } else if (!Op.compare_lower("vaae1")) { // SYS #0, C8, C7, #3 SYS_ALIAS(0, 8, 7, 3); } else if (!Op.compare_lower("alle1")) { // SYS #4, C8, C7, #4 SYS_ALIAS(4, 8, 7, 4); } else if (!Op.compare_lower("vale1")) { // SYS #0, C8, C7, #5 SYS_ALIAS(0, 8, 7, 5); } else if (!Op.compare_lower("vale2")) { // SYS #4, C8, C7, #5 SYS_ALIAS(4, 8, 7, 5); } else if (!Op.compare_lower("vale3")) { // SYS #6, C8, C7, #5 SYS_ALIAS(6, 8, 7, 5); } else if (!Op.compare_lower("vaale1")) { // SYS #0, C8, C7, #7 SYS_ALIAS(0, 8, 7, 7); } else if (!Op.compare_lower("ipas2e1")) { // SYS #4, C8, C4, #1 SYS_ALIAS(4, 8, 4, 1); } else if (!Op.compare_lower("ipas2le1")) { // SYS #4, C8, C4, #5 SYS_ALIAS(4, 8, 4, 5); } else if (!Op.compare_lower("ipas2e1is")) { // SYS #4, C8, C4, #1 SYS_ALIAS(4, 8, 0, 1); } else if (!Op.compare_lower("ipas2le1is")) { // SYS #4, C8, C4, #5 SYS_ALIAS(4, 8, 0, 5); } else if (!Op.compare_lower("vmalls12e1")) { // SYS #4, C8, C7, #6 SYS_ALIAS(4, 8, 7, 6); } else if (!Op.compare_lower("vmalls12e1is")) { // SYS #4, C8, C3, #6 SYS_ALIAS(4, 8, 3, 6); } else { return TokError("invalid operand for TLBI instruction"); } } #undef SYS_ALIAS Parser.Lex(); // Eat operand. bool ExpectRegister = (Op.lower().find("all") == StringRef::npos); bool HasRegister = false; // Check for the optional register operand. if (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat comma. if (Tok.isNot(AsmToken::Identifier) || parseRegister(Operands)) return TokError("expected register operand"); HasRegister = true; } if (getLexer().isNot(AsmToken::EndOfStatement)) { Parser.eatToEndOfStatement(); return TokError("unexpected token in argument list"); } if (ExpectRegister && !HasRegister) { return TokError("specified " + Mnemonic + " op requires a register"); } else if (!ExpectRegister && HasRegister) { return TokError("specified " + Mnemonic + " op does not use a register"); } Parser.Lex(); // Consume the EndOfStatement return false; } AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::tryParseBarrierOperand(OperandVector &Operands) { const AsmToken &Tok = Parser.getTok(); // Can be either a #imm style literal or an option name bool Hash = Tok.is(AsmToken::Hash); if (Hash || Tok.is(AsmToken::Integer)) { // Immediate operand. if (Hash) Parser.Lex(); // Eat the '#' const MCExpr *ImmVal; SMLoc ExprLoc = getLoc(); if (getParser().parseExpression(ImmVal)) return MatchOperand_ParseFail; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); if (!MCE) { Error(ExprLoc, "immediate value expected for barrier operand"); return MatchOperand_ParseFail; } if (MCE->getValue() < 0 || MCE->getValue() > 15) { Error(ExprLoc, "barrier operand out of range"); return MatchOperand_ParseFail; } Operands.push_back( AArch64Operand::CreateBarrier(MCE->getValue(), ExprLoc, getContext())); return MatchOperand_Success; } if (Tok.isNot(AsmToken::Identifier)) { TokError("invalid operand for instruction"); return MatchOperand_ParseFail; } bool Valid; unsigned Opt = AArch64DB::DBarrierMapper().fromString(Tok.getString(), Valid); if (!Valid) { TokError("invalid barrier option name"); return MatchOperand_ParseFail; } // The only valid named option for ISB is 'sy' if (Mnemonic == "isb" && Opt != AArch64DB::SY) { TokError("'sy' or #imm operand expected"); return MatchOperand_ParseFail; } Operands.push_back( AArch64Operand::CreateBarrier(Opt, getLoc(), getContext())); Parser.Lex(); // Consume the option return MatchOperand_Success; } AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::tryParseSysReg(OperandVector &Operands) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return MatchOperand_NoMatch; Operands.push_back(AArch64Operand::CreateSysReg(Tok.getString(), getLoc(), STI.getFeatureBits(), getContext())); Parser.Lex(); // Eat identifier return MatchOperand_Success; } /// tryParseVectorRegister - Parse a vector register operand. bool AArch64AsmParser::tryParseVectorRegister(OperandVector &Operands) { if (Parser.getTok().isNot(AsmToken::Identifier)) return true; SMLoc S = getLoc(); // Check for a vector register specifier first. StringRef Kind; int64_t Reg = tryMatchVectorRegister(Kind, false); if (Reg == -1) return true; Operands.push_back( AArch64Operand::CreateReg(Reg, true, S, getLoc(), getContext())); // If there was an explicit qualifier, that goes on as a literal text // operand. if (!Kind.empty()) Operands.push_back( AArch64Operand::CreateToken(Kind, false, S, getContext())); // If there is an index specifier following the register, parse that too. if (Parser.getTok().is(AsmToken::LBrac)) { SMLoc SIdx = getLoc(); Parser.Lex(); // Eat left bracket token. const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); if (!MCE) { TokError("immediate value expected for vector index"); return false; } SMLoc E = getLoc(); if (Parser.getTok().isNot(AsmToken::RBrac)) { Error(E, "']' expected"); return false; } Parser.Lex(); // Eat right bracket token. Operands.push_back(AArch64Operand::CreateVectorIndex(MCE->getValue(), SIdx, E, getContext())); } return false; } /// parseRegister - Parse a non-vector register operand. bool AArch64AsmParser::parseRegister(OperandVector &Operands) { SMLoc S = getLoc(); // Try for a vector register. if (!tryParseVectorRegister(Operands)) return false; // Try for a scalar register. int64_t Reg = tryParseRegister(); if (Reg == -1) return true; Operands.push_back( AArch64Operand::CreateReg(Reg, false, S, getLoc(), getContext())); // A small number of instructions (FMOVXDhighr, for example) have "[1]" // as a string token in the instruction itself. if (getLexer().getKind() == AsmToken::LBrac) { SMLoc LBracS = getLoc(); Parser.Lex(); const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Integer)) { SMLoc IntS = getLoc(); int64_t Val = Tok.getIntVal(); if (Val == 1) { Parser.Lex(); if (getLexer().getKind() == AsmToken::RBrac) { SMLoc RBracS = getLoc(); Parser.Lex(); Operands.push_back( AArch64Operand::CreateToken("[", false, LBracS, getContext())); Operands.push_back( AArch64Operand::CreateToken("1", false, IntS, getContext())); Operands.push_back( AArch64Operand::CreateToken("]", false, RBracS, getContext())); return false; } } } } return false; } bool AArch64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) { bool HasELFModifier = false; AArch64MCExpr::VariantKind RefKind; if (Parser.getTok().is(AsmToken::Colon)) { Parser.Lex(); // Eat ':" HasELFModifier = true; if (Parser.getTok().isNot(AsmToken::Identifier)) { Error(Parser.getTok().getLoc(), "expect relocation specifier in operand after ':'"); return true; } std::string LowerCase = Parser.getTok().getIdentifier().lower(); RefKind = StringSwitch<AArch64MCExpr::VariantKind>(LowerCase) .Case("lo12", AArch64MCExpr::VK_LO12) .Case("abs_g3", AArch64MCExpr::VK_ABS_G3) .Case("abs_g2", AArch64MCExpr::VK_ABS_G2) .Case("abs_g2_s", AArch64MCExpr::VK_ABS_G2_S) .Case("abs_g2_nc", AArch64MCExpr::VK_ABS_G2_NC) .Case("abs_g1", AArch64MCExpr::VK_ABS_G1) .Case("abs_g1_s", AArch64MCExpr::VK_ABS_G1_S) .Case("abs_g1_nc", AArch64MCExpr::VK_ABS_G1_NC) .Case("abs_g0", AArch64MCExpr::VK_ABS_G0) .Case("abs_g0_s", AArch64MCExpr::VK_ABS_G0_S) .Case("abs_g0_nc", AArch64MCExpr::VK_ABS_G0_NC) .Case("dtprel_g2", AArch64MCExpr::VK_DTPREL_G2) .Case("dtprel_g1", AArch64MCExpr::VK_DTPREL_G1) .Case("dtprel_g1_nc", AArch64MCExpr::VK_DTPREL_G1_NC) .Case("dtprel_g0", AArch64MCExpr::VK_DTPREL_G0) .Case("dtprel_g0_nc", AArch64MCExpr::VK_DTPREL_G0_NC) .Case("dtprel_hi12", AArch64MCExpr::VK_DTPREL_HI12) .Case("dtprel_lo12", AArch64MCExpr::VK_DTPREL_LO12) .Case("dtprel_lo12_nc", AArch64MCExpr::VK_DTPREL_LO12_NC) .Case("tprel_g2", AArch64MCExpr::VK_TPREL_G2) .Case("tprel_g1", AArch64MCExpr::VK_TPREL_G1) .Case("tprel_g1_nc", AArch64MCExpr::VK_TPREL_G1_NC) .Case("tprel_g0", AArch64MCExpr::VK_TPREL_G0) .Case("tprel_g0_nc", AArch64MCExpr::VK_TPREL_G0_NC) .Case("tprel_hi12", AArch64MCExpr::VK_TPREL_HI12) .Case("tprel_lo12", AArch64MCExpr::VK_TPREL_LO12) .Case("tprel_lo12_nc", AArch64MCExpr::VK_TPREL_LO12_NC) .Case("tlsdesc_lo12", AArch64MCExpr::VK_TLSDESC_LO12) .Case("got", AArch64MCExpr::VK_GOT_PAGE) .Case("got_lo12", AArch64MCExpr::VK_GOT_LO12) .Case("gottprel", AArch64MCExpr::VK_GOTTPREL_PAGE) .Case("gottprel_lo12", AArch64MCExpr::VK_GOTTPREL_LO12_NC) .Case("gottprel_g1", AArch64MCExpr::VK_GOTTPREL_G1) .Case("gottprel_g0_nc", AArch64MCExpr::VK_GOTTPREL_G0_NC) .Case("tlsdesc", AArch64MCExpr::VK_TLSDESC_PAGE) .Default(AArch64MCExpr::VK_INVALID); if (RefKind == AArch64MCExpr::VK_INVALID) { Error(Parser.getTok().getLoc(), "expect relocation specifier in operand after ':'"); return true; } Parser.Lex(); // Eat identifier if (Parser.getTok().isNot(AsmToken::Colon)) { Error(Parser.getTok().getLoc(), "expect ':' after relocation specifier"); return true; } Parser.Lex(); // Eat ':' } if (getParser().parseExpression(ImmVal)) return true; if (HasELFModifier) ImmVal = AArch64MCExpr::Create(ImmVal, RefKind, getContext()); return false; } /// parseVectorList - Parse a vector list operand for AdvSIMD instructions. bool AArch64AsmParser::parseVectorList(OperandVector &Operands) { assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not a Left Bracket"); SMLoc S = getLoc(); Parser.Lex(); // Eat left bracket token. StringRef Kind; int64_t FirstReg = tryMatchVectorRegister(Kind, true); if (FirstReg == -1) return true; int64_t PrevReg = FirstReg; unsigned Count = 1; if (Parser.getTok().is(AsmToken::Minus)) { Parser.Lex(); // Eat the minus. SMLoc Loc = getLoc(); StringRef NextKind; int64_t Reg = tryMatchVectorRegister(NextKind, true); if (Reg == -1) return true; // Any Kind suffices must match on all regs in the list. if (Kind != NextKind) return Error(Loc, "mismatched register size suffix"); unsigned Space = (PrevReg < Reg) ? (Reg - PrevReg) : (Reg + 32 - PrevReg); if (Space == 0 || Space > 3) { return Error(Loc, "invalid number of vectors"); } Count += Space; } else { while (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma token. SMLoc Loc = getLoc(); StringRef NextKind; int64_t Reg = tryMatchVectorRegister(NextKind, true); if (Reg == -1) return true; // Any Kind suffices must match on all regs in the list. if (Kind != NextKind) return Error(Loc, "mismatched register size suffix"); // Registers must be incremental (with wraparound at 31) if (getContext().getRegisterInfo()->getEncodingValue(Reg) != (getContext().getRegisterInfo()->getEncodingValue(PrevReg) + 1) % 32) return Error(Loc, "registers must be sequential"); PrevReg = Reg; ++Count; } } if (Parser.getTok().isNot(AsmToken::RCurly)) return Error(getLoc(), "'}' expected"); Parser.Lex(); // Eat the '}' token. if (Count > 4) return Error(S, "invalid number of vectors"); unsigned NumElements = 0; char ElementKind = 0; if (!Kind.empty()) parseValidVectorKind(Kind, NumElements, ElementKind); Operands.push_back(AArch64Operand::CreateVectorList( FirstReg, Count, NumElements, ElementKind, S, getLoc(), getContext())); // If there is an index specifier following the list, parse that too. if (Parser.getTok().is(AsmToken::LBrac)) { SMLoc SIdx = getLoc(); Parser.Lex(); // Eat left bracket token. const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return false; const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); if (!MCE) { TokError("immediate value expected for vector index"); return false; } SMLoc E = getLoc(); if (Parser.getTok().isNot(AsmToken::RBrac)) { Error(E, "']' expected"); return false; } Parser.Lex(); // Eat right bracket token. Operands.push_back(AArch64Operand::CreateVectorIndex(MCE->getValue(), SIdx, E, getContext())); } return false; } AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::tryParseGPR64sp0Operand(OperandVector &Operands) { const AsmToken &Tok = Parser.getTok(); if (!Tok.is(AsmToken::Identifier)) return MatchOperand_NoMatch; unsigned RegNum = matchRegisterNameAlias(Tok.getString().lower(), false); MCContext &Ctx = getContext(); const MCRegisterInfo *RI = Ctx.getRegisterInfo(); if (!RI->getRegClass(AArch64::GPR64spRegClassID).contains(RegNum)) return MatchOperand_NoMatch; SMLoc S = getLoc(); Parser.Lex(); // Eat register if (Parser.getTok().isNot(AsmToken::Comma)) { Operands.push_back( AArch64Operand::CreateReg(RegNum, false, S, getLoc(), Ctx)); return MatchOperand_Success; } Parser.Lex(); // Eat comma. if (Parser.getTok().is(AsmToken::Hash)) Parser.Lex(); // Eat hash if (Parser.getTok().isNot(AsmToken::Integer)) { Error(getLoc(), "index must be absent or #0"); return MatchOperand_ParseFail; } const MCExpr *ImmVal; if (Parser.parseExpression(ImmVal) || !isa<MCConstantExpr>(ImmVal) || cast<MCConstantExpr>(ImmVal)->getValue() != 0) { Error(getLoc(), "index must be absent or #0"); return MatchOperand_ParseFail; } Operands.push_back( AArch64Operand::CreateReg(RegNum, false, S, getLoc(), Ctx)); return MatchOperand_Success; } /// parseOperand - Parse a arm instruction operand. For now this parses the /// operand regardless of the mnemonic. bool AArch64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode, bool invertCondCode) { // Check if the current operand has a custom associated parser, if so, try to // custom parse the operand, or fallback to the general approach. OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); if (ResTy == MatchOperand_Success) return false; // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (ResTy == MatchOperand_ParseFail) return true; // Nothing custom, so do general case parsing. SMLoc S, E; switch (getLexer().getKind()) { default: { SMLoc S = getLoc(); const MCExpr *Expr; if (parseSymbolicImmVal(Expr)) return Error(S, "invalid operand"); SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext())); return false; } case AsmToken::LBrac: { SMLoc Loc = Parser.getTok().getLoc(); Operands.push_back(AArch64Operand::CreateToken("[", false, Loc, getContext())); Parser.Lex(); // Eat '[' // There's no comma after a '[', so we can parse the next operand // immediately. return parseOperand(Operands, false, false); } case AsmToken::LCurly: return parseVectorList(Operands); case AsmToken::Identifier: { // If we're expecting a Condition Code operand, then just parse that. if (isCondCode) return parseCondCode(Operands, invertCondCode); // If it's a register name, parse it. if (!parseRegister(Operands)) return false; // This could be an optional "shift" or "extend" operand. OperandMatchResultTy GotShift = tryParseOptionalShiftExtend(Operands); // We can only continue if no tokens were eaten. if (GotShift != MatchOperand_NoMatch) return GotShift; // This was not a register so parse other operands that start with an // identifier (like labels) as expressions and create them as immediates. const MCExpr *IdVal; S = getLoc(); if (getParser().parseExpression(IdVal)) return true; E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateImm(IdVal, S, E, getContext())); return false; } case AsmToken::Integer: case AsmToken::Real: case AsmToken::Hash: { // #42 -> immediate. S = getLoc(); if (getLexer().is(AsmToken::Hash)) Parser.Lex(); // Parse a negative sign bool isNegative = false; if (Parser.getTok().is(AsmToken::Minus)) { isNegative = true; // We need to consume this token only when we have a Real, otherwise // we let parseSymbolicImmVal take care of it if (Parser.getLexer().peekTok().is(AsmToken::Real)) Parser.Lex(); } // The only Real that should come through here is a literal #0.0 for // the fcmp[e] r, #0.0 instructions. They expect raw token operands, // so convert the value. const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Real)) { APFloat RealVal(APFloat::IEEEdouble, Tok.getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); if (Mnemonic != "fcmp" && Mnemonic != "fcmpe" && Mnemonic != "fcmeq" && Mnemonic != "fcmge" && Mnemonic != "fcmgt" && Mnemonic != "fcmle" && Mnemonic != "fcmlt") return TokError("unexpected floating point literal"); else if (IntVal != 0 || isNegative) return TokError("expected floating-point constant #0.0"); Parser.Lex(); // Eat the token. Operands.push_back( AArch64Operand::CreateToken("#0", false, S, getContext())); Operands.push_back( AArch64Operand::CreateToken(".0", false, S, getContext())); return false; } const MCExpr *ImmVal; if (parseSymbolicImmVal(ImmVal)) return true; E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateImm(ImmVal, S, E, getContext())); return false; } case AsmToken::Equal: { SMLoc Loc = Parser.getTok().getLoc(); if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) return Error(Loc, "unexpected token in operand"); Parser.Lex(); // Eat '=' const MCExpr *SubExprVal; if (getParser().parseExpression(SubExprVal)) return true; MCContext& Ctx = getContext(); E = SMLoc::getFromPointer(Loc.getPointer() - 1); // If the op is an imm and can be fit into a mov, then replace ldr with mov. if (isa<MCConstantExpr>(SubExprVal) && Operands.size() >= 2 && static_cast<AArch64Operand &>(*Operands[1]).isReg()) { bool IsXReg = AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Operands[1]->getReg()); uint64_t Imm = (cast<MCConstantExpr>(SubExprVal))->getValue(); uint32_t ShiftAmt = 0, MaxShiftAmt = IsXReg ? 48 : 16; while(Imm > 0xFFFF && countTrailingZeros(Imm) >= 16) { ShiftAmt += 16; Imm >>= 16; } if (ShiftAmt <= MaxShiftAmt && Imm <= 0xFFFF) { Operands[0] = AArch64Operand::CreateToken("movz", false, Loc, Ctx); Operands.push_back(AArch64Operand::CreateImm( MCConstantExpr::Create(Imm, Ctx), S, E, Ctx)); if (ShiftAmt) Operands.push_back(AArch64Operand::CreateShiftExtend(AArch64_AM::LSL, ShiftAmt, true, S, E, Ctx)); return false; } } // If it is a label or an imm that cannot fit in a movz, put it into CP. const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal); Operands.push_back(AArch64Operand::CreateImm(CPLoc, S, E, Ctx)); return false; } } } /// ParseInstruction - Parse an AArch64 instruction mnemonic followed by its /// operands. bool AArch64AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { Name = StringSwitch<StringRef>(Name.lower()) .Case("beq", "b.eq") .Case("bne", "b.ne") .Case("bhs", "b.hs") .Case("bcs", "b.cs") .Case("blo", "b.lo") .Case("bcc", "b.cc") .Case("bmi", "b.mi") .Case("bpl", "b.pl") .Case("bvs", "b.vs") .Case("bvc", "b.vc") .Case("bhi", "b.hi") .Case("bls", "b.ls") .Case("bge", "b.ge") .Case("blt", "b.lt") .Case("bgt", "b.gt") .Case("ble", "b.le") .Case("bal", "b.al") .Case("bnv", "b.nv") .Default(Name); // First check for the AArch64-specific .req directive. if (Parser.getTok().is(AsmToken::Identifier) && Parser.getTok().getIdentifier() == ".req") { parseDirectiveReq(Name, NameLoc); // We always return 'error' for this, as we're done with this // statement and don't need to match the 'instruction." return true; } // Create the leading tokens for the mnemonic, split by '.' characters. size_t Start = 0, Next = Name.find('.'); StringRef Head = Name.slice(Start, Next); // IC, DC, AT, and TLBI instructions are aliases for the SYS instruction. if (Head == "ic" || Head == "dc" || Head == "at" || Head == "tlbi") { bool IsError = parseSysAlias(Head, NameLoc, Operands); if (IsError && getLexer().isNot(AsmToken::EndOfStatement)) Parser.eatToEndOfStatement(); return IsError; } Operands.push_back( AArch64Operand::CreateToken(Head, false, NameLoc, getContext())); Mnemonic = Head; // Handle condition codes for a branch mnemonic if (Head == "b" && Next != StringRef::npos) { Start = Next; Next = Name.find('.', Start + 1); Head = Name.slice(Start + 1, Next); SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() + (Head.data() - Name.data())); AArch64CC::CondCode CC = parseCondCodeString(Head); if (CC == AArch64CC::Invalid) return Error(SuffixLoc, "invalid condition code"); Operands.push_back( AArch64Operand::CreateToken(".", true, SuffixLoc, getContext())); Operands.push_back( AArch64Operand::CreateCondCode(CC, NameLoc, NameLoc, getContext())); } // Add the remaining tokens in the mnemonic. while (Next != StringRef::npos) { Start = Next; Next = Name.find('.', Start + 1); Head = Name.slice(Start, Next); SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() + (Head.data() - Name.data()) + 1); Operands.push_back( AArch64Operand::CreateToken(Head, true, SuffixLoc, getContext())); } // Conditional compare instructions have a Condition Code operand, which needs // to be parsed and an immediate operand created. bool condCodeFourthOperand = (Head == "ccmp" || Head == "ccmn" || Head == "fccmp" || Head == "fccmpe" || Head == "fcsel" || Head == "csel" || Head == "csinc" || Head == "csinv" || Head == "csneg"); // These instructions are aliases to some of the conditional select // instructions. However, the condition code is inverted in the aliased // instruction. // // FIXME: Is this the correct way to handle these? Or should the parser // generate the aliased instructions directly? bool condCodeSecondOperand = (Head == "cset" || Head == "csetm"); bool condCodeThirdOperand = (Head == "cinc" || Head == "cinv" || Head == "cneg"); // Read the remaining operands. if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (parseOperand(Operands, false, false)) { Parser.eatToEndOfStatement(); return true; } unsigned N = 2; while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (parseOperand(Operands, (N == 4 && condCodeFourthOperand) || (N == 3 && condCodeThirdOperand) || (N == 2 && condCodeSecondOperand), condCodeSecondOperand || condCodeThirdOperand)) { Parser.eatToEndOfStatement(); return true; } // After successfully parsing some operands there are two special cases to // consider (i.e. notional operands not separated by commas). Both are due // to memory specifiers: // + An RBrac will end an address for load/store/prefetch // + An '!' will indicate a pre-indexed operation. // // It's someone else's responsibility to make sure these tokens are sane // in the given context! if (Parser.getTok().is(AsmToken::RBrac)) { SMLoc Loc = Parser.getTok().getLoc(); Operands.push_back(AArch64Operand::CreateToken("]", false, Loc, getContext())); Parser.Lex(); } if (Parser.getTok().is(AsmToken::Exclaim)) { SMLoc Loc = Parser.getTok().getLoc(); Operands.push_back(AArch64Operand::CreateToken("!", false, Loc, getContext())); Parser.Lex(); } ++N; } } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = Parser.getTok().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } Parser.Lex(); // Consume the EndOfStatement return false; } // FIXME: This entire function is a giant hack to provide us with decent // operand range validation/diagnostics until TableGen/MC can be extended // to support autogeneration of this kind of validation. bool AArch64AsmParser::validateInstruction(MCInst &Inst, SmallVectorImpl<SMLoc> &Loc) { const MCRegisterInfo *RI = getContext().getRegisterInfo(); // Check for indexed addressing modes w/ the base register being the // same as a destination/source register or pair load where // the Rt == Rt2. All of those are undefined behaviour. switch (Inst.getOpcode()) { case AArch64::LDPSWpre: case AArch64::LDPWpost: case AArch64::LDPWpre: case AArch64::LDPXpost: case AArch64::LDPXpre: { unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rt2 = Inst.getOperand(2).getReg(); unsigned Rn = Inst.getOperand(3).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable LDP instruction, writeback base " "is also a destination"); if (RI->isSubRegisterEq(Rn, Rt2)) return Error(Loc[1], "unpredictable LDP instruction, writeback base " "is also a destination"); // FALLTHROUGH } case AArch64::LDPDi: case AArch64::LDPQi: case AArch64::LDPSi: case AArch64::LDPSWi: case AArch64::LDPWi: case AArch64::LDPXi: { unsigned Rt = Inst.getOperand(0).getReg(); unsigned Rt2 = Inst.getOperand(1).getReg(); if (Rt == Rt2) return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt"); break; } case AArch64::LDPDpost: case AArch64::LDPDpre: case AArch64::LDPQpost: case AArch64::LDPQpre: case AArch64::LDPSpost: case AArch64::LDPSpre: case AArch64::LDPSWpost: { unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rt2 = Inst.getOperand(2).getReg(); if (Rt == Rt2) return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt"); break; } case AArch64::STPDpost: case AArch64::STPDpre: case AArch64::STPQpost: case AArch64::STPQpre: case AArch64::STPSpost: case AArch64::STPSpre: case AArch64::STPWpost: case AArch64::STPWpre: case AArch64::STPXpost: case AArch64::STPXpre: { unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rt2 = Inst.getOperand(2).getReg(); unsigned Rn = Inst.getOperand(3).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable STP instruction, writeback base " "is also a source"); if (RI->isSubRegisterEq(Rn, Rt2)) return Error(Loc[1], "unpredictable STP instruction, writeback base " "is also a source"); break; } case AArch64::LDRBBpre: case AArch64::LDRBpre: case AArch64::LDRHHpre: case AArch64::LDRHpre: case AArch64::LDRSBWpre: case AArch64::LDRSBXpre: case AArch64::LDRSHWpre: case AArch64::LDRSHXpre: case AArch64::LDRSWpre: case AArch64::LDRWpre: case AArch64::LDRXpre: case AArch64::LDRBBpost: case AArch64::LDRBpost: case AArch64::LDRHHpost: case AArch64::LDRHpost: case AArch64::LDRSBWpost: case AArch64::LDRSBXpost: case AArch64::LDRSHWpost: case AArch64::LDRSHXpost: case AArch64::LDRSWpost: case AArch64::LDRWpost: case AArch64::LDRXpost: { unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rn = Inst.getOperand(2).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable LDR instruction, writeback base " "is also a source"); break; } case AArch64::STRBBpost: case AArch64::STRBpost: case AArch64::STRHHpost: case AArch64::STRHpost: case AArch64::STRWpost: case AArch64::STRXpost: case AArch64::STRBBpre: case AArch64::STRBpre: case AArch64::STRHHpre: case AArch64::STRHpre: case AArch64::STRWpre: case AArch64::STRXpre: { unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rn = Inst.getOperand(2).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable STR instruction, writeback base " "is also a source"); break; } } // Now check immediate ranges. Separate from the above as there is overlap // in the instructions being checked and this keeps the nested conditionals // to a minimum. switch (Inst.getOpcode()) { case AArch64::ADDSWri: case AArch64::ADDSXri: case AArch64::ADDWri: case AArch64::ADDXri: case AArch64::SUBSWri: case AArch64::SUBSXri: case AArch64::SUBWri: case AArch64::SUBXri: { // Annoyingly we can't do this in the isAddSubImm predicate, so there is // some slight duplication here. if (Inst.getOperand(2).isExpr()) { const MCExpr *Expr = Inst.getOperand(2).getExpr(); AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (!classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { return Error(Loc[2], "invalid immediate expression"); } // Only allow these with ADDXri. if ((DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) && Inst.getOpcode() == AArch64::ADDXri) return false; // Only allow these with ADDXri/ADDWri if ((ELFRefKind == AArch64MCExpr::VK_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TPREL_HI12 || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12) && (Inst.getOpcode() == AArch64::ADDXri || Inst.getOpcode() == AArch64::ADDWri)) return false; // Don't allow expressions in the immediate field otherwise return Error(Loc[2], "invalid immediate expression"); } return false; } default: return false; } } bool AArch64AsmParser::showMatchError(SMLoc Loc, unsigned ErrCode) { switch (ErrCode) { case Match_MissingFeature: return Error(Loc, "instruction requires a CPU feature not currently enabled"); case Match_InvalidOperand: return Error(Loc, "invalid operand for instruction"); case Match_InvalidSuffix: return Error(Loc, "invalid type suffix for instruction"); case Match_InvalidCondCode: return Error(Loc, "expected AArch64 condition code"); case Match_AddSubRegExtendSmall: return Error(Loc, "expected '[su]xt[bhw]' or 'lsl' with optional integer in range [0, 4]"); case Match_AddSubRegExtendLarge: return Error(Loc, "expected 'sxtx' 'uxtx' or 'lsl' with optional integer in range [0, 4]"); case Match_AddSubSecondSource: return Error(Loc, "expected compatible register, symbol or integer in range [0, 4095]"); case Match_LogicalSecondSource: return Error(Loc, "expected compatible register or logical immediate"); case Match_InvalidMovImm32Shift: return Error(Loc, "expected 'lsl' with optional integer 0 or 16"); case Match_InvalidMovImm64Shift: return Error(Loc, "expected 'lsl' with optional integer 0, 16, 32 or 48"); case Match_AddSubRegShift32: return Error(Loc, "expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 31]"); case Match_AddSubRegShift64: return Error(Loc, "expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 63]"); case Match_InvalidFPImm: return Error(Loc, "expected compatible register or floating-point constant"); case Match_InvalidMemoryIndexedSImm9: return Error(Loc, "index must be an integer in range [-256, 255]."); case Match_InvalidMemoryIndexed4SImm7: return Error(Loc, "index must be a multiple of 4 in range [-256, 252]."); case Match_InvalidMemoryIndexed8SImm7: return Error(Loc, "index must be a multiple of 8 in range [-512, 504]."); case Match_InvalidMemoryIndexed16SImm7: return Error(Loc, "index must be a multiple of 16 in range [-1024, 1008]."); case Match_InvalidMemoryWExtend8: return Error(Loc, "expected 'uxtw' or 'sxtw' with optional shift of #0"); case Match_InvalidMemoryWExtend16: return Error(Loc, "expected 'uxtw' or 'sxtw' with optional shift of #0 or #1"); case Match_InvalidMemoryWExtend32: return Error(Loc, "expected 'uxtw' or 'sxtw' with optional shift of #0 or #2"); case Match_InvalidMemoryWExtend64: return Error(Loc, "expected 'uxtw' or 'sxtw' with optional shift of #0 or #3"); case Match_InvalidMemoryWExtend128: return Error(Loc, "expected 'uxtw' or 'sxtw' with optional shift of #0 or #4"); case Match_InvalidMemoryXExtend8: return Error(Loc, "expected 'lsl' or 'sxtx' with optional shift of #0"); case Match_InvalidMemoryXExtend16: return Error(Loc, "expected 'lsl' or 'sxtx' with optional shift of #0 or #1"); case Match_InvalidMemoryXExtend32: return Error(Loc, "expected 'lsl' or 'sxtx' with optional shift of #0 or #2"); case Match_InvalidMemoryXExtend64: return Error(Loc, "expected 'lsl' or 'sxtx' with optional shift of #0 or #3"); case Match_InvalidMemoryXExtend128: return Error(Loc, "expected 'lsl' or 'sxtx' with optional shift of #0 or #4"); case Match_InvalidMemoryIndexed1: return Error(Loc, "index must be an integer in range [0, 4095]."); case Match_InvalidMemoryIndexed2: return Error(Loc, "index must be a multiple of 2 in range [0, 8190]."); case Match_InvalidMemoryIndexed4: return Error(Loc, "index must be a multiple of 4 in range [0, 16380]."); case Match_InvalidMemoryIndexed8: return Error(Loc, "index must be a multiple of 8 in range [0, 32760]."); case Match_InvalidMemoryIndexed16: return Error(Loc, "index must be a multiple of 16 in range [0, 65520]."); case Match_InvalidImm0_7: return Error(Loc, "immediate must be an integer in range [0, 7]."); case Match_InvalidImm0_15: return Error(Loc, "immediate must be an integer in range [0, 15]."); case Match_InvalidImm0_31: return Error(Loc, "immediate must be an integer in range [0, 31]."); case Match_InvalidImm0_63: return Error(Loc, "immediate must be an integer in range [0, 63]."); case Match_InvalidImm0_127: return Error(Loc, "immediate must be an integer in range [0, 127]."); case Match_InvalidImm0_65535: return Error(Loc, "immediate must be an integer in range [0, 65535]."); case Match_InvalidImm1_8: return Error(Loc, "immediate must be an integer in range [1, 8]."); case Match_InvalidImm1_16: return Error(Loc, "immediate must be an integer in range [1, 16]."); case Match_InvalidImm1_32: return Error(Loc, "immediate must be an integer in range [1, 32]."); case Match_InvalidImm1_64: return Error(Loc, "immediate must be an integer in range [1, 64]."); case Match_InvalidIndex1: return Error(Loc, "expected lane specifier '[1]'"); case Match_InvalidIndexB: return Error(Loc, "vector lane must be an integer in range [0, 15]."); case Match_InvalidIndexH: return Error(Loc, "vector lane must be an integer in range [0, 7]."); case Match_InvalidIndexS: return Error(Loc, "vector lane must be an integer in range [0, 3]."); case Match_InvalidIndexD: return Error(Loc, "vector lane must be an integer in range [0, 1]."); case Match_InvalidLabel: return Error(Loc, "expected label or encodable integer pc offset"); case Match_MRS: return Error(Loc, "expected readable system register"); case Match_MSR: return Error(Loc, "expected writable system register or pstate"); case Match_MnemonicFail: return Error(Loc, "unrecognized instruction mnemonic"); default: llvm_unreachable("unexpected error code!"); } } static const char *getSubtargetFeatureName(unsigned Val); bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, unsigned &ErrorInfo, bool MatchingInlineAsm) { assert(!Operands.empty() && "Unexpect empty operand list!"); AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[0]); assert(Op.isToken() && "Leading operand should always be a mnemonic!"); StringRef Tok = Op.getToken(); unsigned NumOperands = Operands.size(); if (NumOperands == 4 && Tok == "lsl") { AArch64Operand &Op2 = static_cast<AArch64Operand &>(*Operands[2]); AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]); if (Op2.isReg() && Op3.isImm()) { const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm()); if (Op3CE) { uint64_t Op3Val = Op3CE->getValue(); uint64_t NewOp3Val = 0; uint64_t NewOp4Val = 0; if (AArch64MCRegisterClasses[AArch64::GPR32allRegClassID].contains( Op2.getReg())) { NewOp3Val = (32 - Op3Val) & 0x1f; NewOp4Val = 31 - Op3Val; } else { NewOp3Val = (64 - Op3Val) & 0x3f; NewOp4Val = 63 - Op3Val; } const MCExpr *NewOp3 = MCConstantExpr::Create(NewOp3Val, getContext()); const MCExpr *NewOp4 = MCConstantExpr::Create(NewOp4Val, getContext()); Operands[0] = AArch64Operand::CreateToken( "ubfm", false, Op.getStartLoc(), getContext()); Operands.push_back(AArch64Operand::CreateImm( NewOp4, Op3.getStartLoc(), Op3.getEndLoc(), getContext())); Operands[3] = AArch64Operand::CreateImm(NewOp3, Op3.getStartLoc(), Op3.getEndLoc(), getContext()); } } } else if (NumOperands == 5) { // FIXME: Horrible hack to handle the BFI -> BFM, SBFIZ->SBFM, and // UBFIZ -> UBFM aliases. if (Tok == "bfi" || Tok == "sbfiz" || Tok == "ubfiz") { AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]); AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]); AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]); if (Op1.isReg() && Op3.isImm() && Op4.isImm()) { const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm()); const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm()); if (Op3CE && Op4CE) { uint64_t Op3Val = Op3CE->getValue(); uint64_t Op4Val = Op4CE->getValue(); uint64_t RegWidth = 0; if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Op1.getReg())) RegWidth = 64; else RegWidth = 32; if (Op3Val >= RegWidth) return Error(Op3.getStartLoc(), "expected integer in range [0, 31]"); if (Op4Val < 1 || Op4Val > RegWidth) return Error(Op4.getStartLoc(), "expected integer in range [1, 32]"); uint64_t NewOp3Val = 0; if (AArch64MCRegisterClasses[AArch64::GPR32allRegClassID].contains( Op1.getReg())) NewOp3Val = (32 - Op3Val) & 0x1f; else NewOp3Val = (64 - Op3Val) & 0x3f; uint64_t NewOp4Val = Op4Val - 1; if (NewOp3Val != 0 && NewOp4Val >= NewOp3Val) return Error(Op4.getStartLoc(), "requested insert overflows register"); const MCExpr *NewOp3 = MCConstantExpr::Create(NewOp3Val, getContext()); const MCExpr *NewOp4 = MCConstantExpr::Create(NewOp4Val, getContext()); Operands[3] = AArch64Operand::CreateImm( NewOp3, Op3.getStartLoc(), Op3.getEndLoc(), getContext()); Operands[4] = AArch64Operand::CreateImm( NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext()); if (Tok == "bfi") Operands[0] = AArch64Operand::CreateToken( "bfm", false, Op.getStartLoc(), getContext()); else if (Tok == "sbfiz") Operands[0] = AArch64Operand::CreateToken( "sbfm", false, Op.getStartLoc(), getContext()); else if (Tok == "ubfiz") Operands[0] = AArch64Operand::CreateToken( "ubfm", false, Op.getStartLoc(), getContext()); else llvm_unreachable("No valid mnemonic for alias?"); } } // FIXME: Horrible hack to handle the BFXIL->BFM, SBFX->SBFM, and // UBFX -> UBFM aliases. } else if (NumOperands == 5 && (Tok == "bfxil" || Tok == "sbfx" || Tok == "ubfx")) { AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]); AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]); AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]); if (Op1.isReg() && Op3.isImm() && Op4.isImm()) { const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm()); const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm()); if (Op3CE && Op4CE) { uint64_t Op3Val = Op3CE->getValue(); uint64_t Op4Val = Op4CE->getValue(); uint64_t RegWidth = 0; if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Op1.getReg())) RegWidth = 64; else RegWidth = 32; if (Op3Val >= RegWidth) return Error(Op3.getStartLoc(), "expected integer in range [0, 31]"); if (Op4Val < 1 || Op4Val > RegWidth) return Error(Op4.getStartLoc(), "expected integer in range [1, 32]"); uint64_t NewOp4Val = Op3Val + Op4Val - 1; if (NewOp4Val >= RegWidth || NewOp4Val < Op3Val) return Error(Op4.getStartLoc(), "requested extract overflows register"); const MCExpr *NewOp4 = MCConstantExpr::Create(NewOp4Val, getContext()); Operands[4] = AArch64Operand::CreateImm( NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext()); if (Tok == "bfxil") Operands[0] = AArch64Operand::CreateToken( "bfm", false, Op.getStartLoc(), getContext()); else if (Tok == "sbfx") Operands[0] = AArch64Operand::CreateToken( "sbfm", false, Op.getStartLoc(), getContext()); else if (Tok == "ubfx") Operands[0] = AArch64Operand::CreateToken( "ubfm", false, Op.getStartLoc(), getContext()); else llvm_unreachable("No valid mnemonic for alias?"); } } } } // FIXME: Horrible hack for sxtw and uxtw with Wn src and Xd dst operands. // InstAlias can't quite handle this since the reg classes aren't // subclasses. if (NumOperands == 3 && (Tok == "sxtw" || Tok == "uxtw")) { // The source register can be Wn here, but the matcher expects a // GPR64. Twiddle it here if necessary. AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]); if (Op.isReg()) { unsigned Reg = getXRegFromWReg(Op.getReg()); Operands[2] = AArch64Operand::CreateReg(Reg, false, Op.getStartLoc(), Op.getEndLoc(), getContext()); } } // FIXME: Likewise for sxt[bh] with a Xd dst operand else if (NumOperands == 3 && (Tok == "sxtb" || Tok == "sxth")) { AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]); if (Op.isReg() && AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Op.getReg())) { // The source register can be Wn here, but the matcher expects a // GPR64. Twiddle it here if necessary. AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]); if (Op.isReg()) { unsigned Reg = getXRegFromWReg(Op.getReg()); Operands[2] = AArch64Operand::CreateReg(Reg, false, Op.getStartLoc(), Op.getEndLoc(), getContext()); } } } // FIXME: Likewise for uxt[bh] with a Xd dst operand else if (NumOperands == 3 && (Tok == "uxtb" || Tok == "uxth")) { AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]); if (Op.isReg() && AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Op.getReg())) { // The source register can be Wn here, but the matcher expects a // GPR32. Twiddle it here if necessary. AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]); if (Op.isReg()) { unsigned Reg = getWRegFromXReg(Op.getReg()); Operands[1] = AArch64Operand::CreateReg(Reg, false, Op.getStartLoc(), Op.getEndLoc(), getContext()); } } } // Yet another horrible hack to handle FMOV Rd, #0.0 using [WX]ZR. if (NumOperands == 3 && Tok == "fmov") { AArch64Operand &RegOp = static_cast<AArch64Operand &>(*Operands[1]); AArch64Operand &ImmOp = static_cast<AArch64Operand &>(*Operands[2]); if (RegOp.isReg() && ImmOp.isFPImm() && ImmOp.getFPImm() == (unsigned)-1) { unsigned zreg = AArch64MCRegisterClasses[AArch64::FPR32RegClassID].contains( RegOp.getReg()) ? AArch64::WZR : AArch64::XZR; Operands[2] = AArch64Operand::CreateReg(zreg, false, Op.getStartLoc(), Op.getEndLoc(), getContext()); } } MCInst Inst; // First try to match against the secondary set of tables containing the // short-form NEON instructions (e.g. "fadd.2s v0, v1, v2"). unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 1); // If that fails, try against the alternate table containing long-form NEON: // "fadd v0.2s, v1.2s, v2.2s" if (MatchResult != Match_Success) MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 0); switch (MatchResult) { case Match_Success: { // Perform range checking and other semantic validations SmallVector<SMLoc, 8> OperandLocs; NumOperands = Operands.size(); for (unsigned i = 1; i < NumOperands; ++i) OperandLocs.push_back(Operands[i]->getStartLoc()); if (validateInstruction(Inst, OperandLocs)) return true; Inst.setLoc(IDLoc); Out.EmitInstruction(Inst, STI); return false; } case Match_MissingFeature: { assert(ErrorInfo && "Unknown missing feature!"); // Special case the error message for the very common case where only // a single subtarget feature is missing (neon, e.g.). std::string Msg = "instruction requires:"; unsigned Mask = 1; for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { if (ErrorInfo & Mask) { Msg += " "; Msg += getSubtargetFeatureName(ErrorInfo & Mask); } Mask <<= 1; } return Error(IDLoc, Msg); } case Match_MnemonicFail: return showMatchError(IDLoc, MatchResult); case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0U) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } // If the match failed on a suffix token operand, tweak the diagnostic // accordingly. if (((AArch64Operand &)*Operands[ErrorInfo]).isToken() && ((AArch64Operand &)*Operands[ErrorInfo]).isTokenSuffix()) MatchResult = Match_InvalidSuffix; return showMatchError(ErrorLoc, MatchResult); } case Match_InvalidMemoryIndexed1: case Match_InvalidMemoryIndexed2: case Match_InvalidMemoryIndexed4: case Match_InvalidMemoryIndexed8: case Match_InvalidMemoryIndexed16: case Match_InvalidCondCode: case Match_AddSubRegExtendSmall: case Match_AddSubRegExtendLarge: case Match_AddSubSecondSource: case Match_LogicalSecondSource: case Match_AddSubRegShift32: case Match_AddSubRegShift64: case Match_InvalidMovImm32Shift: case Match_InvalidMovImm64Shift: case Match_InvalidFPImm: case Match_InvalidMemoryWExtend8: case Match_InvalidMemoryWExtend16: case Match_InvalidMemoryWExtend32: case Match_InvalidMemoryWExtend64: case Match_InvalidMemoryWExtend128: case Match_InvalidMemoryXExtend8: case Match_InvalidMemoryXExtend16: case Match_InvalidMemoryXExtend32: case Match_InvalidMemoryXExtend64: case Match_InvalidMemoryXExtend128: case Match_InvalidMemoryIndexed4SImm7: case Match_InvalidMemoryIndexed8SImm7: case Match_InvalidMemoryIndexed16SImm7: case Match_InvalidMemoryIndexedSImm9: case Match_InvalidImm0_7: case Match_InvalidImm0_15: case Match_InvalidImm0_31: case Match_InvalidImm0_63: case Match_InvalidImm0_127: case Match_InvalidImm0_65535: case Match_InvalidImm1_8: case Match_InvalidImm1_16: case Match_InvalidImm1_32: case Match_InvalidImm1_64: case Match_InvalidIndex1: case Match_InvalidIndexB: case Match_InvalidIndexH: case Match_InvalidIndexS: case Match_InvalidIndexD: case Match_InvalidLabel: case Match_MSR: case Match_MRS: { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); // Any time we get here, there's nothing fancy to do. Just get the // operand SMLoc and display the diagnostic. SMLoc ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; return showMatchError(ErrorLoc, MatchResult); } } llvm_unreachable("Implement any new match types added!"); return true; } /// ParseDirective parses the arm specific directives bool AArch64AsmParser::ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); SMLoc Loc = DirectiveID.getLoc(); if (IDVal == ".hword") return parseDirectiveWord(2, Loc); if (IDVal == ".word") return parseDirectiveWord(4, Loc); if (IDVal == ".xword") return parseDirectiveWord(8, Loc); if (IDVal == ".tlsdesccall") return parseDirectiveTLSDescCall(Loc); if (IDVal == ".ltorg" || IDVal == ".pool") return parseDirectiveLtorg(Loc); if (IDVal == ".unreq") return parseDirectiveUnreq(DirectiveID.getLoc()); return parseDirectiveLOH(IDVal, Loc); } /// parseDirectiveWord /// ::= .word [ expression (, expression)* ] bool AArch64AsmParser::parseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().parseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); Parser.Lex(); } } Parser.Lex(); return false; } // parseDirectiveTLSDescCall: // ::= .tlsdesccall symbol bool AArch64AsmParser::parseDirectiveTLSDescCall(SMLoc L) { StringRef Name; if (getParser().parseIdentifier(Name)) return Error(L, "expected symbol after directive"); MCSymbol *Sym = getContext().GetOrCreateSymbol(Name); const MCExpr *Expr = MCSymbolRefExpr::Create(Sym, getContext()); Expr = AArch64MCExpr::Create(Expr, AArch64MCExpr::VK_TLSDESC, getContext()); MCInst Inst; Inst.setOpcode(AArch64::TLSDESCCALL); Inst.addOperand(MCOperand::CreateExpr(Expr)); getParser().getStreamer().EmitInstruction(Inst, STI); return false; } /// ::= .loh <lohName | lohId> label1, ..., labelN /// The number of arguments depends on the loh identifier. bool AArch64AsmParser::parseDirectiveLOH(StringRef IDVal, SMLoc Loc) { if (IDVal != MCLOHDirectiveName()) return true; MCLOHType Kind; if (getParser().getTok().isNot(AsmToken::Identifier)) { if (getParser().getTok().isNot(AsmToken::Integer)) return TokError("expected an identifier or a number in directive"); // We successfully get a numeric value for the identifier. // Check if it is valid. int64_t Id = getParser().getTok().getIntVal(); Kind = (MCLOHType)Id; // Check that Id does not overflow MCLOHType. if (!isValidMCLOHType(Kind) || Id != Kind) return TokError("invalid numeric identifier in directive"); } else { StringRef Name = getTok().getIdentifier(); // We successfully parse an identifier. // Check if it is a recognized one. int Id = MCLOHNameToId(Name); if (Id == -1) return TokError("invalid identifier in directive"); Kind = (MCLOHType)Id; } // Consume the identifier. Lex(); // Get the number of arguments of this LOH. int NbArgs = MCLOHIdToNbArgs(Kind); assert(NbArgs != -1 && "Invalid number of arguments"); SmallVector<MCSymbol *, 3> Args; for (int Idx = 0; Idx < NbArgs; ++Idx) { StringRef Name; if (getParser().parseIdentifier(Name)) return TokError("expected identifier in directive"); Args.push_back(getContext().GetOrCreateSymbol(Name)); if (Idx + 1 == NbArgs) break; if (getLexer().isNot(AsmToken::Comma)) return TokError("unexpected token in '" + Twine(IDVal) + "' directive"); Lex(); } if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in '" + Twine(IDVal) + "' directive"); getStreamer().EmitLOHDirective((MCLOHType)Kind, Args); return false; } /// parseDirectiveLtorg /// ::= .ltorg | .pool bool AArch64AsmParser::parseDirectiveLtorg(SMLoc L) { getTargetStreamer().emitCurrentConstantPool(); return false; } /// parseDirectiveReq /// ::= name .req registername bool AArch64AsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { Parser.Lex(); // Eat the '.req' token. SMLoc SRegLoc = getLoc(); unsigned RegNum = tryParseRegister(); bool IsVector = false; if (RegNum == static_cast<unsigned>(-1)) { StringRef Kind; RegNum = tryMatchVectorRegister(Kind, false); if (!Kind.empty()) { Error(SRegLoc, "vector register without type specifier expected"); return false; } IsVector = true; } if (RegNum == static_cast<unsigned>(-1)) { Parser.eatToEndOfStatement(); Error(SRegLoc, "register name or alias expected"); return false; } // Shouldn't be anything else. if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { Error(Parser.getTok().getLoc(), "unexpected input in .req directive"); Parser.eatToEndOfStatement(); return false; } Parser.Lex(); // Consume the EndOfStatement auto pair = std::make_pair(IsVector, RegNum); if (RegisterReqs.GetOrCreateValue(Name, pair).getValue() != pair) Warning(L, "ignoring redefinition of register alias '" + Name + "'"); return true; } /// parseDirectiveUneq /// ::= .unreq registername bool AArch64AsmParser::parseDirectiveUnreq(SMLoc L) { if (Parser.getTok().isNot(AsmToken::Identifier)) { Error(Parser.getTok().getLoc(), "unexpected input in .unreq directive."); Parser.eatToEndOfStatement(); return false; } RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); Parser.Lex(); // Eat the identifier. return false; } bool AArch64AsmParser::classifySymbolRef(const MCExpr *Expr, AArch64MCExpr::VariantKind &ELFRefKind, MCSymbolRefExpr::VariantKind &DarwinRefKind, int64_t &Addend) { ELFRefKind = AArch64MCExpr::VK_INVALID; DarwinRefKind = MCSymbolRefExpr::VK_None; Addend = 0; if (const AArch64MCExpr *AE = dyn_cast<AArch64MCExpr>(Expr)) { ELFRefKind = AE->getKind(); Expr = AE->getSubExpr(); } const MCSymbolRefExpr *SE = dyn_cast<MCSymbolRefExpr>(Expr); if (SE) { // It's a simple symbol reference with no addend. DarwinRefKind = SE->getKind(); return true; } const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr); if (!BE) return false; SE = dyn_cast<MCSymbolRefExpr>(BE->getLHS()); if (!SE) return false; DarwinRefKind = SE->getKind(); if (BE->getOpcode() != MCBinaryExpr::Add && BE->getOpcode() != MCBinaryExpr::Sub) return false; // See if the addend is is a constant, otherwise there's more going // on here than we can deal with. auto AddendExpr = dyn_cast<MCConstantExpr>(BE->getRHS()); if (!AddendExpr) return false; Addend = AddendExpr->getValue(); if (BE->getOpcode() == MCBinaryExpr::Sub) Addend = -Addend; // It's some symbol reference + a constant addend, but really // shouldn't use both Darwin and ELF syntax. return ELFRefKind == AArch64MCExpr::VK_INVALID || DarwinRefKind == MCSymbolRefExpr::VK_None; } /// Force static initialization. extern "C" void LLVMInitializeAArch64AsmParser() { RegisterMCAsmParser<AArch64AsmParser> X(TheAArch64leTarget); RegisterMCAsmParser<AArch64AsmParser> Y(TheAArch64beTarget); RegisterMCAsmParser<AArch64AsmParser> Z(TheARM64leTarget); RegisterMCAsmParser<AArch64AsmParser> W(TheARM64beTarget); } #define GET_REGISTER_MATCHER #define GET_SUBTARGET_FEATURE_NAME #define GET_MATCHER_IMPLEMENTATION #include "AArch64GenAsmMatcher.inc" // Define this matcher function after the auto-generated include so we // have the match class enum definitions. unsigned AArch64AsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, unsigned Kind) { AArch64Operand &Op = static_cast<AArch64Operand &>(AsmOp); // If the kind is a token for a literal immediate, check if our asm // operand matches. This is for InstAliases which have a fixed-value // immediate in the syntax. int64_t ExpectedVal; switch (Kind) { default: return Match_InvalidOperand; case MCK__35_0: ExpectedVal = 0; break; case MCK__35_1: ExpectedVal = 1; break; case MCK__35_12: ExpectedVal = 12; break; case MCK__35_16: ExpectedVal = 16; break; case MCK__35_2: ExpectedVal = 2; break; case MCK__35_24: ExpectedVal = 24; break; case MCK__35_3: ExpectedVal = 3; break; case MCK__35_32: ExpectedVal = 32; break; case MCK__35_4: ExpectedVal = 4; break; case MCK__35_48: ExpectedVal = 48; break; case MCK__35_6: ExpectedVal = 6; break; case MCK__35_64: ExpectedVal = 64; break; case MCK__35_8: ExpectedVal = 8; break; } if (!Op.isImm()) return Match_InvalidOperand; const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); if (!CE) return Match_InvalidOperand; if (CE->getValue() == ExpectedVal) return Match_Success; return Match_InvalidOperand; }