//===- HexagonOperands.td - Hexagon immediate processing -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illnois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Immediate operands. let PrintMethod = "printImmOperand" in { // f32Ext type is used to identify constant extended floating point immediates. def f32Ext : Operand<f32>; def s32Imm : Operand<i32>; def s26_6Imm : Operand<i32>; def s16Imm : Operand<i32>; def s12Imm : Operand<i32>; def s11Imm : Operand<i32>; def s11_0Imm : Operand<i32>; def s11_1Imm : Operand<i32>; def s11_2Imm : Operand<i32>; def s11_3Imm : Operand<i32>; def s10Imm : Operand<i32>; def s9Imm : Operand<i32>; def m9Imm : Operand<i32>; def s8Imm : Operand<i32>; def s8Imm64 : Operand<i64>; def s6Imm : Operand<i32>; def s4Imm : Operand<i32>; def s4_0Imm : Operand<i32>; def s4_1Imm : Operand<i32>; def s4_2Imm : Operand<i32>; def s4_3Imm : Operand<i32>; def u64Imm : Operand<i64>; def u32Imm : Operand<i32>; def u26_6Imm : Operand<i32>; def u16Imm : Operand<i32>; def u16_0Imm : Operand<i32>; def u16_1Imm : Operand<i32>; def u16_2Imm : Operand<i32>; def u11_3Imm : Operand<i32>; def u10Imm : Operand<i32>; def u9Imm : Operand<i32>; def u8Imm : Operand<i32>; def u7Imm : Operand<i32>; def u6Imm : Operand<i32>; def u6_0Imm : Operand<i32>; def u6_1Imm : Operand<i32>; def u6_2Imm : Operand<i32>; def u6_3Imm : Operand<i32>; def u5Imm : Operand<i32>; def u4Imm : Operand<i32>; def u3Imm : Operand<i32>; def u2Imm : Operand<i32>; def u1Imm : Operand<i32>; def n8Imm : Operand<i32>; def m6Imm : Operand<i32>; } let PrintMethod = "printNOneImmOperand" in def nOneImm : Operand<i32>; // // Immediate predicates // def s32ImmPred : PatLeaf<(i32 imm), [{ // s32ImmPred predicate - True if the immediate fits in a 32-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isInt<32>(v); }]>; def s32_24ImmPred : PatLeaf<(i32 imm), [{ // s32_24ImmPred predicate - True if the immediate fits in a 32-bit sign // extended field that is a multiple of 0x1000000. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<32,24>(v); }]>; def s32_16s8ImmPred : PatLeaf<(i32 imm), [{ // s32_16s8ImmPred predicate - True if the immediate fits in a 32-bit sign // extended field that is a multiple of 0x10000. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<24,16>(v); }]>; def s26_6ImmPred : PatLeaf<(i32 imm), [{ // s26_6ImmPred predicate - True if the immediate fits in a 32-bit // sign extended field. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<26,6>(v); }]>; def s16ImmPred : PatLeaf<(i32 imm), [{ // s16ImmPred predicate - True if the immediate fits in a 16-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isInt<16>(v); }]>; def s13ImmPred : PatLeaf<(i32 imm), [{ // s13ImmPred predicate - True if the immediate fits in a 13-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isInt<13>(v); }]>; def s12ImmPred : PatLeaf<(i32 imm), [{ // s12ImmPred predicate - True if the immediate fits in a 12-bit // sign extended field. int64_t v = (int64_t)N->getSExtValue(); return isInt<12>(v); }]>; def s11_0ImmPred : PatLeaf<(i32 imm), [{ // s11_0ImmPred predicate - True if the immediate fits in a 11-bit // sign extended field. int64_t v = (int64_t)N->getSExtValue(); return isInt<11>(v); }]>; def s11_1ImmPred : PatLeaf<(i32 imm), [{ // s11_1ImmPred predicate - True if the immediate fits in a 12-bit // sign extended field and is a multiple of 2. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,1>(v); }]>; def s11_2ImmPred : PatLeaf<(i32 imm), [{ // s11_2ImmPred predicate - True if the immediate fits in a 13-bit // sign extended field and is a multiple of 4. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,2>(v); }]>; def s11_3ImmPred : PatLeaf<(i32 imm), [{ // s11_3ImmPred predicate - True if the immediate fits in a 14-bit // sign extended field and is a multiple of 8. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,3>(v); }]>; def s10ImmPred : PatLeaf<(i32 imm), [{ // s10ImmPred predicate - True if the immediate fits in a 10-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isInt<10>(v); }]>; def s9ImmPred : PatLeaf<(i32 imm), [{ // s9ImmPred predicate - True if the immediate fits in a 9-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isInt<9>(v); }]>; def m9ImmPred : PatLeaf<(i32 imm), [{ // m9ImmPred predicate - True if the immediate fits in a 9-bit magnitude // field. The range of m9 is -255 to 255. int64_t v = (int64_t)N->getSExtValue(); return isInt<9>(v) && (v != -256); }]>; def s8ImmPred : PatLeaf<(i32 imm), [{ // s8ImmPred predicate - True if the immediate fits in a 8-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isInt<8>(v); }]>; def s8Imm64Pred : PatLeaf<(i64 imm), [{ // s8ImmPred predicate - True if the immediate fits in a 8-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isInt<8>(v); }]>; def s6ImmPred : PatLeaf<(i32 imm), [{ // s6ImmPred predicate - True if the immediate fits in a 6-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isInt<6>(v); }]>; def s4_0ImmPred : PatLeaf<(i32 imm), [{ // s4_0ImmPred predicate - True if the immediate fits in a 4-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isInt<4>(v); }]>; def s4_1ImmPred : PatLeaf<(i32 imm), [{ // s4_1ImmPred predicate - True if the immediate fits in a 4-bit sign extended // field of 2. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<4,1>(v); }]>; def s4_2ImmPred : PatLeaf<(i32 imm), [{ // s4_2ImmPred predicate - True if the immediate fits in a 4-bit sign extended // field that is a multiple of 4. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<4,2>(v); }]>; def s4_3ImmPred : PatLeaf<(i32 imm), [{ // s4_3ImmPred predicate - True if the immediate fits in a 4-bit sign extended // field that is a multiple of 8. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<4,3>(v); }]>; def u64ImmPred : PatLeaf<(i64 imm), [{ // Adding "N ||" to suppress gcc unused warning. return (N || true); }]>; def u32ImmPred : PatLeaf<(i32 imm), [{ // u32ImmPred predicate - True if the immediate fits in a 32-bit field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<32>(v); }]>; def u26_6ImmPred : PatLeaf<(i32 imm), [{ // u26_6ImmPred - True if the immediate fits in a 32-bit field and // is a multiple of 64. int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<26,6>(v); }]>; def u16ImmPred : PatLeaf<(i32 imm), [{ // u16ImmPred predicate - True if the immediate fits in a 16-bit unsigned // field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<16>(v); }]>; def u16_s8ImmPred : PatLeaf<(i32 imm), [{ // u16_s8ImmPred predicate - True if the immediate fits in a 16-bit sign // extended s8 field. int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<16,8>(v); }]>; def u9ImmPred : PatLeaf<(i32 imm), [{ // u9ImmPred predicate - True if the immediate fits in a 9-bit unsigned // field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<9>(v); }]>; def u8ImmPred : PatLeaf<(i32 imm), [{ // u8ImmPred predicate - True if the immediate fits in a 8-bit unsigned // field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<8>(v); }]>; def u7StrictPosImmPred : ImmLeaf<i32, [{ // u7StrictPosImmPred predicate - True if the immediate fits in an 7-bit // unsigned field and is strictly greater than 0. return isUInt<7>(Imm) && Imm > 0; }]>; def u7ImmPred : PatLeaf<(i32 imm), [{ // u7ImmPred predicate - True if the immediate fits in a 7-bit unsigned // field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<7>(v); }]>; def u6ImmPred : PatLeaf<(i32 imm), [{ // u6ImmPred predicate - True if the immediate fits in a 6-bit unsigned // field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<6>(v); }]>; def u6_0ImmPred : PatLeaf<(i32 imm), [{ // u6_0ImmPred predicate - True if the immediate fits in a 6-bit unsigned // field. Same as u6ImmPred. int64_t v = (int64_t)N->getSExtValue(); return isUInt<6>(v); }]>; def u6_1ImmPred : PatLeaf<(i32 imm), [{ // u6_1ImmPred predicate - True if the immediate fits in a 7-bit unsigned // field that is 1 bit alinged - multiple of 2. int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,1>(v); }]>; def u6_2ImmPred : PatLeaf<(i32 imm), [{ // u6_2ImmPred predicate - True if the immediate fits in a 8-bit unsigned // field that is 2 bits alinged - multiple of 4. int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,2>(v); }]>; def u6_3ImmPred : PatLeaf<(i32 imm), [{ // u6_3ImmPred predicate - True if the immediate fits in a 9-bit unsigned // field that is 3 bits alinged - multiple of 8. int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,3>(v); }]>; def u5ImmPred : PatLeaf<(i32 imm), [{ // u5ImmPred predicate - True if the immediate fits in a 5-bit unsigned // field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<5>(v); }]>; def u3ImmPred : PatLeaf<(i32 imm), [{ // u3ImmPred predicate - True if the immediate fits in a 3-bit unsigned // field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<3>(v); }]>; def u2ImmPred : PatLeaf<(i32 imm), [{ // u2ImmPred predicate - True if the immediate fits in a 2-bit unsigned // field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<2>(v); }]>; def u1ImmPred : PatLeaf<(i1 imm), [{ // u1ImmPred predicate - True if the immediate fits in a 1-bit unsigned // field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<1>(v); }]>; def m5BImmPred : PatLeaf<(i32 imm), [{ // m5BImmPred predicate - True if the (char) number is in range -1 .. -31 // and will fit in a 5 bit field when made positive, for use in memops. // this is specific to the zero extending of a negative by CombineInstr int8_t v = (int8_t)N->getSExtValue(); return (-31 <= v && v <= -1); }]>; def m5HImmPred : PatLeaf<(i32 imm), [{ // m5HImmPred predicate - True if the (short) number is in range -1 .. -31 // and will fit in a 5 bit field when made positive, for use in memops. // this is specific to the zero extending of a negative by CombineInstr int16_t v = (int16_t)N->getSExtValue(); return (-31 <= v && v <= -1); }]>; def m5ImmPred : PatLeaf<(i32 imm), [{ // m5ImmPred predicate - True if the number is in range -1 .. -31 // and will fit in a 5 bit field when made positive, for use in memops. int64_t v = (int64_t)N->getSExtValue(); return (-31 <= v && v <= -1); }]>; //InN means negative integers in [-(2^N - 1), 0] def n8ImmPred : PatLeaf<(i32 imm), [{ // n8ImmPred predicate - True if the immediate fits in a 8-bit signed // field. int64_t v = (int64_t)N->getSExtValue(); return (-255 <= v && v <= 0); }]>; def nOneImmPred : PatLeaf<(i32 imm), [{ // nOneImmPred predicate - True if the immediate is -1. int64_t v = (int64_t)N->getSExtValue(); return (-1 == v); }]>; def Set5ImmPred : PatLeaf<(i32 imm), [{ // Set5ImmPred predicate - True if the number is in the series of values. // [ 2^0, 2^1, ... 2^31 ] // For use in setbit immediate. uint32_t v = (int32_t)N->getSExtValue(); // Constrain to 32 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def Clr5ImmPred : PatLeaf<(i32 imm), [{ // Clr5ImmPred predicate - True if the number is in the series of // bit negated values. // [ 2^0, 2^1, ... 2^31 ] // For use in clrbit immediate. // Note: we are bit NOTing the value. uint32_t v = ~ (int32_t)N->getSExtValue(); // Constrain to 32 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def SetClr5ImmPred : PatLeaf<(i32 imm), [{ // SetClr5ImmPred predicate - True if the immediate is in range 0..31. int32_t v = (int32_t)N->getSExtValue(); return (v >= 0 && v <= 31); }]>; def Set4ImmPred : PatLeaf<(i32 imm), [{ // Set4ImmPred predicate - True if the number is in the series of values: // [ 2^0, 2^1, ... 2^15 ]. // For use in setbit immediate. uint16_t v = (int16_t)N->getSExtValue(); // Constrain to 16 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def Clr4ImmPred : PatLeaf<(i32 imm), [{ // Clr4ImmPred predicate - True if the number is in the series of // bit negated values: // [ 2^0, 2^1, ... 2^15 ]. // For use in setbit and clrbit immediate. uint16_t v = ~ (int16_t)N->getSExtValue(); // Constrain to 16 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def SetClr4ImmPred : PatLeaf<(i32 imm), [{ // SetClr4ImmPred predicate - True if the immediate is in the range 0..15. int16_t v = (int16_t)N->getSExtValue(); return (v >= 0 && v <= 15); }]>; def Set3ImmPred : PatLeaf<(i32 imm), [{ // Set3ImmPred predicate - True if the number is in the series of values: // [ 2^0, 2^1, ... 2^7 ]. // For use in setbit immediate. uint8_t v = (int8_t)N->getSExtValue(); // Constrain to 8 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def Clr3ImmPred : PatLeaf<(i32 imm), [{ // Clr3ImmPred predicate - True if the number is in the series of // bit negated values: // [ 2^0, 2^1, ... 2^7 ]. // For use in setbit and clrbit immediate. uint8_t v = ~ (int8_t)N->getSExtValue(); // Constrain to 8 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def SetClr3ImmPred : PatLeaf<(i32 imm), [{ // SetClr3ImmPred predicate - True if the immediate is in the range 0..7. int8_t v = (int8_t)N->getSExtValue(); return (v >= 0 && v <= 7); }]>; // Extendable immediate operands. let PrintMethod = "printExtOperand" in { def s16Ext : Operand<i32>; def s12Ext : Operand<i32>; def s10Ext : Operand<i32>; def s9Ext : Operand<i32>; def s8Ext : Operand<i32>; def s6Ext : Operand<i32>; def s11_0Ext : Operand<i32>; def s11_1Ext : Operand<i32>; def s11_2Ext : Operand<i32>; def s11_3Ext : Operand<i32>; def u6Ext : Operand<i32>; def u7Ext : Operand<i32>; def u8Ext : Operand<i32>; def u9Ext : Operand<i32>; def u10Ext : Operand<i32>; def u6_0Ext : Operand<i32>; def u6_1Ext : Operand<i32>; def u6_2Ext : Operand<i32>; def u6_3Ext : Operand<i32>; } let PrintMethod = "printImmOperand" in def u0AlwaysExt : Operand<i32>; // Predicates for constant extendable operands def s16ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 16-bit sign extended field. return isInt<16>(v); else { if (isInt<16>(v)) return true; // Return true if extending this immediate is profitable and the value // can fit in a 32-bit signed field. return isConstExtProfitable(Node) && isInt<32>(v); } }]>; def s10ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 10-bit sign extended field. return isInt<10>(v); else { if (isInt<10>(v)) return true; // Return true if extending this immediate is profitable and the value // can fit in a 32-bit signed field. return isConstExtProfitable(Node) && isInt<32>(v); } }]>; def s9ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 9-bit sign extended field. return isInt<9>(v); else { if (isInt<9>(v)) return true; // Return true if extending this immediate is profitable and the value // can fit in a 32-bit unsigned field. return isConstExtProfitable(Node) && isInt<32>(v); } }]>; def s8ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 8-bit sign extended field. return isInt<8>(v); else { if (isInt<8>(v)) return true; // Return true if extending this immediate is profitable and the value // can fit in a 32-bit signed field. return isConstExtProfitable(Node) && isInt<32>(v); } }]>; def s8_16ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate fits in a 8-bit sign extended field. return isInt<8>(v); else { if (isInt<8>(v)) return true; // Return true if extending this immediate is profitable and the value // can't fit in a 16-bit signed field. This is required to avoid // unnecessary constant extenders. return isConstExtProfitable(Node) && !isInt<16>(v); } }]>; def s6ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 6-bit sign extended field. return isInt<6>(v); else { if (isInt<6>(v)) return true; // Return true if extending this immediate is profitable and the value // can fit in a 32-bit unsigned field. return isConstExtProfitable(Node) && isInt<32>(v); } }]>; def s6_16ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate fits in a 6-bit sign extended field. return isInt<6>(v); else { if (isInt<6>(v)) return true; // Return true if extending this immediate is profitable and the value // can't fit in a 16-bit signed field. This is required to avoid // unnecessary constant extenders. return isConstExtProfitable(Node) && !isInt<16>(v); } }]>; def s6_10ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 6-bit sign extended field. return isInt<6>(v); else { if (isInt<6>(v)) return true; // Return true if extending this immediate is profitable and the value // can't fit in a 10-bit signed field. This is required to avoid // unnecessary constant extenders. return isConstExtProfitable(Node) && !isInt<10>(v); } }]>; def s11_0ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 11-bit sign extended field. return isShiftedInt<11,0>(v); else { if (isInt<11>(v)) return true; // Return true if extending this immediate is profitable and the value // can fit in a 32-bit signed field. return isConstExtProfitable(Node) && isInt<32>(v); } }]>; def s11_1ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 12-bit sign extended field and // is 2 byte aligned. return isShiftedInt<11,1>(v); else { if (isInt<12>(v)) return isShiftedInt<11,1>(v); // Return true if extending this immediate is profitable and the low 1 bit // is zero (2-byte aligned). return isConstExtProfitable(Node) && isInt<32>(v) && ((v % 2) == 0); } }]>; def s11_2ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 13-bit sign extended field and // is 4-byte aligned. return isShiftedInt<11,2>(v); else { if (isInt<13>(v)) return isShiftedInt<11,2>(v); // Return true if extending this immediate is profitable and the low 2-bits // are zero (4-byte aligned). return isConstExtProfitable(Node) && isInt<32>(v) && ((v % 4) == 0); } }]>; def s11_3ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 14-bit sign extended field and // is 8-byte aligned. return isShiftedInt<11,3>(v); else { if (isInt<14>(v)) return isShiftedInt<11,3>(v); // Return true if extending this immediate is profitable and the low 3-bits // are zero (8-byte aligned). return isConstExtProfitable(Node) && isInt<32>(v) && ((v % 8) == 0); } }]>; def u0AlwaysExtPred : PatLeaf<(i32 imm), [{ // Predicate for an unsigned 32-bit value that always needs to be extended. if (Subtarget.hasV4TOps()) { if (isConstExtProfitable(Node)) { int64_t v = (int64_t)N->getSExtValue(); return isUInt<32>(v); } } return false; }]>; def u6ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 6-bit unsigned field. return isUInt<6>(v); else { if (isUInt<6>(v)) return true; // Return true if extending this immediate is profitable and the value // can fit in a 32-bit unsigned field. return isConstExtProfitable(Node) && isUInt<32>(v); } }]>; def u7ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 7-bit unsigned field. return isUInt<7>(v); else { if (isUInt<7>(v)) return true; // Return true if extending this immediate is profitable and the value // can fit in a 32-bit unsigned field. return isConstExtProfitable(Node) && isUInt<32>(v); } }]>; def u8ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 8-bit unsigned field. return isUInt<8>(v); else { if (isUInt<8>(v)) return true; // Return true if extending this immediate is profitable and the value // can fit in a 32-bit unsigned field. return isConstExtProfitable(Node) && isUInt<32>(v); } }]>; def u9ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 9-bit unsigned field. return isUInt<9>(v); else { if (isUInt<9>(v)) return true; // Return true if extending this immediate is profitable and the value // can fit in a 32-bit unsigned field. return isConstExtProfitable(Node) && isUInt<32>(v); } }]>; def u6_1ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 7-bit unsigned field and // is 2-byte aligned. return isShiftedUInt<6,1>(v); else { if (isUInt<7>(v)) return isShiftedUInt<6,1>(v); // Return true if extending this immediate is profitable and the value // can fit in a 32-bit unsigned field. return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 2) == 0); } }]>; def u6_2ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 8-bit unsigned field and // is 4-byte aligned. return isShiftedUInt<6,2>(v); else { if (isUInt<8>(v)) return isShiftedUInt<6,2>(v); // Return true if extending this immediate is profitable and the value // can fit in a 32-bit unsigned field. return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 4) == 0); } }]>; def u6_3ExtPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); if (!Subtarget.hasV4TOps()) // Return true if the immediate can fit in a 9-bit unsigned field and // is 8-byte aligned. return isShiftedUInt<6,3>(v); else { if (isUInt<9>(v)) return isShiftedUInt<6,3>(v); // Return true if extending this immediate is profitable and the value // can fit in a 32-bit unsigned field. return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 8) == 0); } }]>; // Addressing modes. def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>; def ADDRriS11_0 : ComplexPattern<i32, 2, "SelectADDRriS11_0", [frameindex], []>; def ADDRriS11_1 : ComplexPattern<i32, 2, "SelectADDRriS11_1", [frameindex], []>; def ADDRriS11_2 : ComplexPattern<i32, 2, "SelectADDRriS11_2", [frameindex], []>; def ADDRriS11_3 : ComplexPattern<i32, 2, "SelectADDRriS11_3", [frameindex], []>; def ADDRriU6_0 : ComplexPattern<i32, 2, "SelectADDRriU6_0", [frameindex], []>; def ADDRriU6_1 : ComplexPattern<i32, 2, "SelectADDRriU6_1", [frameindex], []>; def ADDRriU6_2 : ComplexPattern<i32, 2, "SelectADDRriU6_2", [frameindex], []>; // Address operands. def MEMrr : Operand<i32> { let PrintMethod = "printMEMrrOperand"; let MIOperandInfo = (ops IntRegs, IntRegs); } def MEMri : Operand<i32> { let PrintMethod = "printMEMriOperand"; let MIOperandInfo = (ops IntRegs, IntRegs); } def MEMri_s11_2 : Operand<i32>, ComplexPattern<i32, 2, "SelectMEMriS11_2", []> { let PrintMethod = "printMEMriOperand"; let MIOperandInfo = (ops IntRegs, s11Imm); } def FrameIndex : Operand<i32> { let PrintMethod = "printFrameIndexOperand"; let MIOperandInfo = (ops IntRegs, s11Imm); } let PrintMethod = "printGlobalOperand" in { def globaladdress : Operand<i32>; def globaladdressExt : Operand<i32>; } let PrintMethod = "printJumpTable" in def jumptablebase : Operand<i32>; def brtarget : Operand<OtherVT>; def brtargetExt : Operand<OtherVT>; def calltarget : Operand<i32>; def bblabel : Operand<i32>; def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf , [], "BasicBlockSDNode">; def symbolHi32 : Operand<i32> { let PrintMethod = "printSymbolHi"; } def symbolLo32 : Operand<i32> { let PrintMethod = "printSymbolLo"; }