//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PPCISelLowering class. // //===----------------------------------------------------------------------===// #include "PPCISelLowering.h" #include "MCTargetDesc/PPCPredicates.h" #include "PPCMachineFunctionInfo.h" #include "PPCPerfectShuffle.h" #include "PPCTargetMachine.h" #include "PPCTargetObjectFile.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); // FIXME: Remove this once the bug has been fixed! extern cl::opt<bool> ANDIGlueBug; static TargetLoweringObjectFile *createTLOF(const Triple &TT) { // If it isn't a Mach-O file then it's going to be a linux ELF // object file. if (TT.isOSDarwin()) return new TargetLoweringObjectFileMachO(); return new PPC64LinuxTargetObjectFile(); } PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))), Subtarget(*TM.getSubtargetImpl()) { setPow2DivIsCheap(); // Use _setjmp/_longjmp instead of setjmp/longjmp. setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(true); // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all // arguments are at least 4/8 bytes aligned. bool isPPC64 = Subtarget.isPPC64(); setMinStackArgumentAlignment(isPPC64 ? 8:4); // Set up the register classes. addRegisterClass(MVT::i32, &PPC::GPRCRegClass); addRegisterClass(MVT::f32, &PPC::F4RCRegClass); addRegisterClass(MVT::f64, &PPC::F8RCRegClass); // PowerPC has an i16 but no i8 (or i1) SEXTLOAD setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); // PowerPC has pre-inc load and store's. setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); if (Subtarget.useCRBits()) { setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); if (isPPC64 || Subtarget.hasFPCVT()) { setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, isPPC64 ? MVT::i64 : MVT::i32); setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); AddPromotedToType (ISD::UINT_TO_FP, MVT::i1, isPPC64 ? MVT::i64 : MVT::i32); } else { setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); } // PowerPC does not support direct load / store of condition registers setOperationAction(ISD::LOAD, MVT::i1, Custom); setOperationAction(ISD::STORE, MVT::i1, Custom); // FIXME: Remove this once the ANDI glue bug is fixed: if (ANDIGlueBug) setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); setTruncStoreAction(MVT::i64, MVT::i1, Expand); setTruncStoreAction(MVT::i32, MVT::i1, Expand); setTruncStoreAction(MVT::i16, MVT::i1, Expand); setTruncStoreAction(MVT::i8, MVT::i1, Expand); addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); } // This is used in the ppcf128->int sequence. Note it has different semantics // from FP_ROUND: that rounds to nearest, this rounds to zero. setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); // We do not currently implement these libm ops for PowerPC. setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); setOperationAction(ISD::FREM, MVT::ppcf128, Expand); // PowerPC has no SREM/UREM instructions setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); // We don't support sin/cos/sqrt/fmod/pow setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FPOW , MVT::f64, Expand); setOperationAction(ISD::FMA , MVT::f64, Legal); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); setOperationAction(ISD::FPOW , MVT::f32, Expand); setOperationAction(ISD::FMA , MVT::f32, Legal); setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); // If we're enabling GP optimizations, use hardware square root if (!Subtarget.hasFSQRT() && !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && Subtarget.hasFRE())) setOperationAction(ISD::FSQRT, MVT::f64, Expand); if (!Subtarget.hasFSQRT() && !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && Subtarget.hasFRES())) setOperationAction(ISD::FSQRT, MVT::f32, Expand); if (Subtarget.hasFCPSGN()) { setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); } else { setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); } if (Subtarget.hasFPRND()) { setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction(ISD::FCEIL, MVT::f64, Legal); setOperationAction(ISD::FTRUNC, MVT::f64, Legal); setOperationAction(ISD::FROUND, MVT::f64, Legal); setOperationAction(ISD::FFLOOR, MVT::f32, Legal); setOperationAction(ISD::FCEIL, MVT::f32, Legal); setOperationAction(ISD::FTRUNC, MVT::f32, Legal); setOperationAction(ISD::FROUND, MVT::f32, Legal); } // PowerPC does not have BSWAP, CTPOP or CTTZ setOperationAction(ISD::BSWAP, MVT::i32 , Expand); setOperationAction(ISD::CTTZ , MVT::i32 , Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); setOperationAction(ISD::BSWAP, MVT::i64 , Expand); setOperationAction(ISD::CTTZ , MVT::i64 , Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); if (Subtarget.hasPOPCNTD()) { setOperationAction(ISD::CTPOP, MVT::i32 , Legal); setOperationAction(ISD::CTPOP, MVT::i64 , Legal); } else { setOperationAction(ISD::CTPOP, MVT::i32 , Expand); setOperationAction(ISD::CTPOP, MVT::i64 , Expand); } // PowerPC does not have ROTR setOperationAction(ISD::ROTR, MVT::i32 , Expand); setOperationAction(ISD::ROTR, MVT::i64 , Expand); if (!Subtarget.useCRBits()) { // PowerPC does not have Select setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT, MVT::i64, Expand); setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f64, Expand); } // PowerPC wants to turn select_cc of FP into fsel when possible. setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); // PowerPC wants to optimize integer setcc a bit if (!Subtarget.useCRBits()) setOperationAction(ISD::SETCC, MVT::i32, Custom); // PowerPC does not have BRCOND which requires SetCC if (!Subtarget.useCRBits()) setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); // PowerPC does not have [U|S]INT_TO_FP setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::BITCAST, MVT::f32, Expand); setOperationAction(ISD::BITCAST, MVT::i32, Expand); setOperationAction(ISD::BITCAST, MVT::i64, Expand); setOperationAction(ISD::BITCAST, MVT::f64, Expand); // We cannot sextinreg(i1). Expand to shifts. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support // SjLj exception handling but a light-weight setjmp/longjmp replacement to // support continuation, user-level threading, and etc.. As a result, no // other SjLj exception interfaces are implemented and please don't build // your own exception handling based on them. // LLVM/Clang supports zero-cost DWARF exception handling. setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); // We want to legalize GlobalAddress and ConstantPool nodes into the // appropriate instructions to materialize the address. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::BlockAddress, MVT::i64, Custom); setOperationAction(ISD::ConstantPool, MVT::i64, Custom); setOperationAction(ISD::JumpTable, MVT::i64, Custom); // TRAP is legal. setOperationAction(ISD::TRAP, MVT::Other, Legal); // TRAMPOLINE is custom lowered. setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); if (Subtarget.isSVR4ABI()) { if (isPPC64) { // VAARG always uses double-word chunks, so promote anything smaller. setOperationAction(ISD::VAARG, MVT::i1, Promote); AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); setOperationAction(ISD::VAARG, MVT::i8, Promote); AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); setOperationAction(ISD::VAARG, MVT::i16, Promote); AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); setOperationAction(ISD::VAARG, MVT::i32, Promote); AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); setOperationAction(ISD::VAARG, MVT::Other, Expand); } else { // VAARG is custom lowered with the 32-bit SVR4 ABI. setOperationAction(ISD::VAARG, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::i64, Custom); } } else setOperationAction(ISD::VAARG, MVT::Other, Expand); if (Subtarget.isSVR4ABI() && !isPPC64) // VACOPY is custom lowered with the 32-bit SVR4 ABI. setOperationAction(ISD::VACOPY , MVT::Other, Custom); else setOperationAction(ISD::VACOPY , MVT::Other, Expand); // Use the default implementation. setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); // To handle counter-based loop conditions. setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); // Comparisons that require checking two conditions. setCondCodeAction(ISD::SETULT, MVT::f32, Expand); setCondCodeAction(ISD::SETULT, MVT::f64, Expand); setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); setCondCodeAction(ISD::SETONE, MVT::f32, Expand); setCondCodeAction(ISD::SETONE, MVT::f64, Expand); if (Subtarget.has64BitSupport()) { // They also have instructions for converting between i64 and fp. setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); // This is just the low 32 bits of a (signed) fp->i64 conversion. // We cannot do this with Promote because i64 is not a legal type. setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); } else { // PowerPC does not have FP_TO_UINT on 32-bit implementations. setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); } // With the instructions enabled under FPCVT, we can do everything. if (Subtarget.hasFPCVT()) { if (Subtarget.has64BitSupport()) { setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); } setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); } if (Subtarget.use64BitRegs()) { // 64-bit PowerPC implementations can support i64 types directly addRegisterClass(MVT::i64, &PPC::G8RCRegClass); // BUILD_PAIR can't be handled natively, and should be expanded to shl/or setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); // 64-bit PowerPC wants to expand i128 shifts itself. setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); } else { // 32-bit PowerPC wants to expand i64 shifts itself. setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); } if (Subtarget.hasAltivec()) { // First set operation action for all vector types to expand. Then we // will selectively turn on ones that can be effectively codegen'd. for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { MVT::SimpleValueType VT = (MVT::SimpleValueType)i; // add/sub are legal for all supported vector VT's. setOperationAction(ISD::ADD , VT, Legal); setOperationAction(ISD::SUB , VT, Legal); // We promote all shuffles to v16i8. setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); // We promote all non-typed operations to v4i32. setOperationAction(ISD::AND , VT, Promote); AddPromotedToType (ISD::AND , VT, MVT::v4i32); setOperationAction(ISD::OR , VT, Promote); AddPromotedToType (ISD::OR , VT, MVT::v4i32); setOperationAction(ISD::XOR , VT, Promote); AddPromotedToType (ISD::XOR , VT, MVT::v4i32); setOperationAction(ISD::LOAD , VT, Promote); AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); setOperationAction(ISD::STORE, VT, Promote); AddPromotedToType (ISD::STORE, VT, MVT::v4i32); // No other operations are legal. setOperationAction(ISD::MUL , VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FNEG, VT, Expand); setOperationAction(ISD::FSQRT, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FEXP, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FABS, VT, Expand); setOperationAction(ISD::FPOWI, VT, Expand); setOperationAction(ISD::FFLOOR, VT, Expand); setOperationAction(ISD::FCEIL, VT, Expand); setOperationAction(ISD::FTRUNC, VT, Expand); setOperationAction(ISD::FRINT, VT, Expand); setOperationAction(ISD::FNEARBYINT, VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); setOperationAction(ISD::BUILD_VECTOR, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) { MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j; setTruncStoreAction(VT, InnerVT, Expand); } setLoadExtAction(ISD::SEXTLOAD, VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); setLoadExtAction(ISD::EXTLOAD, VT, Expand); } // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle // with merges, splats, etc. setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); setOperationAction(ISD::AND , MVT::v4i32, Legal); setOperationAction(ISD::OR , MVT::v4i32, Legal); setOperationAction(ISD::XOR , MVT::v4i32, Legal); setOperationAction(ISD::LOAD , MVT::v4i32, Legal); setOperationAction(ISD::SELECT, MVT::v4i32, Subtarget.useCRBits() ? Legal : Expand); setOperationAction(ISD::STORE , MVT::v4i32, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); setOperationAction(ISD::MUL, MVT::v4f32, Legal); setOperationAction(ISD::FMA, MVT::v4f32, Legal); if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { setOperationAction(ISD::FDIV, MVT::v4f32, Legal); setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); } setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v8i16, Custom); setOperationAction(ISD::MUL, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); // Altivec does not contain unordered floating-point compare instructions setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand); setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand); setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand); setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand); setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); if (Subtarget.hasVSX()) { setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); setOperationAction(ISD::FROUND, MVT::v2f64, Legal); setOperationAction(ISD::FROUND, MVT::v4f32, Legal); setOperationAction(ISD::MUL, MVT::v2f64, Legal); setOperationAction(ISD::FMA, MVT::v2f64, Legal); setOperationAction(ISD::FDIV, MVT::v2f64, Legal); setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); // Share the Altivec comparison restrictions. setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); setCondCodeAction(ISD::SETUGT, MVT::v2f64, Expand); setCondCodeAction(ISD::SETUGE, MVT::v2f64, Expand); setCondCodeAction(ISD::SETULT, MVT::v2f64, Expand); setCondCodeAction(ISD::SETULE, MVT::v2f64, Expand); setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); setOperationAction(ISD::LOAD, MVT::v2f64, Legal); setOperationAction(ISD::STORE, MVT::v2f64, Legal); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); // VSX v2i64 only supports non-arithmetic operations. setOperationAction(ISD::ADD, MVT::v2i64, Expand); setOperationAction(ISD::SUB, MVT::v2i64, Expand); setOperationAction(ISD::SHL, MVT::v2i64, Expand); setOperationAction(ISD::SRA, MVT::v2i64, Expand); setOperationAction(ISD::SRL, MVT::v2i64, Expand); setOperationAction(ISD::SETCC, MVT::v2i64, Custom); setOperationAction(ISD::LOAD, MVT::v2i64, Promote); AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); setOperationAction(ISD::STORE, MVT::v2i64, Promote); AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); // Vector operation legalization checks the result type of // SIGN_EXTEND_INREG, overall legalization checks the inner type. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); } } if (Subtarget.has64BitSupport()) { setOperationAction(ISD::PREFETCH, MVT::Other, Legal); setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); } setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); setBooleanContents(ZeroOrOneBooleanContent); // Altivec instructions set fields to all zeros or all ones. setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); if (isPPC64) { setStackPointerRegisterToSaveRestore(PPC::X1); setExceptionPointerRegister(PPC::X3); setExceptionSelectorRegister(PPC::X4); } else { setStackPointerRegisterToSaveRestore(PPC::R1); setExceptionPointerRegister(PPC::R3); setExceptionSelectorRegister(PPC::R4); } // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::LOAD); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::BR_CC); if (Subtarget.useCRBits()) setTargetDAGCombine(ISD::BRCOND); setTargetDAGCombine(ISD::BSWAP); setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::ANY_EXTEND); if (Subtarget.useCRBits()) { setTargetDAGCombine(ISD::TRUNCATE); setTargetDAGCombine(ISD::SETCC); setTargetDAGCombine(ISD::SELECT_CC); } // Use reciprocal estimates. if (TM.Options.UnsafeFPMath) { setTargetDAGCombine(ISD::FDIV); setTargetDAGCombine(ISD::FSQRT); } // Darwin long double math library functions have $LDBL128 appended. if (Subtarget.isDarwin()) { setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); } // With 32 condition bits, we don't need to sink (and duplicate) compares // aggressively in CodeGenPrep. if (Subtarget.useCRBits()) setHasMultipleConditionRegisters(); setMinFunctionAlignment(2); if (Subtarget.isDarwin()) setPrefFunctionAlignment(4); if (isPPC64 && Subtarget.isJITCodeModel()) // Temporary workaround for the inability of PPC64 JIT to handle jump // tables. setSupportJumpTables(false); setInsertFencesForAtomic(true); if (Subtarget.enableMachineScheduler()) setSchedulingPreference(Sched::Source); else setSchedulingPreference(Sched::Hybrid); computeRegisterProperties(); // The Freescale cores does better with aggressive inlining of memcpy and // friends. Gcc uses same threshold of 128 bytes (= 32 word stores). if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || Subtarget.getDarwinDirective() == PPC::DIR_E5500) { MaxStoresPerMemset = 32; MaxStoresPerMemsetOptSize = 16; MaxStoresPerMemcpy = 32; MaxStoresPerMemcpyOptSize = 8; MaxStoresPerMemmove = 32; MaxStoresPerMemmoveOptSize = 8; setPrefFunctionAlignment(4); } } /// getMaxByValAlign - Helper for getByValTypeAlignment to determine /// the desired ByVal argument alignment. static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, unsigned MaxMaxAlign) { if (MaxAlign == MaxMaxAlign) return; if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) MaxAlign = 32; else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) MaxAlign = 16; } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { unsigned EltAlign = 0; getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; } else if (StructType *STy = dyn_cast<StructType>(Ty)) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { unsigned EltAlign = 0; getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; if (MaxAlign == MaxMaxAlign) break; } } } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { // Darwin passes everything on 4 byte boundary. if (Subtarget.isDarwin()) return 4; // 16byte and wider vectors are passed on 16byte boundary. // The rest is 8 on PPC64 and 4 on PPC32 boundary. unsigned Align = Subtarget.isPPC64() ? 8 : 4; if (Subtarget.hasAltivec() || Subtarget.hasQPX()) getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); return Align; } const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return nullptr; case PPCISD::FSEL: return "PPCISD::FSEL"; case PPCISD::FCFID: return "PPCISD::FCFID"; case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; case PPCISD::FRE: return "PPCISD::FRE"; case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; case PPCISD::STFIWX: return "PPCISD::STFIWX"; case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; case PPCISD::VPERM: return "PPCISD::VPERM"; case PPCISD::Hi: return "PPCISD::Hi"; case PPCISD::Lo: return "PPCISD::Lo"; case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; case PPCISD::LOAD: return "PPCISD::LOAD"; case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; case PPCISD::SRL: return "PPCISD::SRL"; case PPCISD::SRA: return "PPCISD::SRA"; case PPCISD::SHL: return "PPCISD::SHL"; case PPCISD::CALL: return "PPCISD::CALL"; case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; case PPCISD::MTCTR: return "PPCISD::MTCTR"; case PPCISD::BCTRL: return "PPCISD::BCTRL"; case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; case PPCISD::VCMP: return "PPCISD::VCMP"; case PPCISD::VCMPo: return "PPCISD::VCMPo"; case PPCISD::LBRX: return "PPCISD::LBRX"; case PPCISD::STBRX: return "PPCISD::STBRX"; case PPCISD::LARX: return "PPCISD::LARX"; case PPCISD::STCX: return "PPCISD::STCX"; case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; case PPCISD::BDNZ: return "PPCISD::BDNZ"; case PPCISD::BDZ: return "PPCISD::BDZ"; case PPCISD::MFFS: return "PPCISD::MFFS"; case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; case PPCISD::CR6SET: return "PPCISD::CR6SET"; case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA"; case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L"; case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L"; case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; case PPCISD::SC: return "PPCISD::SC"; } } EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { if (!VT.isVector()) return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; return VT.changeVectorElementTypeToInteger(); } //===----------------------------------------------------------------------===// // Node matching predicates, for use by the tblgen matching code. //===----------------------------------------------------------------------===// /// isFloatingPointZero - Return true if this is 0.0 or -0.0. static bool isFloatingPointZero(SDValue Op) { if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) return CFP->getValueAPF().isZero(); else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { // Maybe this has already been legalized into the constant pool? if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) return CFP->getValueAPF().isZero(); } return false; } /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return /// true if Op is undef or if it matches the specified value. static bool isConstantOrUndef(int Op, int Val) { return Op < 0 || Op == Val; } /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUHUM instruction. bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary, SelectionDAG &DAG) { unsigned j = DAG.getTarget().getDataLayout()->isLittleEndian() ? 0 : 1; if (!isUnary) { for (unsigned i = 0; i != 16; ++i) if (!isConstantOrUndef(N->getMaskElt(i), i*2+j)) return false; } else { for (unsigned i = 0; i != 8; ++i) if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) return false; } return true; } /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUWUM instruction. bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary, SelectionDAG &DAG) { unsigned j, k; if (DAG.getTarget().getDataLayout()->isLittleEndian()) { j = 0; k = 1; } else { j = 2; k = 3; } if (!isUnary) { for (unsigned i = 0; i != 16; i += 2) if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || !isConstantOrUndef(N->getMaskElt(i+1), i*2+k)) return false; } else { for (unsigned i = 0; i != 8; i += 2) if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || !isConstantOrUndef(N->getMaskElt(i+1), i*2+k) || !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || !isConstantOrUndef(N->getMaskElt(i+9), i*2+k)) return false; } return true; } /// isVMerge - Common function, used to match vmrg* shuffles. /// static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned LHSStart, unsigned RHSStart) { if (N->getValueType(0) != MVT::v16i8) return false; assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && "Unsupported merge size!"); for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), LHSStart+j+i*UnitSize) || !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), RHSStart+j+i*UnitSize)) return false; } return true; } /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, bool isUnary, SelectionDAG &DAG) { if (DAG.getTarget().getDataLayout()->isLittleEndian()) { if (!isUnary) return isVMerge(N, UnitSize, 0, 16); return isVMerge(N, UnitSize, 0, 0); } else { if (!isUnary) return isVMerge(N, UnitSize, 8, 24); return isVMerge(N, UnitSize, 8, 8); } } /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, bool isUnary, SelectionDAG &DAG) { if (DAG.getTarget().getDataLayout()->isLittleEndian()) { if (!isUnary) return isVMerge(N, UnitSize, 8, 24); return isVMerge(N, UnitSize, 8, 8); } else { if (!isUnary) return isVMerge(N, UnitSize, 0, 16); return isVMerge(N, UnitSize, 0, 0); } } /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift /// amount, otherwise return -1. int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary, SelectionDAG &DAG) { if (N->getValueType(0) != MVT::v16i8) return -1; ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); // Find the first non-undef value in the shuffle mask. unsigned i; for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) /*search*/; if (i == 16) return -1; // all undef. // Otherwise, check to see if the rest of the elements are consecutively // numbered from this value. unsigned ShiftAmt = SVOp->getMaskElt(i); if (ShiftAmt < i) return -1; if (DAG.getTarget().getDataLayout()->isLittleEndian()) { ShiftAmt += i; if (!isUnary) { // Check the rest of the elements to see if they are consecutive. for (++i; i != 16; ++i) if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt - i)) return -1; } else { // Check the rest of the elements to see if they are consecutive. for (++i; i != 16; ++i) if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt - i) & 15)) return -1; } } else { // Big Endian ShiftAmt -= i; if (!isUnary) { // Check the rest of the elements to see if they are consecutive. for (++i; i != 16; ++i) if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) return -1; } else { // Check the rest of the elements to see if they are consecutive. for (++i; i != 16; ++i) if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) return -1; } } return ShiftAmt; } /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a splat of a single element that is suitable for input to /// VSPLTB/VSPLTH/VSPLTW. bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { assert(N->getValueType(0) == MVT::v16i8 && (EltSize == 1 || EltSize == 2 || EltSize == 4)); // This is a splat operation if each element of the permute is the same, and // if the value doesn't reference the second vector. unsigned ElementBase = N->getMaskElt(0); // FIXME: Handle UNDEF elements too! if (ElementBase >= 16) return false; // Check that the indices are consecutive, in the case of a multi-byte element // splatted with a v16i8 mask. for (unsigned i = 1; i != EltSize; ++i) if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) return false; for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { if (N->getMaskElt(i) < 0) continue; for (unsigned j = 0; j != EltSize; ++j) if (N->getMaskElt(i+j) != N->getMaskElt(j)) return false; } return true; } /// isAllNegativeZeroVector - Returns true if all elements of build_vector /// are -0.0. bool PPC::isAllNegativeZeroVector(SDNode *N) { BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); APInt APVal, APUndef; unsigned BitSize; bool HasAnyUndefs; if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) return CFP->getValueAPF().isNegZero(); return false; } /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG) { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); assert(isSplatShuffleMask(SVOp, EltSize)); if (DAG.getTarget().getDataLayout()->isLittleEndian()) return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); else return SVOp->getMaskElt(0) / EltSize; } /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed /// by using a vspltis[bhw] instruction of the specified element size, return /// the constant being splatted. The ByteSize field indicates the number of /// bytes of each element [124] -> [bhw]. SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { SDValue OpVal(nullptr, 0); // If ByteSize of the splat is bigger than the element size of the // build_vector, then we have a case where we are checking for a splat where // multiple elements of the buildvector are folded together into a single // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). unsigned EltSize = 16/N->getNumOperands(); if (EltSize < ByteSize) { unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. SDValue UniquedVals[4]; assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); // See if all of the elements in the buildvector agree across. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; // If the element isn't a constant, bail fully out. if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); if (!UniquedVals[i&(Multiple-1)].getNode()) UniquedVals[i&(Multiple-1)] = N->getOperand(i); else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) return SDValue(); // no match. } // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains // either constant or undef values that are identical for each chunk. See // if these chunks can form into a larger vspltis*. // Check to see if all of the leading entries are either 0 or -1. If // neither, then this won't fit into the immediate field. bool LeadingZero = true; bool LeadingOnes = true; for (unsigned i = 0; i != Multiple-1; ++i) { if (!UniquedVals[i].getNode()) continue; // Must have been undefs. LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); } // Finally, check the least significant entry. if (LeadingZero) { if (!UniquedVals[Multiple-1].getNode()) return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); if (Val < 16) return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) } if (LeadingOnes) { if (!UniquedVals[Multiple-1].getNode()) return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) return DAG.getTargetConstant(Val, MVT::i32); } return SDValue(); } // Check to see if this buildvec has a single non-undef value in its elements. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; if (!OpVal.getNode()) OpVal = N->getOperand(i); else if (OpVal != N->getOperand(i)) return SDValue(); } if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. unsigned ValSizeInBytes = EltSize; uint64_t Value = 0; if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { Value = CN->getZExtValue(); } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); Value = FloatToBits(CN->getValueAPF().convertToFloat()); } // If the splat value is larger than the element value, then we can never do // this splat. The only case that we could fit the replicated bits into our // immediate field for would be zero, and we prefer to use vxor for it. if (ValSizeInBytes < ByteSize) return SDValue(); // If the element value is larger than the splat value, cut it in half and // check to see if the two halves are equal. Continue doing this until we // get to ByteSize. This allows us to handle 0x01010101 as 0x01. while (ValSizeInBytes > ByteSize) { ValSizeInBytes >>= 1; // If the top half equals the bottom half, we're still ok. if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != (Value & ((1 << (8*ValSizeInBytes))-1))) return SDValue(); } // Properly sign extend the value. int MaskVal = SignExtend32(Value, ByteSize * 8); // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. if (MaskVal == 0) return SDValue(); // Finally, if this value fits in a 5 bit sext field, return it if (SignExtend32<5>(MaskVal) == MaskVal) return DAG.getTargetConstant(MaskVal, MVT::i32); return SDValue(); } //===----------------------------------------------------------------------===// // Addressing Mode Selection //===----------------------------------------------------------------------===// /// isIntS16Immediate - This method tests to see if the node is either a 32-bit /// or 64-bit immediate, and if the value can be accurately represented as a /// sign extension from a 16-bit value. If so, this returns true and the /// immediate. static bool isIntS16Immediate(SDNode *N, short &Imm) { if (!isa<ConstantSDNode>(N)) return false; Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); if (N->getValueType(0) == MVT::i32) return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); else return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); } static bool isIntS16Immediate(SDValue Op, short &Imm) { return isIntS16Immediate(Op.getNode(), Imm); } /// SelectAddressRegReg - Given the specified addressed, check to see if it /// can be represented as an indexed [r+r] operation. Returns false if it /// can be more efficiently represented with [r+imm]. bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const { short imm = 0; if (N.getOpcode() == ISD::ADD) { if (isIntS16Immediate(N.getOperand(1), imm)) return false; // r+i if (N.getOperand(1).getOpcode() == PPCISD::Lo) return false; // r+i Base = N.getOperand(0); Index = N.getOperand(1); return true; } else if (N.getOpcode() == ISD::OR) { if (isIntS16Immediate(N.getOperand(1), imm)) return false; // r+i can fold it if we can. // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are provably // disjoint. APInt LHSKnownZero, LHSKnownOne; APInt RHSKnownZero, RHSKnownOne; DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); if (LHSKnownZero.getBoolValue()) { DAG.computeKnownBits(N.getOperand(1), RHSKnownZero, RHSKnownOne); // If all of the bits are known zero on the LHS or RHS, the add won't // carry. if (~(LHSKnownZero | RHSKnownZero) == 0) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } } } return false; } // If we happen to be doing an i64 load or store into a stack slot that has // less than a 4-byte alignment, then the frame-index elimination may need to // use an indexed load or store instruction (because the offset may not be a // multiple of 4). The extra register needed to hold the offset comes from the // register scavenger, and it is possible that the scavenger will need to use // an emergency spill slot. As a result, we need to make sure that a spill slot // is allocated when doing an i64 load/store into a less-than-4-byte-aligned // stack slot. static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { // FIXME: This does not handle the LWA case. if (VT != MVT::i64) return; // NOTE: We'll exclude negative FIs here, which come from argument // lowering, because there are no known test cases triggering this problem // using packed structures (or similar). We can remove this exclusion if // we find such a test case. The reason why this is so test-case driven is // because this entire 'fixup' is only to prevent crashes (from the // register scavenger) on not-really-valid inputs. For example, if we have: // %a = alloca i1 // %b = bitcast i1* %a to i64* // store i64* a, i64 b // then the store should really be marked as 'align 1', but is not. If it // were marked as 'align 1' then the indexed form would have been // instruction-selected initially, and the problem this 'fixup' is preventing // won't happen regardless. if (FrameIdx < 0) return; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned Align = MFI->getObjectAlignment(FrameIdx); if (Align >= 4) return; PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); FuncInfo->setHasNonRISpills(); } /// Returns true if the address N can be represented by a base register plus /// a signed 16-bit displacement [r+imm], and if it is not better /// represented as reg+reg. If Aligned is true, only accept displacements /// suitable for STD and friends, i.e. multiples of 4. bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, bool Aligned) const { // FIXME dl should come from parent load or store, not from address SDLoc dl(N); // If this can be more profitably realized as r+r, fail. if (SelectAddressRegReg(N, Disp, Base, DAG)) return false; if (N.getOpcode() == ISD::ADD) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm) && (!Aligned || (imm & 3) == 0)) { Disp = DAG.getTargetConstant(imm, N.getValueType()); if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); } else { Base = N.getOperand(0); } return true; // [r+i] } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { // Match LOAD (ADD (X, Lo(G))). assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() && "Cannot handle constant offsets yet!"); Disp = N.getOperand(1).getOperand(0); // The global address. assert(Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable); Base = N.getOperand(0); return true; // [&g+r] } } else if (N.getOpcode() == ISD::OR) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm) && (!Aligned || (imm & 3) == 0)) { // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are // provably disjoint. APInt LHSKnownZero, LHSKnownOne; DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { // If all of the bits are known zero on the LHS or RHS, the add won't // carry. Base = N.getOperand(0); Disp = DAG.getTargetConstant(imm, N.getValueType()); return true; } } } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { // Loading from a constant address. // If this address fits entirely in a 16-bit sext immediate field, codegen // this as "d, 0" short Imm; if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, CN->getValueType(0)); return true; } // Handle 32-bit sext immediates with LIS + addr mode. if ((CN->getValueType(0) == MVT::i32 || (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && (!Aligned || (CN->getZExtValue() & 3) == 0)) { int Addr = (int)CN->getZExtValue(); // Otherwise, break this down into an LIS + disp. Disp = DAG.getTargetConstant((short)Addr, MVT::i32); Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); return true; } } Disp = DAG.getTargetConstant(0, getPointerTy()); if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); } else Base = N; return true; // [r+0] } /// SelectAddressRegRegOnly - Given the specified addressed, force it to be /// represented as an indexed [r+r] operation. bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const { // Check to see if we can easily represent this as an [r+r] address. This // will fail if it thinks that the address is more profitably represented as // reg+imm, e.g. where imm = 0. if (SelectAddressRegReg(N, Base, Index, DAG)) return true; // If the operand is an addition, always emit this as [r+r], since this is // better (for code size, and execution, as the memop does the add for free) // than emitting an explicit add. if (N.getOpcode() == ISD::ADD) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } // Otherwise, do it the hard way, using R0 as the base register. Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, N.getValueType()); Index = N; return true; } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { if (DisablePPCPreinc) return false; bool isLoad = true; SDValue Ptr; EVT VT; unsigned Alignment; if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { Ptr = LD->getBasePtr(); VT = LD->getMemoryVT(); Alignment = LD->getAlignment(); } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { Ptr = ST->getBasePtr(); VT = ST->getMemoryVT(); Alignment = ST->getAlignment(); isLoad = false; } else return false; // PowerPC doesn't have preinc load/store instructions for vectors. if (VT.isVector()) return false; if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { // Common code will reject creating a pre-inc form if the base pointer // is a frame index, or if N is a store and the base pointer is either // the same as or a predecessor of the value being stored. Check for // those situations here, and try with swapped Base/Offset instead. bool Swap = false; if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) Swap = true; else if (!isLoad) { SDValue Val = cast<StoreSDNode>(N)->getValue(); if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) Swap = true; } if (Swap) std::swap(Base, Offset); AM = ISD::PRE_INC; return true; } // LDU/STU can only handle immediates that are a multiple of 4. if (VT != MVT::i64) { if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) return false; } else { // LDU/STU need an address with at least 4-byte alignment. if (Alignment < 4) return false; if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) return false; } if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of // sext i32 to i64 when addr mode is r+i. if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && LD->getExtensionType() == ISD::SEXTLOAD && isa<ConstantSDNode>(Offset)) return false; } AM = ISD::PRE_INC; return true; } //===----------------------------------------------------------------------===// // LowerOperation implementation //===----------------------------------------------------------------------===// /// GetLabelAccessInfo - Return true if we should reference labels using a /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, unsigned &LoOpFlags, const GlobalValue *GV = nullptr) { HiOpFlags = PPCII::MO_HA; LoOpFlags = PPCII::MO_LO; // Don't use the pic base if not in PIC relocation model. Or if we are on a // non-darwin platform. We don't support PIC on other platforms yet. bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && TM.getSubtarget<PPCSubtarget>().isDarwin(); if (isPIC) { HiOpFlags |= PPCII::MO_PIC_FLAG; LoOpFlags |= PPCII::MO_PIC_FLAG; } // If this is a reference to a global value that requires a non-lazy-ptr, make // sure that instruction lowering adds it. if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { HiOpFlags |= PPCII::MO_NLP_FLAG; LoOpFlags |= PPCII::MO_NLP_FLAG; if (GV->hasHiddenVisibility()) { HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; } } return isPIC; } static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, SelectionDAG &DAG) { EVT PtrVT = HiPart.getValueType(); SDValue Zero = DAG.getConstant(0, PtrVT); SDLoc DL(HiPart); SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); // With PIC, the first instruction is actually "GR+hi(&G)". if (isPIC) Hi = DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); // Generate non-pic code that has direct accesses to the constant pool. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); } SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); const Constant *C = CP->getConstVal(); // 64-bit SVR4 ABI code is always position-independent. // The actual address of the GlobalValue is stored in the TOC. if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA, DAG.getRegister(PPC::X2, MVT::i64)); } unsigned MOHiFlag, MOLoFlag; bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); SDValue CPIHi = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); SDValue CPILo = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); } SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); // 64-bit SVR4 ABI code is always position-independent. // The actual address of the GlobalValue is stored in the TOC. if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA, DAG.getRegister(PPC::X2, MVT::i64)); } unsigned MOHiFlag, MOLoFlag; bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); } SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); unsigned MOHiFlag, MOLoFlag; bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); } SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { // FIXME: TLS addresses currently use medium model code sequences, // which is the most useful form. Eventually support for small and // large models could be added if users need it, at the cost of // additional complexity. GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); SDLoc dl(GA); const GlobalValue *GV = GA->getGlobal(); EVT PtrVT = getPointerTy(); bool is64bit = Subtarget.isPPC64(); TLSModel::Model Model = getTargetMachine().getTLSModel(GV); if (Model == TLSModel::LocalExec) { SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TPREL_HA); SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TPREL_LO); SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, is64bit ? MVT::i64 : MVT::i32); SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); } if (Model == TLSModel::InitialExec) { SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLS); SDValue GOTPtr; if (is64bit) { SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); } else GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); } if (Model == TLSModel::GeneralDynamic) { SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, GOTReg, TGA); SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT, GOTEntryHi, TGA); // We need a chain node, and don't have one handy. The underlying // call has no side effects, so using the function entry node // suffices. SDValue Chain = DAG.getEntryNode(); Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry); SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64); SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl, PtrVT, ParmReg, TGA); // The return value from GET_TLS_ADDR really is in X3 already, but // some hacks are needed here to tie everything together. The extra // copies dissolve during subsequent transforms. Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr); return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT); } if (Model == TLSModel::LocalDynamic) { SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, GOTReg, TGA); SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT, GOTEntryHi, TGA); // We need a chain node, and don't have one handy. The underlying // call has no side effects, so using the function entry node // suffices. SDValue Chain = DAG.getEntryNode(); Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry); SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64); SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl, PtrVT, ParmReg, TGA); // The return value from GET_TLSLD_ADDR really is in X3 already, but // some hacks are needed here to tie everything together. The extra // copies dissolve during subsequent transforms. Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr); SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT, Chain, ParmReg, TGA); return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); } llvm_unreachable("Unknown TLS model!"); } SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); SDLoc DL(GSDN); const GlobalValue *GV = GSDN->getGlobal(); // 64-bit SVR4 ABI code is always position-independent. // The actual address of the GlobalValue is stored in the TOC. if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, DAG.getRegister(PPC::X2, MVT::i64)); } unsigned MOHiFlag, MOLoFlag; bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); SDValue GAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); SDValue GALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); // If the global reference is actually to a non-lazy-pointer, we have to do an // extra load to get the address of the global. if (MOHiFlag & PPCII::MO_NLP_FLAG) Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), false, false, false, 0); return Ptr; } SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); SDLoc dl(Op); if (Op.getValueType() == MVT::v2i64) { // When the operands themselves are v2i64 values, we need to do something // special because VSX has no underlying comparison operations for these. if (Op.getOperand(0).getValueType() == MVT::v2i64) { // Equality can be handled by casting to the legal type for Altivec // comparisons, everything else needs to be expanded. if (CC == ISD::SETEQ || CC == ISD::SETNE) { return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, DAG.getSetCC(dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), CC)); } return SDValue(); } // We handle most of these in the usual way. return Op; } // If we're comparing for equality to zero, expose the fact that this is // implented as a ctlz/srl pair on ppc, so that the dag combiner can // fold the new nodes. if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { if (C->isNullValue() && CC == ISD::SETEQ) { EVT VT = Op.getOperand(0).getValueType(); SDValue Zext = Op.getOperand(0); if (VT.bitsLT(MVT::i32)) { VT = MVT::i32; Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); } unsigned Log2b = Log2_32(VT.getSizeInBits()); SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, DAG.getConstant(Log2b, MVT::i32)); return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); } // Leave comparisons against 0 and -1 alone for now, since they're usually // optimized. FIXME: revisit this when we can custom lower all setcc // optimizations. if (C->isAllOnesValue() || C->isNullValue()) return SDValue(); } // If we have an integer seteq/setne, turn it into a compare against zero // by xor'ing the rhs with the lhs, which is faster than setting a // condition register, reading it back out, and masking the correct bit. The // normal approach here uses sub to do this instead of xor. Using xor exposes // the result to other bit-twiddling opportunities. EVT LHSVT = Op.getOperand(0).getValueType(); if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { EVT VT = Op.getValueType(); SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), Op.getOperand(1)); return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); } return SDValue(); } SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { SDNode *Node = Op.getNode(); EVT VT = Node->getValueType(0); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue InChain = Node->getOperand(0); SDValue VAListPtr = Node->getOperand(1); const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); SDLoc dl(Node); assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); // gpr_index SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, VAListPtr, MachinePointerInfo(SV), MVT::i8, false, false, 0); InChain = GprIndex.getValue(1); if (VT == MVT::i64) { // Check if GprIndex is even SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, DAG.getConstant(1, MVT::i32)); SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, DAG.getConstant(0, MVT::i32), ISD::SETNE); SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, DAG.getConstant(1, MVT::i32)); // Align GprIndex to be even if it isn't GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, GprIndex); } // fpr index is 1 byte after gpr SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, DAG.getConstant(1, MVT::i32)); // fpr SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, FprPtr, MachinePointerInfo(SV), MVT::i8, false, false, 0); InChain = FprIndex.getValue(1); SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, DAG.getConstant(8, MVT::i32)); SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, DAG.getConstant(4, MVT::i32)); // areas SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo(), false, false, false, 0); InChain = OverflowArea.getValue(1); SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo(), false, false, false, 0); InChain = RegSaveArea.getValue(1); // select overflow_area if index > 8 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, DAG.getConstant(8, MVT::i32), ISD::SETLT); // adjustment constant gpr_index * 4/8 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, DAG.getConstant(VT.isInteger() ? 4 : 8, MVT::i32)); // OurReg = RegSaveArea + RegConstant SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, RegConstant); // Floating types are 32 bytes into RegSaveArea if (VT.isFloatingPoint()) OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, DAG.getConstant(32, MVT::i32)); // increase {f,g}pr_index by 1 (or 2 if VT is i64) SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, DAG.getConstant(VT == MVT::i64 ? 2 : 1, MVT::i32)); InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, VT.isInteger() ? VAListPtr : FprPtr, MachinePointerInfo(SV), MVT::i8, false, false, 0); // determine if we should load from reg_save_area or overflow_area SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); // increase overflow_area by 4/8 if gpr/fpr > 8 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, DAG.getConstant(VT.isInteger() ? 4 : 8, MVT::i32)); OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, OverflowAreaPlusN); InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, MachinePointerInfo(), MVT::i32, false, false, 0); return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), false, false, false, 0); } SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); // We have to copy the entire va_list struct: // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), DAG.getConstant(12, MVT::i32), 8, false, true, MachinePointerInfo(), MachinePointerInfo()); } SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { return Op.getOperand(0); } SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Trmp = Op.getOperand(1); // trampoline SDValue FPtr = Op.getOperand(2); // nested function SDValue Nest = Op.getOperand(3); // 'nest' parameter value SDLoc dl(Op); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = (PtrVT == MVT::i64); Type *IntPtrTy = DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType( *DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = IntPtrTy; Entry.Node = Trmp; Args.push_back(Entry); // TrampSize == (isPPC64 ? 48 : 40); Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, isPPC64 ? MVT::i64 : MVT::i32); Args.push_back(Entry); Entry.Node = FPtr; Args.push_back(Entry); Entry.Node = Nest; Args.push_back(Entry); // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(Chain) .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args), 0); std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); return CallResult.second; } SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { MachineFunction &MF = DAG.getMachineFunction(); PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); SDLoc dl(Op); if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. // We suppose the given va_list is already allocated. // // typedef struct { // char gpr; /* index into the array of 8 GPRs // * stored in the register save area // * gpr=0 corresponds to r3, // * gpr=1 to r4, etc. // */ // char fpr; /* index into the array of 8 FPRs // * stored in the register save area // * fpr=0 corresponds to f1, // * fpr=1 to f2, etc. // */ // char *overflow_arg_area; // /* location on stack that holds // * the next overflow argument // */ // char *reg_save_area; // /* where r3:r10 and f1:f8 (if saved) // * are stored // */ // } va_list[1]; SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), PtrVT); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); uint64_t FrameOffset = PtrVT.getSizeInBits()/8; SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); uint64_t FPROffset = 1; SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); // Store first byte : number of int regs SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), MachinePointerInfo(SV), MVT::i8, false, false, 0); uint64_t nextOffset = FPROffset; SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), ConstFPROffset); // Store second byte : number of float regs SDValue secondStore = DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, MachinePointerInfo(SV, nextOffset), MVT::i8, false, false, 0); nextOffset += StackOffset; nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); // Store second word : arguments given on stack SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, MachinePointerInfo(SV, nextOffset), false, false, 0); nextOffset += FrameOffset; nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); // Store third word : arguments given in registers return DAG.getStore(thirdStore, dl, FR, nextPtr, MachinePointerInfo(SV, nextOffset), false, false, 0); } #include "PPCGenCallingConv.inc" // Function whose sole purpose is to kill compiler warnings // stemming from unused functions included from PPCGenCallingConv.inc. CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; } bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { return true; } bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { static const MCPhysReg ArgRegs[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; const unsigned NumArgRegs = array_lengthof(ArgRegs); unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); // Skip one register if the first unallocated register has an even register // number and there are still argument registers available which have not been // allocated yet. RegNum is actually an index into ArgRegs, which means we // need to skip a register if RegNum is odd. if (RegNum != NumArgRegs && RegNum % 2 == 1) { State.AllocateReg(ArgRegs[RegNum]); } // Always return false here, as this function only makes sure that the first // unallocated register has an odd register number and does not actually // allocate a register for the current argument. return false; } bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { static const MCPhysReg ArgRegs[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8 }; const unsigned NumArgRegs = array_lengthof(ArgRegs); unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); // If there is only one Floating-point register left we need to put both f64 // values of a split ppc_fp128 value on the stack. if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { State.AllocateReg(ArgRegs[RegNum]); } // Always return false here, as this function only makes sure that the two f64 // values a ppc_fp128 value is split into are both passed in registers or both // passed on the stack and does not actually allocate a register for the // current argument. return false; } /// GetFPR - Get the set of FP registers that should be allocated for arguments, /// on Darwin. static const MCPhysReg *GetFPR() { static const MCPhysReg FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; return FPR; } /// CalculateStackSlotSize - Calculates the size reserved for this argument on /// the stack. static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, unsigned PtrByteSize) { unsigned ArgSize = ArgVT.getStoreSize(); if (Flags.isByVal()) ArgSize = Flags.getByValSize(); ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; return ArgSize; } /// CalculateStackSlotAlignment - Calculates the alignment of this argument /// on the stack. static unsigned CalculateStackSlotAlignment(EVT ArgVT, ISD::ArgFlagsTy Flags, unsigned PtrByteSize) { unsigned Align = PtrByteSize; // Altivec parameters are padded to a 16 byte boundary. if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) Align = 16; // ByVal parameters are aligned as requested. if (Flags.isByVal()) { unsigned BVAlign = Flags.getByValAlign(); if (BVAlign > PtrByteSize) { if (BVAlign % PtrByteSize != 0) llvm_unreachable( "ByVal alignment is not a multiple of the pointer size"); Align = BVAlign; } } return Align; } /// EnsureStackAlignment - Round stack frame size up from NumBytes to /// ensure minimum alignment required for target. static unsigned EnsureStackAlignment(const TargetMachine &Target, unsigned NumBytes) { unsigned TargetAlign = Target.getFrameLowering()->getStackAlignment(); unsigned AlignMask = TargetAlign - 1; NumBytes = (NumBytes + AlignMask) & ~AlignMask; return NumBytes; } SDValue PPCTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { if (Subtarget.isSVR4ABI()) { if (Subtarget.isPPC64()) return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); else return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); } else { return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); } } SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { // 32-bit SVR4 ABI Stack Frame Layout: // +-----------------------------------+ // +--> | Back chain | // | +-----------------------------------+ // | | Floating-point register save area | // | +-----------------------------------+ // | | General register save area | // | +-----------------------------------+ // | | CR save word | // | +-----------------------------------+ // | | VRSAVE save word | // | +-----------------------------------+ // | | Alignment padding | // | +-----------------------------------+ // | | Vector register save area | // | +-----------------------------------+ // | | Local variable space | // | +-----------------------------------+ // | | Parameter list area | // | +-----------------------------------+ // | | LR save word | // | +-----------------------------------+ // SP--> +--- | Back chain | // +-----------------------------------+ // // Specifications: // System V Application Binary Interface PowerPC Processor Supplement // AltiVec Technology Programming Interface Manual MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Potential tail calls could cause overwriting of argument stack slots. bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && (CallConv == CallingConv::Fast)); unsigned PtrByteSize = 4; // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); // Reserve space for the linkage area on the stack. unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false); CCInfo.AllocateStack(LinkageSize, PtrByteSize); CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // Arguments stored in registers. if (VA.isRegLoc()) { const TargetRegisterClass *RC; EVT ValVT = VA.getValVT(); switch (ValVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("ValVT not supported by formal arguments Lowering"); case MVT::i1: case MVT::i32: RC = &PPC::GPRCRegClass; break; case MVT::f32: RC = &PPC::F4RCRegClass; break; case MVT::f64: if (Subtarget.hasVSX()) RC = &PPC::VSFRCRegClass; else RC = &PPC::F8RCRegClass; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v4f32: RC = &PPC::VRRCRegClass; break; case MVT::v2f64: case MVT::v2i64: RC = &PPC::VSHRCRegClass; break; } // Transform the arguments stored in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT == MVT::i1 ? MVT::i32 : ValVT); if (ValVT == MVT::i1) ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); InVals.push_back(ArgValue); } else { // Argument stored in memory. assert(VA.isMemLoc()); unsigned ArgSize = VA.getLocVT().getStoreSize(); int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), isImmutable); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo(), false, false, false, 0)); } } // Assign locations to all of the incoming aggregate by value arguments. // Aggregates passed by value are stored in the local variable space of the // caller's stack frame, right above the parameter list area. SmallVector<CCValAssign, 16> ByValArgLocs; CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ByValArgLocs, *DAG.getContext()); // Reserve stack space for the allocations in CCInfo. CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); // Area that is at least reserved in the caller of this function. unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); MinReservedArea = std::max(MinReservedArea, LinkageSize); // Set the size that is at least reserved in caller of this function. Tail // call optimized function's reserved stack space needs to be aligned so that // taking the difference between two stack areas will result in an aligned // stack. MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea); FuncInfo->setMinReservedArea(MinReservedArea); SmallVector<SDValue, 8> MemOps; // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { static const MCPhysReg GPArgRegs[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); static const MCPhysReg FPArgRegs[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8 }; const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs)); FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs)); // Make room for NumGPArgRegs and NumFPArgRegs. int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; FuncInfo->setVarArgsStackOffset( MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, CCInfo.getNextStackOffset(), true)); FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); // The fixed integer arguments of a variadic function are stored to the // VarArgsFrameIndex on the stack so that they may be loaded by deferencing // the result of va_next. for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { // Get an existing live-in vreg, or add a new one. unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); if (!VReg) VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(), false, false, 0); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 // is set. // The double arguments are stored to the VarArgsFrameIndex // on the stack. for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { // Get an existing live-in vreg, or add a new one. unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); if (!VReg) VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(), false, false, 0); MemOps.push_back(Store); // Increment the address by eight for the next argument to store SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); return Chain; } // PPC64 passes i8, i16, and i32 values in i64 registers. Promote // value to MVT::i64 and then truncate to the correct register size. SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG, SDValue ArgVal, SDLoc dl) const { if (Flags.isSExt()) ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, DAG.getValueType(ObjectVT)); else if (Flags.isZExt()) ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, DAG.getValueType(ObjectVT)); return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); } SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { // TODO: add description of PPC stack frame format, or at least some docs. // bool isLittleEndian = Subtarget.isLittleEndian(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Potential tail calls could cause overwriting of argument stack slots. bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && (CallConv == CallingConv::Fast)); unsigned PtrByteSize = 8; unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false); unsigned ArgOffset = LinkageSize; static const MCPhysReg GPR[] = { PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const MCPhysReg *FPR = GetFPR(); static const MCPhysReg VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; static const MCPhysReg VSRH[] = { PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 }; const unsigned Num_GPR_Regs = array_lengthof(GPR); const unsigned Num_FPR_Regs = 13; const unsigned Num_VR_Regs = array_lengthof(VR); unsigned GPR_idx, FPR_idx = 0, VR_idx = 0; // Add DAG nodes to load the arguments or copy them out of registers. On // entry to a function on PPC, the arguments start after the linkage area, // although the first ones are often in registers. SmallVector<SDValue, 8> MemOps; Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); unsigned CurArgIdx = 0; for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { SDValue ArgVal; bool needsLoad = false; EVT ObjectVT = Ins[ArgNo].VT; unsigned ObjSize = ObjectVT.getStoreSize(); unsigned ArgSize = ObjSize; ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx); CurArgIdx = Ins[ArgNo].OrigArgIndex; /* Respect alignment of argument on the stack. */ unsigned Align = CalculateStackSlotAlignment(ObjectVT, Flags, PtrByteSize); ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; unsigned CurArgOffset = ArgOffset; /* Compute GPR index associated with argument offset. */ GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; GPR_idx = std::min(GPR_idx, Num_GPR_Regs); // FIXME the codegen can be much improved in some cases. // We do not have to keep everything in memory. if (Flags.isByVal()) { // ObjSize is the true size, ArgSize rounded up to multiple of registers. ObjSize = Flags.getByValSize(); ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; // Empty aggregate parameters do not take up registers. Examples: // struct { } a; // union { } b; // int c[0]; // etc. However, we have to provide a place-holder in InVals, so // pretend we have an 8-byte item at the current address for that // purpose. if (!ObjSize) { int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(FIN); continue; } // All aggregates smaller than 8 bytes must be passed right-justified. if (ObjSize < PtrByteSize && !isLittleEndian) CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize); // The value of the object is its address. int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(FIN); if (ObjSize < 8) { if (GPR_idx != Num_GPR_Regs) { unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store; if (ObjSize==1 || ObjSize==2 || ObjSize==4) { EVT ObjType = (ObjSize == 1 ? MVT::i8 : (ObjSize == 2 ? MVT::i16 : MVT::i32)); Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(FuncArg), ObjType, false, false, 0); } else { // For sizes that don't fit a truncating store (3, 5, 6, 7), // store the whole register as-is to the parameter save area // slot. The address of the parameter was already calculated // above (InVals.push_back(FIN)) to be the right-justified // offset within the slot. For this store, we need a new // frame index that points at the beginning of the slot. int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(FuncArg), false, false, 0); } MemOps.push_back(Store); } // Whether we copied from a register or not, advance the offset // into the parameter save area by a full doubleword. ArgOffset += PtrByteSize; continue; } for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { // Store whatever pieces of the object are in registers // to memory. ArgOffset will be the address of the beginning // of the object. if (GPR_idx != Num_GPR_Regs) { unsigned VReg; VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(FuncArg, j), false, false, 0); MemOps.push_back(Store); ++GPR_idx; ArgOffset += PtrByteSize; } else { ArgOffset += ArgSize - j; break; } } continue; } switch (ObjectVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled argument type!"); case MVT::i1: case MVT::i32: case MVT::i64: if (GPR_idx != Num_GPR_Regs) { unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) // PPC64 passes i8, i16, and i32 values in i64 registers. Promote // value to MVT::i64 and then truncate to the correct register size. ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); } else { needsLoad = true; ArgSize = PtrByteSize; } ArgOffset += 8; break; case MVT::f32: case MVT::f64: if (FPR_idx != Num_FPR_Regs) { unsigned VReg; if (ObjectVT == MVT::f32) VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); else VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); ++FPR_idx; } else { needsLoad = true; ArgSize = PtrByteSize; } ArgOffset += 8; break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: case MVT::v2f64: case MVT::v2i64: if (VR_idx != Num_VR_Regs) { unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); ++VR_idx; } else { needsLoad = true; } ArgOffset += 16; break; } // We need to load the argument to a virtual register if we determined // above that we ran out of physical registers of the appropriate type. if (needsLoad) { if (ObjSize < ArgSize && !isLittleEndian) CurArgOffset += ArgSize - ObjSize; int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), false, false, false, 0); } InVals.push_back(ArgVal); } // Area that is at least reserved in the caller of this function. unsigned MinReservedArea; MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); // Set the size that is at least reserved in caller of this function. Tail // call optimized functions' reserved stack space needs to be aligned so that // taking the difference between two stack areas will result in an aligned // stack. MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea); FuncInfo->setMinReservedArea(MinReservedArea); // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { int Depth = ArgOffset; FuncInfo->setVarArgsFrameIndex( MFI->CreateFixedObject(PtrByteSize, Depth, true)); SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); // If this function is vararg, store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing the // result of va_next. for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; GPR_idx < Num_GPR_Regs; ++GPR_idx) { unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(), false, false, 0); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); return Chain; } SDValue PPCTargetLowering::LowerFormalArguments_Darwin( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { // TODO: add description of PPC stack frame format, or at least some docs. // MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; // Potential tail calls could cause overwriting of argument stack slots. bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && (CallConv == CallingConv::Fast)); unsigned PtrByteSize = isPPC64 ? 8 : 4; unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true); unsigned ArgOffset = LinkageSize; // Area that is at least reserved in caller of this function. unsigned MinReservedArea = ArgOffset; static const MCPhysReg GPR_32[] = { // 32-bit registers. PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const MCPhysReg GPR_64[] = { // 64-bit registers. PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const MCPhysReg *FPR = GetFPR(); static const MCPhysReg VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned Num_GPR_Regs = array_lengthof(GPR_32); const unsigned Num_FPR_Regs = 13; const unsigned Num_VR_Regs = array_lengthof( VR); unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; // In 32-bit non-varargs functions, the stack space for vectors is after the // stack space for non-vectors. We do not use this space unless we have // too many vectors to fit in registers, something that only occurs in // constructed examples:), but we have to walk the arglist to figure // that out...for the pathological case, compute VecArgOffset as the // start of the vector parameter area. Computing VecArgOffset is the // entire point of the following loop. unsigned VecArgOffset = ArgOffset; if (!isVarArg && !isPPC64) { for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { EVT ObjectVT = Ins[ArgNo].VT; ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; if (Flags.isByVal()) { // ObjSize is the true size, ArgSize rounded up to multiple of regs. unsigned ObjSize = Flags.getByValSize(); unsigned ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; VecArgOffset += ArgSize; continue; } switch(ObjectVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled argument type!"); case MVT::i1: case MVT::i32: case MVT::f32: VecArgOffset += 4; break; case MVT::i64: // PPC64 case MVT::f64: // FIXME: We are guaranteed to be !isPPC64 at this point. // Does MVT::i64 apply? VecArgOffset += 8; break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: // Nothing to do, we're only looking at Nonvector args here. break; } } } // We've found where the vector parameter area in memory is. Skip the // first 12 parameters; these don't use that memory. VecArgOffset = ((VecArgOffset+15)/16)*16; VecArgOffset += 12*16; // Add DAG nodes to load the arguments or copy them out of registers. On // entry to a function on PPC, the arguments start after the linkage area, // although the first ones are often in registers. SmallVector<SDValue, 8> MemOps; unsigned nAltivecParamsAtEnd = 0; Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); unsigned CurArgIdx = 0; for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { SDValue ArgVal; bool needsLoad = false; EVT ObjectVT = Ins[ArgNo].VT; unsigned ObjSize = ObjectVT.getSizeInBits()/8; unsigned ArgSize = ObjSize; ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx); CurArgIdx = Ins[ArgNo].OrigArgIndex; unsigned CurArgOffset = ArgOffset; // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { if (isVarArg || isPPC64) { MinReservedArea = ((MinReservedArea+15)/16)*16; MinReservedArea += CalculateStackSlotSize(ObjectVT, Flags, PtrByteSize); } else nAltivecParamsAtEnd++; } else // Calculate min reserved area. MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, Flags, PtrByteSize); // FIXME the codegen can be much improved in some cases. // We do not have to keep everything in memory. if (Flags.isByVal()) { // ObjSize is the true size, ArgSize rounded up to multiple of registers. ObjSize = Flags.getByValSize(); ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; // Objects of size 1 and 2 are right justified, everything else is // left justified. This means the memory address is adjusted forwards. if (ObjSize==1 || ObjSize==2) { CurArgOffset = CurArgOffset + (4 - ObjSize); } // The value of the object is its address. int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(FIN); if (ObjSize==1 || ObjSize==2) { if (GPR_idx != Num_GPR_Regs) { unsigned VReg; if (isPPC64) VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); else VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(FuncArg), ObjType, false, false, 0); MemOps.push_back(Store); ++GPR_idx; } ArgOffset += PtrByteSize; continue; } for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { // Store whatever pieces of the object are in registers // to memory. ArgOffset will be the address of the beginning // of the object. if (GPR_idx != Num_GPR_Regs) { unsigned VReg; if (isPPC64) VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); else VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(FuncArg, j), false, false, 0); MemOps.push_back(Store); ++GPR_idx; ArgOffset += PtrByteSize; } else { ArgOffset += ArgSize - (ArgOffset-CurArgOffset); break; } } continue; } switch (ObjectVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled argument type!"); case MVT::i1: case MVT::i32: if (!isPPC64) { if (GPR_idx != Num_GPR_Regs) { unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); if (ObjectVT == MVT::i1) ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); ++GPR_idx; } else { needsLoad = true; ArgSize = PtrByteSize; } // All int arguments reserve stack space in the Darwin ABI. ArgOffset += PtrByteSize; break; } // FALLTHROUGH case MVT::i64: // PPC64 if (GPR_idx != Num_GPR_Regs) { unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) // PPC64 passes i8, i16, and i32 values in i64 registers. Promote // value to MVT::i64 and then truncate to the correct register size. ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); ++GPR_idx; } else { needsLoad = true; ArgSize = PtrByteSize; } // All int arguments reserve stack space in the Darwin ABI. ArgOffset += 8; break; case MVT::f32: case MVT::f64: // Every 4 bytes of argument space consumes one of the GPRs available for // argument passing. if (GPR_idx != Num_GPR_Regs) { ++GPR_idx; if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) ++GPR_idx; } if (FPR_idx != Num_FPR_Regs) { unsigned VReg; if (ObjectVT == MVT::f32) VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); else VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); ++FPR_idx; } else { needsLoad = true; } // All FP arguments reserve stack space in the Darwin ABI. ArgOffset += isPPC64 ? 8 : ObjSize; break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: // Note that vector arguments in registers don't reserve stack space, // except in varargs functions. if (VR_idx != Num_VR_Regs) { unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); if (isVarArg) { while ((ArgOffset % 16) != 0) { ArgOffset += PtrByteSize; if (GPR_idx != Num_GPR_Regs) GPR_idx++; } ArgOffset += 16; GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? } ++VR_idx; } else { if (!isVarArg && !isPPC64) { // Vectors go after all the nonvectors. CurArgOffset = VecArgOffset; VecArgOffset += 16; } else { // Vectors are aligned. ArgOffset = ((ArgOffset+15)/16)*16; CurArgOffset = ArgOffset; ArgOffset += 16; } needsLoad = true; } break; } // We need to load the argument to a virtual register if we determined above // that we ran out of physical registers of the appropriate type. if (needsLoad) { int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset + (ArgSize - ObjSize), isImmutable); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), false, false, false, 0); } InVals.push_back(ArgVal); } // Allow for Altivec parameters at the end, if needed. if (nAltivecParamsAtEnd) { MinReservedArea = ((MinReservedArea+15)/16)*16; MinReservedArea += 16*nAltivecParamsAtEnd; } // Area that is at least reserved in the caller of this function. MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); // Set the size that is at least reserved in caller of this function. Tail // call optimized functions' reserved stack space needs to be aligned so that // taking the difference between two stack areas will result in an aligned // stack. MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea); FuncInfo->setMinReservedArea(MinReservedArea); // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { int Depth = ArgOffset; FuncInfo->setVarArgsFrameIndex( MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, Depth, true)); SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); // If this function is vararg, store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing the // result of va_next. for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { unsigned VReg; if (isPPC64) VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); else VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(), false, false, 0); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); return Chain; } /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be /// adjusted to accommodate the arguments for the tailcall. static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, unsigned ParamSize) { if (!isTailCall) return 0; PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); unsigned CallerMinReservedArea = FI->getMinReservedArea(); int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; // Remember only if the new adjustement is bigger. if (SPDiff < FI->getTailCallSPDelta()) FI->setTailCallSPDelta(SPDiff); return SPDiff; } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const { if (!getTargetMachine().Options.GuaranteedTailCallOpt) return false; // Variable argument functions are not supported. if (isVarArg) return false; MachineFunction &MF = DAG.getMachineFunction(); CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { // Functions containing by val parameters are not supported. for (unsigned i = 0; i != Ins.size(); i++) { ISD::ArgFlagsTy Flags = Ins[i].Flags; if (Flags.isByVal()) return false; } // Non-PIC/GOT tail calls are supported. if (getTargetMachine().getRelocationModel() != Reloc::PIC_) return true; // At the moment we can only do local tail calls (in same module, hidden // or protected) if we are generating PIC. if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) return G->getGlobal()->hasHiddenVisibility() || G->getGlobal()->hasProtectedVisibility(); } return false; } /// isCallCompatibleAddress - Return the immediate to use if the specified /// 32-bit value is representable in the immediate field of a BxA instruction. static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); if (!C) return nullptr; int Addr = C->getZExtValue(); if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. SignExtend32<26>(Addr) != Addr) return nullptr; // Top 6 bits have to be sext of immediate. return DAG.getConstant((int)C->getZExtValue() >> 2, DAG.getTargetLoweringInfo().getPointerTy()).getNode(); } namespace { struct TailCallArgumentInfo { SDValue Arg; SDValue FrameIdxOp; int FrameIdx; TailCallArgumentInfo() : FrameIdx(0) {} }; } /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. static void StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, SDValue Chain, const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, SmallVectorImpl<SDValue> &MemOpChains, SDLoc dl) { for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { SDValue Arg = TailCallArgs[i].Arg; SDValue FIN = TailCallArgs[i].FrameIdxOp; int FI = TailCallArgs[i].FrameIdx; // Store relative to framepointer. MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, MachinePointerInfo::getFixedStack(FI), false, false, 0)); } } /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to /// the appropriate stack slot for the tail call optimized function call. static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue OldRetAddr, SDValue OldFP, int SPDiff, bool isPPC64, bool isDarwinABI, SDLoc dl) { if (SPDiff) { // Calculate the new stack slot for the return address. int SlotSize = isPPC64 ? 8 : 4; int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewRetAddrLoc, true); EVT VT = isPPC64 ? MVT::i64 : MVT::i32; SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, MachinePointerInfo::getFixedStack(NewRetAddr), false, false, 0); // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack // slot as the FP is never overwritten. if (isDarwinABI) { int NewFPLoc = SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, true); SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, MachinePointerInfo::getFixedStack(NewFPIdx), false, false, 0); } } return Chain; } /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate /// the position of the argument. static void CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, SDValue Arg, int SPDiff, unsigned ArgOffset, SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { int Offset = ArgOffset + SPDiff; uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); EVT VT = isPPC64 ? MVT::i64 : MVT::i32; SDValue FIN = DAG.getFrameIndex(FI, VT); TailCallArgumentInfo Info; Info.Arg = Arg; Info.FrameIdxOp = FIN; Info.FrameIdx = FI; TailCallArguments.push_back(Info); } /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address /// stack slot. Returns the chain as result and the loaded frame pointers in /// LROpOut/FPOpout. Used when tail calling. SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, SDValue &FPOpOut, bool isDarwinABI, SDLoc dl) const { if (SPDiff) { // Load the LR and FP stack slot for later adjusting. EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; LROpOut = getReturnAddrFrameIndex(DAG); LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), false, false, false, 0); Chain = SDValue(LROpOut.getNode(), 1); // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack // slot as the FP is never overwritten. if (isDarwinABI) { FPOpOut = getFramePointerFrameIndex(DAG); FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), false, false, false, 0); Chain = SDValue(FPOpOut.getNode(), 1); } } return Chain; } /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified /// by "Src" to address "Dst" of size "Size". Alignment information is /// specified by the specific parameter attribute. The copy will be passed as /// a byval function parameter. /// Sometimes what we are copying is the end of a larger object, the part that /// does not fit in registers. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, SDLoc dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), false, false, MachinePointerInfo(), MachinePointerInfo()); } /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of /// tail calls. static void LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, SDLoc dl) { EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); if (!isTailCall) { if (isVector) { SDValue StackPtr; if (isPPC64) StackPtr = DAG.getRegister(PPC::X1, MVT::i64); else StackPtr = DAG.getRegister(PPC::R1, MVT::i32); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, DAG.getConstant(ArgOffset, PtrVT)); } MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); // Calculate and remember argument location. } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, TailCallArguments); } static void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, SDValue LROp, SDValue FPOp, bool isDarwinABI, SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { MachineFunction &MF = DAG.getMachineFunction(); // Emit a sequence of copyto/copyfrom virtual registers for arguments that // might overwrite each other in case of tail call optimization. SmallVector<SDValue, 8> MemOpChains2; // Do not flag preceding copytoreg stuff together with the following stuff. InFlag = SDValue(); StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, MemOpChains2, dl); if (!MemOpChains2.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); // Store the return address to the appropriate stack slot. Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, isPPC64, isDarwinABI, dl); // Emit callseq_end just before tailcall node. Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag, dl); InFlag = Chain.getValue(1); } static unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall, SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, const PPCSubtarget &Subtarget) { bool isPPC64 = Subtarget.isPPC64(); bool isSVR4ABI = Subtarget.isSVR4ABI(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. unsigned CallOpc = PPCISD::CALL; bool needIndirectCall = true; if (!isSVR4ABI || !isPPC64) if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { // If this is an absolute destination address, use the munged value. Callee = SDValue(Dest, 0); needIndirectCall = false; } if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 // Use indirect calls for ALL functions calls in JIT mode, since the // far-call stubs may be outside relocation limits for a BL instruction. if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { unsigned OpFlags = 0; if (DAG.getTarget().getRelocationModel() != Reloc::Static && (Subtarget.getTargetTriple().isMacOSX() && Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && (G->getGlobal()->isDeclaration() || G->getGlobal()->isWeakForLinker())) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = PPCII::MO_DARWIN_STUB; } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, // every direct call is) turn it into a TargetGlobalAddress / // TargetExternalSymbol node so that legalize doesn't hack it. Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, Callee.getValueType(), 0, OpFlags); needIndirectCall = false; } } if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { unsigned char OpFlags = 0; if (DAG.getTarget().getRelocationModel() != Reloc::Static && (Subtarget.getTargetTriple().isMacOSX() && Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = PPCII::MO_DARWIN_STUB; } Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), OpFlags); needIndirectCall = false; } if (needIndirectCall) { // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair // to do the call, we can't use PPCISD::CALL. SDValue MTCTROps[] = {Chain, Callee, InFlag}; if (isSVR4ABI && isPPC64) { // Function pointers in the 64-bit SVR4 ABI do not point to the function // entry point, but to the function descriptor (the function entry point // address is part of the function descriptor though). // The function descriptor is a three doubleword structure with the // following fields: function entry point, TOC base address and // environment pointer. // Thus for a call through a function pointer, the following actions need // to be performed: // 1. Save the TOC of the caller in the TOC save area of its stack // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). // 2. Load the address of the function entry point from the function // descriptor. // 3. Load the TOC of the callee from the function descriptor into r2. // 4. Load the environment pointer from the function descriptor into // r11. // 5. Branch to the function entry point address. // 6. On return of the callee, the TOC of the caller needs to be // restored (this is done in FinishCall()). // // All those operations are flagged together to ensure that no other // operations can be scheduled in between. E.g. without flagging the // operations together, a TOC access in the caller could be scheduled // between the load of the callee TOC and the branch to the callee, which // results in the TOC access going through the TOC of the callee instead // of going through the TOC of the caller, which leads to incorrect code. // Load the address of the function entry point from the function // descriptor. SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); Chain = LoadFuncPtr.getValue(1); InFlag = LoadFuncPtr.getValue(2); // Load environment pointer into r11. // Offset of the environment pointer within the function descriptor. SDValue PtrOff = DAG.getIntPtrConstant(16); SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, InFlag); Chain = LoadEnvPtr.getValue(1); InFlag = LoadEnvPtr.getValue(2); SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, InFlag); Chain = EnvVal.getValue(0); InFlag = EnvVal.getValue(1); // Load TOC of the callee into r2. We are using a target-specific load // with r2 hard coded, because the result of a target-independent load // would never go directly into r2, since r2 is a reserved register (which // prevents the register allocator from allocating it), resulting in an // additional register being allocated and an unnecessary move instruction // being generated. VTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue TOCOff = DAG.getIntPtrConstant(8); SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, AddTOC, InFlag); Chain = LoadTOCPtr.getValue(0); InFlag = LoadTOCPtr.getValue(1); MTCTROps[0] = Chain; MTCTROps[1] = LoadFuncPtr; MTCTROps[2] = InFlag; } Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); InFlag = Chain.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Other); NodeTys.push_back(MVT::Glue); Ops.push_back(Chain); CallOpc = PPCISD::BCTRL; Callee.setNode(nullptr); // Add use of X11 (holding environment pointer) if (isSVR4ABI && isPPC64) Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); // Add CTR register as callee so a bctr can be emitted later. if (isTailCall) Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); } // If this is a direct call, pass the chain and the callee. if (Callee.getNode()) { Ops.push_back(Chain); Ops.push_back(Callee); } // If this is a tail call add stack pointer delta. if (isTailCall) Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); return CallOpc; } static bool isLocalCall(const SDValue &Callee) { if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) return !G->getGlobal()->isDeclaration() && !G->getGlobal()->isWeakForLinker(); return false; } SDValue PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { SmallVector<CCValAssign, 16> RVLocs; CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::AExt: Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); break; case CCValAssign::ZExt: Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, DAG.getValueType(VA.getValVT())); Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); break; case CCValAssign::SExt: Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, DAG.getValueType(VA.getValVT())); Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); break; } InVals.push_back(Val); } return Chain; } SDValue PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall, bool isVarArg, SelectionDAG &DAG, SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, SDValue Chain, SDValue &Callee, int SPDiff, unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, SmallVectorImpl<SDValue> &InVals) const { std::vector<EVT> NodeTys; SmallVector<SDValue, 8> Ops; unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, isTailCall, RegsToPass, Ops, NodeTys, Subtarget); // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); // When performing tail call optimization the callee pops its arguments off // the stack. Account for this here so these bytes can be pushed back on in // PPCFrameLowering::eliminateCallFramePseudoInstr. int BytesCalleePops = (CallConv == CallingConv::Fast && getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); // Emit tail call. if (isTailCall) { assert(((Callee.getOpcode() == ISD::Register && cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa<ConstantSDNode>(Callee)) && "Expecting an global address, external symbol, absolute value or register"); return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); } // Add a NOP immediately after the branch instruction when using the 64-bit // SVR4 ABI. At link time, if caller and callee are in a different module and // thus have a different TOC, the call will be replaced with a call to a stub // function which saves the current TOC, loads the TOC of the callee and // branches to the callee. The NOP will be replaced with a load instruction // which restores the TOC of the caller from the TOC save slot of the current // stack frame. If caller and callee belong to the same module (and have the // same TOC), the NOP will remain unchanged. bool needsTOCRestore = false; if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64()) { if (CallOpc == PPCISD::BCTRL) { // This is a call through a function pointer. // Restore the caller TOC from the save area into R2. // See PrepareCall() for more information about calls through function // pointers in the 64-bit SVR4 ABI. // We are using a target-specific load with r2 hard coded, because the // result of a target-independent load would never go directly into r2, // since r2 is a reserved register (which prevents the register allocator // from allocating it), resulting in an additional register being // allocated and an unnecessary move instruction being generated. needsTOCRestore = true; } else if ((CallOpc == PPCISD::CALL) && (!isLocalCall(Callee) || DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { // Otherwise insert NOP for non-local calls. CallOpc = PPCISD::CALL_NOP; } } Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); InFlag = Chain.getValue(1); if (needsTOCRestore) { SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(); SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset); SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); Chain = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, AddTOC, InFlag); InFlag = Chain.getValue(1); } Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(BytesCalleePops, true), InFlag, dl); if (!Ins.empty()) InFlag = Chain.getValue(1); return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals); } SDValue PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool isVarArg = CLI.IsVarArg; if (isTailCall) isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG); if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall()) report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); if (Subtarget.isSVR4ABI()) { if (Subtarget.isPPC64()) return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, isTailCall, Outs, OutVals, Ins, dl, DAG, InVals); else return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, isTailCall, Outs, OutVals, Ins, dl, DAG, InVals); } return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, isTailCall, Outs, OutVals, Ins, dl, DAG, InVals); } SDValue PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description // of the 32-bit SVR4 ABI stack frame layout. assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) && "Unknown calling convention!"); unsigned PtrByteSize = 4; MachineFunction &MF = DAG.getMachineFunction(); // Mark this function as potentially containing a function that contains a // tail call. As a consequence the frame pointer will be used for dynamicalloc // and restoring the callers stack pointer in this functions epilog. This is // done because by tail calling the called function might overwrite the value // in this function's (MF) stack pointer stack slot 0(SP). if (getTargetMachine().Options.GuaranteedTailCallOpt && CallConv == CallingConv::Fast) MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); // Count how many bytes are to be pushed on the stack, including the linkage // area, parameter list area and the part of the local variable space which // contains copies of aggregates which are passed by value. // Assign locations to all of the outgoing arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); // Reserve space for the linkage area on the stack. CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); if (isVarArg) { // Handle fixed and variable vector arguments differently. // Fixed vector arguments go into registers as long as registers are // available. Variable vector arguments always go into memory. unsigned NumArgs = Outs.size(); for (unsigned i = 0; i != NumArgs; ++i) { MVT ArgVT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; bool Result; if (Outs[i].IsFixed) { Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); } else { Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); } if (Result) { #ifndef NDEBUG errs() << "Call operand #" << i << " has unhandled type " << EVT(ArgVT).getEVTString() << "\n"; #endif llvm_unreachable(nullptr); } } } else { // All arguments are treated the same. CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); } // Assign locations to all of the outgoing aggregate by value arguments. SmallVector<CCValAssign, 16> ByValArgLocs; CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ByValArgLocs, *DAG.getContext()); // Reserve stack space for the allocations in CCInfo. CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); // Size of the linkage area, parameter list area and the part of the local // space variable where copies of aggregates which are passed by value are // stored. unsigned NumBytes = CCByValInfo.getNextStackOffset(); // Calculate by how many bytes the stack has to be adjusted in case of tail // call optimization. int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), dl); SDValue CallSeqStart = Chain; // Load the return address and frame pointer so it can be moved somewhere else // later. SDValue LROp, FPOp; Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, dl); // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; SmallVector<TailCallArgumentInfo, 8> TailCallArguments; SmallVector<SDValue, 8> MemOpChains; bool seenFloatArg = false; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; if (Flags.isByVal()) { // Argument is an aggregate which is passed by value, thus we need to // create a copy of it in the local variable space of the current stack // frame (which is the stack frame of the caller) and pass the address of // this copy to the callee. assert((j < ByValArgLocs.size()) && "Index out of bounds!"); CCValAssign &ByValVA = ByValArgLocs[j++]; assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); // Memory reserved in the local variable space of the callers stack frame. unsigned LocMemOffset = ByValVA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); // Create a copy of the argument in the local area of the current // stack frame. SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, CallSeqStart.getNode()->getOperand(0), Flags, DAG, dl); // This must go outside the CALLSEQ_START..END. SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, CallSeqStart.getNode()->getOperand(1), SDLoc(MemcpyCall)); DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); Chain = CallSeqStart = NewCallSeqStart; // Pass the address of the aggregate copy on the stack either in a // physical register or in the parameter list area of the current stack // frame to the callee. Arg = PtrOff; } if (VA.isRegLoc()) { if (Arg.getValueType() == MVT::i1) Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); seenFloatArg |= VA.getLocVT().isFloatingPoint(); // Put argument in a physical register. RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { // Put argument in the parameter list area of the current stack frame. assert(VA.isMemLoc()); unsigned LocMemOffset = VA.getLocMemOffset(); if (!isTailCall) { SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); } else { // Calculate and remember argument location. CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, TailCallArguments); } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // Set CR bit 6 to true if this is a vararg call with floating args passed in // registers. if (isVarArg) { SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, InFlag }; Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); InFlag = Chain.getValue(1); } if (isTailCall) PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, false, TailCallArguments); return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, Ins, InVals); } // Copy an argument into memory, being careful to do this outside the // call sequence for the call to which the argument belongs. SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, SDLoc dl) const { SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, CallSeqStart.getNode()->getOperand(0), Flags, DAG, dl); // The MEMCPY must go outside the CALLSEQ_START..END. SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, CallSeqStart.getNode()->getOperand(1), SDLoc(MemcpyCall)); DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); return NewCallSeqStart; } SDValue PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { bool isLittleEndian = Subtarget.isLittleEndian(); unsigned NumOps = Outs.size(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); unsigned PtrByteSize = 8; MachineFunction &MF = DAG.getMachineFunction(); // Mark this function as potentially containing a function that contains a // tail call. As a consequence the frame pointer will be used for dynamicalloc // and restoring the callers stack pointer in this functions epilog. This is // done because by tail calling the called function might overwrite the value // in this function's (MF) stack pointer stack slot 0(SP). if (getTargetMachine().Options.GuaranteedTailCallOpt && CallConv == CallingConv::Fast) MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. We start with at least 48 bytes, which // is reserved space for [SP][CR][LR][3 x unused]. unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false); unsigned NumBytes = LinkageSize; // Add up all the space actually used. for (unsigned i = 0; i != NumOps; ++i) { ISD::ArgFlagsTy Flags = Outs[i].Flags; EVT ArgVT = Outs[i].VT; /* Respect alignment of argument on the stack. */ unsigned Align = CalculateStackSlotAlignment(ArgVT, Flags, PtrByteSize); NumBytes = ((NumBytes + Align - 1) / Align) * Align; NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); } unsigned NumBytesActuallyUsed = NumBytes; // The prolog code of the callee may store up to 8 GPR argument registers to // the stack, allowing va_start to index over them in memory if its varargs. // Because we cannot tell if this is needed on the caller side, we have to // conservatively assume that it is needed. As such, make sure we have at // least enough stack space for the caller to store the 8 GPRs. NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); // Tail call needs the stack to be aligned. if (getTargetMachine().Options.GuaranteedTailCallOpt && CallConv == CallingConv::Fast) NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes); // Calculate by how many bytes the stack has to be adjusted in case of tail // call optimization. int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); // To protect arguments on the stack from being clobbered in a tail call, // force all the loads to happen before doing any other lowering. if (isTailCall) Chain = DAG.getStackArgumentTokenFactor(Chain); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), dl); SDValue CallSeqStart = Chain; // Load the return address and frame pointer so it can be move somewhere else // later. SDValue LROp, FPOp; Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, dl); // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); // Figure out which arguments are going to go in registers, and which in // memory. Also, if this is a vararg function, floating point operations // must be stored to our stack, and loaded into integer regs as well, if // any integer regs are available for argument passing. unsigned ArgOffset = LinkageSize; unsigned GPR_idx, FPR_idx = 0, VR_idx = 0; static const MCPhysReg GPR[] = { PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const MCPhysReg *FPR = GetFPR(); static const MCPhysReg VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; static const MCPhysReg VSRH[] = { PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 }; const unsigned NumGPRs = array_lengthof(GPR); const unsigned NumFPRs = 13; const unsigned NumVRs = array_lengthof(VR); SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; SmallVector<TailCallArgumentInfo, 8> TailCallArguments; SmallVector<SDValue, 8> MemOpChains; for (unsigned i = 0; i != NumOps; ++i) { SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; /* Respect alignment of argument on the stack. */ unsigned Align = CalculateStackSlotAlignment(Outs[i].VT, Flags, PtrByteSize); ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; /* Compute GPR index associated with argument offset. */ GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; GPR_idx = std::min(GPR_idx, NumGPRs); // PtrOff will be used to store the current argument to the stack if a // register cannot be found for it. SDValue PtrOff; PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); // Promote integers to 64-bit values. if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { // FIXME: Should this use ANY_EXTEND if neither sext nor zext? unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); } // FIXME memcpy is used way more than necessary. Correctness first. // Note: "by value" is code for passing a structure by value, not // basic types. if (Flags.isByVal()) { // Note: Size includes alignment padding, so // struct x { short a; char b; } // will have Size = 4. With #pragma pack(1), it will have Size = 3. // These are the proper values we need for right-justifying the // aggregate in a parameter register. unsigned Size = Flags.getByValSize(); // An empty aggregate parameter takes up no storage and no // registers. if (Size == 0) continue; // All aggregates smaller than 8 bytes must be passed right-justified. if (Size==1 || Size==2 || Size==4) { EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); if (GPR_idx != NumGPRs) { SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, MachinePointerInfo(), VT, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load)); ArgOffset += PtrByteSize; continue; } } if (GPR_idx == NumGPRs && Size < 8) { SDValue AddPtr = PtrOff; if (!isLittleEndian) { SDValue Const = DAG.getConstant(PtrByteSize - Size, PtrOff.getValueType()); AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); } Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, CallSeqStart, Flags, DAG, dl); ArgOffset += PtrByteSize; continue; } // Copy entire object into memory. There are cases where gcc-generated // code assumes it is there, even if it could be put entirely into // registers. (This is not what the doc says.) // FIXME: The above statement is likely due to a misunderstanding of the // documents. All arguments must be copied into the parameter area BY // THE CALLEE in the event that the callee takes the address of any // formal argument. That has not yet been implemented. However, it is // reasonable to use the stack area as a staging area for the register // load. // Skip this for small aggregates, as we will use the same slot for a // right-justified copy, below. if (Size >= 8) Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, CallSeqStart, Flags, DAG, dl); // When a register is available, pass a small aggregate right-justified. if (Size < 8 && GPR_idx != NumGPRs) { // The easiest way to get this right-justified in a register // is to copy the structure into the rightmost portion of a // local variable slot, then load the whole slot into the // register. // FIXME: The memcpy seems to produce pretty awful code for // small aggregates, particularly for packed ones. // FIXME: It would be preferable to use the slot in the // parameter save area instead of a new local variable. SDValue AddPtr = PtrOff; if (!isLittleEndian) { SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType()); AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); } Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, CallSeqStart, Flags, DAG, dl); // Load the slot into the register. SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load)); // Done with this argument. ArgOffset += PtrByteSize; continue; } // For aggregates larger than PtrByteSize, copy the pieces of the // object that fit into registers from the parameter save area. for (unsigned j=0; j<Size; j+=PtrByteSize) { SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); if (GPR_idx != NumGPRs) { SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); ArgOffset += PtrByteSize; } else { ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; break; } } continue; } switch (Arg.getSimpleValueType().SimpleTy) { default: llvm_unreachable("Unexpected ValueType for argument!"); case MVT::i1: case MVT::i32: case MVT::i64: if (GPR_idx != NumGPRs) { RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Arg)); } else { LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, true, isTailCall, false, MemOpChains, TailCallArguments, dl); } ArgOffset += PtrByteSize; break; case MVT::f32: case MVT::f64: if (FPR_idx != NumFPRs) { RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); if (isVarArg) { // A single float or an aggregate containing only a single float // must be passed right-justified in the stack doubleword, and // in the GPR, if one is available. SDValue StoreOff; if (Arg.getSimpleValueType().SimpleTy == MVT::f32 && !isLittleEndian) { SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); } else StoreOff = PtrOff; SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff, MachinePointerInfo(), false, false, 0); MemOpChains.push_back(Store); // Float varargs are always shadowed in available integer registers if (GPR_idx != NumGPRs) { SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load)); } } } else { // Single-precision floating-point values are mapped to the // second (rightmost) word of the stack doubleword. if (Arg.getValueType() == MVT::f32 && !isLittleEndian) { SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); } LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, true, isTailCall, false, MemOpChains, TailCallArguments, dl); } ArgOffset += 8; break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: case MVT::v2f64: case MVT::v2i64: // For a varargs call, named arguments go into VRs or on the stack as // usual; unnamed arguments always go to the stack or the corresponding // GPRs when within range. For now, we always put the value in both // locations (or even all three). if (isVarArg) { // We could elide this store in the case where the object fits // entirely in R registers. Maybe later. SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0); MemOpChains.push_back(Store); if (VR_idx != NumVRs) { SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || Arg.getSimpleValueType() == MVT::v2i64) ? VSRH[VR_idx] : VR[VR_idx]; ++VR_idx; RegsToPass.push_back(std::make_pair(VReg, Load)); } ArgOffset += 16; for (unsigned i=0; i<16; i+=PtrByteSize) { if (GPR_idx == NumGPRs) break; SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, DAG.getConstant(i, PtrVT)); SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); } break; } // Non-varargs Altivec params go into VRs or on the stack. if (VR_idx != NumVRs) { unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || Arg.getSimpleValueType() == MVT::v2i64) ? VSRH[VR_idx] : VR[VR_idx]; ++VR_idx; RegsToPass.push_back(std::make_pair(VReg, Arg)); } else { LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, true, isTailCall, true, MemOpChains, TailCallArguments, dl); } ArgOffset += 16; break; } } assert(NumBytesActuallyUsed == ArgOffset); (void)NumBytesActuallyUsed; if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // Check if this is an indirect call (MTCTR/BCTRL). // See PrepareCall() for more information about calls through function // pointers in the 64-bit SVR4 ABI. if (!isTailCall && !dyn_cast<GlobalAddressSDNode>(Callee) && !dyn_cast<ExternalSymbolSDNode>(Callee)) { // Load r2 into a virtual register and store it to the TOC save area. SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); // TOC save area offset. unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(); SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset); SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), false, false, 0); } // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } if (isTailCall) PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, FPOp, true, TailCallArguments); return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, Ins, InVals); } SDValue PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { unsigned NumOps = Outs.size(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; unsigned PtrByteSize = isPPC64 ? 8 : 4; MachineFunction &MF = DAG.getMachineFunction(); // Mark this function as potentially containing a function that contains a // tail call. As a consequence the frame pointer will be used for dynamicalloc // and restoring the callers stack pointer in this functions epilog. This is // done because by tail calling the called function might overwrite the value // in this function's (MF) stack pointer stack slot 0(SP). if (getTargetMachine().Options.GuaranteedTailCallOpt && CallConv == CallingConv::Fast) MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. We start with 24/48 bytes, which is // prereserved space for [SP][CR][LR][3 x unused]. unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true); unsigned NumBytes = LinkageSize; // Add up all the space actually used. // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually // they all go in registers, but we must reserve stack space for them for // possible use by the caller. In varargs or 64-bit calls, parameters are // assigned stack space in order, with padding so Altivec parameters are // 16-byte aligned. unsigned nAltivecParamsAtEnd = 0; for (unsigned i = 0; i != NumOps; ++i) { ISD::ArgFlagsTy Flags = Outs[i].Flags; EVT ArgVT = Outs[i].VT; // Varargs Altivec parameters are padded to a 16 byte boundary. if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { if (!isVarArg && !isPPC64) { // Non-varargs Altivec parameters go after all the non-Altivec // parameters; handle those later so we know how much padding we need. nAltivecParamsAtEnd++; continue; } // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. NumBytes = ((NumBytes+15)/16)*16; } NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); } // Allow for Altivec parameters at the end, if needed. if (nAltivecParamsAtEnd) { NumBytes = ((NumBytes+15)/16)*16; NumBytes += 16*nAltivecParamsAtEnd; } // The prolog code of the callee may store up to 8 GPR argument registers to // the stack, allowing va_start to index over them in memory if its varargs. // Because we cannot tell if this is needed on the caller side, we have to // conservatively assume that it is needed. As such, make sure we have at // least enough stack space for the caller to store the 8 GPRs. NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); // Tail call needs the stack to be aligned. if (getTargetMachine().Options.GuaranteedTailCallOpt && CallConv == CallingConv::Fast) NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes); // Calculate by how many bytes the stack has to be adjusted in case of tail // call optimization. int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); // To protect arguments on the stack from being clobbered in a tail call, // force all the loads to happen before doing any other lowering. if (isTailCall) Chain = DAG.getStackArgumentTokenFactor(Chain); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), dl); SDValue CallSeqStart = Chain; // Load the return address and frame pointer so it can be move somewhere else // later. SDValue LROp, FPOp; Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, dl); // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDValue StackPtr; if (isPPC64) StackPtr = DAG.getRegister(PPC::X1, MVT::i64); else StackPtr = DAG.getRegister(PPC::R1, MVT::i32); // Figure out which arguments are going to go in registers, and which in // memory. Also, if this is a vararg function, floating point operations // must be stored to our stack, and loaded into integer regs as well, if // any integer regs are available for argument passing. unsigned ArgOffset = LinkageSize; unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; static const MCPhysReg GPR_32[] = { // 32-bit registers. PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const MCPhysReg GPR_64[] = { // 64-bit registers. PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const MCPhysReg *FPR = GetFPR(); static const MCPhysReg VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned NumGPRs = array_lengthof(GPR_32); const unsigned NumFPRs = 13; const unsigned NumVRs = array_lengthof(VR); const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; SmallVector<TailCallArgumentInfo, 8> TailCallArguments; SmallVector<SDValue, 8> MemOpChains; for (unsigned i = 0; i != NumOps; ++i) { SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; // PtrOff will be used to store the current argument to the stack if a // register cannot be found for it. SDValue PtrOff; PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); // On PPC64, promote integers to 64-bit values. if (isPPC64 && Arg.getValueType() == MVT::i32) { // FIXME: Should this use ANY_EXTEND if neither sext nor zext? unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); } // FIXME memcpy is used way more than necessary. Correctness first. // Note: "by value" is code for passing a structure by value, not // basic types. if (Flags.isByVal()) { unsigned Size = Flags.getByValSize(); // Very small objects are passed right-justified. Everything else is // passed left-justified. if (Size==1 || Size==2) { EVT VT = (Size==1) ? MVT::i8 : MVT::i16; if (GPR_idx != NumGPRs) { SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, MachinePointerInfo(), VT, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); ArgOffset += PtrByteSize; } else { SDValue Const = DAG.getConstant(PtrByteSize - Size, PtrOff.getValueType()); SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, CallSeqStart, Flags, DAG, dl); ArgOffset += PtrByteSize; } continue; } // Copy entire object into memory. There are cases where gcc-generated // code assumes it is there, even if it could be put entirely into // registers. (This is not what the doc says.) Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, CallSeqStart, Flags, DAG, dl); // For small aggregates (Darwin only) and aggregates >= PtrByteSize, // copy the pieces of the object that fit into registers from the // parameter save area. for (unsigned j=0; j<Size; j+=PtrByteSize) { SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); if (GPR_idx != NumGPRs) { SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); ArgOffset += PtrByteSize; } else { ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; break; } } continue; } switch (Arg.getSimpleValueType().SimpleTy) { default: llvm_unreachable("Unexpected ValueType for argument!"); case MVT::i1: case MVT::i32: case MVT::i64: if (GPR_idx != NumGPRs) { if (Arg.getValueType() == MVT::i1) Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); } else { LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, isPPC64, isTailCall, false, MemOpChains, TailCallArguments, dl); } ArgOffset += PtrByteSize; break; case MVT::f32: case MVT::f64: if (FPR_idx != NumFPRs) { RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); if (isVarArg) { SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0); MemOpChains.push_back(Store); // Float varargs are always shadowed in available integer registers if (GPR_idx != NumGPRs) { SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); } if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); } } else { // If we have any FPRs remaining, we may also have GPRs remaining. // Args passed in FPRs consume either 1 (f32) or 2 (f64) available // GPRs. if (GPR_idx != NumGPRs) ++GPR_idx; if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64) // PPC64 has 64-bit GPR's obviously :) ++GPR_idx; } } else LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, isPPC64, isTailCall, false, MemOpChains, TailCallArguments, dl); if (isPPC64) ArgOffset += 8; else ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: if (isVarArg) { // These go aligned on the stack, or in the corresponding R registers // when within range. The Darwin PPC ABI doc claims they also go in // V registers; in fact gcc does this only for arguments that are // prototyped, not for those that match the ... We do it for all // arguments, seems to work. while (ArgOffset % 16 !=0) { ArgOffset += PtrByteSize; if (GPR_idx != NumGPRs) GPR_idx++; } // We could elide this store in the case where the object fits // entirely in R registers. Maybe later. PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, DAG.getConstant(ArgOffset, PtrVT)); SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0); MemOpChains.push_back(Store); if (VR_idx != NumVRs) { SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); } ArgOffset += 16; for (unsigned i=0; i<16; i+=PtrByteSize) { if (GPR_idx == NumGPRs) break; SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, DAG.getConstant(i, PtrVT)); SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); } break; } // Non-varargs Altivec params generally go in registers, but have // stack space allocated at the end. if (VR_idx != NumVRs) { // Doesn't have GPR space allocated. RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); } else if (nAltivecParamsAtEnd==0) { // We are emitting Altivec params in order. LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, isPPC64, isTailCall, true, MemOpChains, TailCallArguments, dl); ArgOffset += 16; } break; } } // If all Altivec parameters fit in registers, as they usually do, // they get stack space following the non-Altivec parameters. We // don't track this here because nobody below needs it. // If there are more Altivec parameters than fit in registers emit // the stores here. if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { unsigned j = 0; // Offset is aligned; skip 1st 12 params which go in V registers. ArgOffset = ((ArgOffset+15)/16)*16; ArgOffset += 12*16; for (unsigned i = 0; i != NumOps; ++i) { SDValue Arg = OutVals[i]; EVT ArgType = Outs[i].VT; if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { if (++j > NumVRs) { SDValue PtrOff; // We are emitting Altivec params in order. LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, isPPC64, isTailCall, true, MemOpChains, TailCallArguments, dl); ArgOffset += 16; } } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // On Darwin, R12 must contain the address of an indirect callee. This does // not mean the MTCTR instruction must use R12; it's easier to model this as // an extra parameter, so do that. if (!isTailCall && !dyn_cast<GlobalAddressSDNode>(Callee) && !dyn_cast<ExternalSymbolSDNode>(Callee) && !isBLACompatibleAddress(Callee, DAG)) RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : PPC::R12), Callee)); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } if (isTailCall) PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, FPOp, true, TailCallArguments); return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, Ins, InVals); } bool PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context); return CCInfo.CheckReturn(Outs, RetCC_PPC); } SDValue PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, SDLoc dl, SelectionDAG &DAG) const { SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_PPC); SDValue Flag; SmallVector<SDValue, 4> RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = OutVals[i]; switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; } Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); } SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { // When we pop the dynamic allocation we need to restore the SP link. SDLoc dl(Op); // Get the corect type for pointers. EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Construct the stack pointer operand. bool isPPC64 = Subtarget.isPPC64(); unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; SDValue StackPtr = DAG.getRegister(SP, PtrVT); // Get the operands for the STACKRESTORE. SDValue Chain = Op.getOperand(0); SDValue SaveSP = Op.getOperand(1); // Load the old link SP. SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo(), false, false, false, 0); // Restore the stack pointer. Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); // Store the old link SP. return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), false, false, 0); } SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { MachineFunction &MF = DAG.getMachineFunction(); bool isPPC64 = Subtarget.isPPC64(); bool isDarwinABI = Subtarget.isDarwinABI(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Get current frame pointer save index. The users of this index will be // primarily DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); int RASI = FI->getReturnAddrSaveIndex(); // If the frame pointer save index hasn't been defined yet. if (!RASI) { // Find out what the fix offset of the frame pointer save area. int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); // Allocate the frame index for frame pointer save area. RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); // Save the result. FI->setReturnAddrSaveIndex(RASI); } return DAG.getFrameIndex(RASI, PtrVT); } SDValue PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { MachineFunction &MF = DAG.getMachineFunction(); bool isPPC64 = Subtarget.isPPC64(); bool isDarwinABI = Subtarget.isDarwinABI(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Get current frame pointer save index. The users of this index will be // primarily DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); int FPSI = FI->getFramePointerSaveIndex(); // If the frame pointer save index hasn't been defined yet. if (!FPSI) { // Find out what the fix offset of the frame pointer save area. int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); // Allocate the frame index for frame pointer save area. FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); // Save the result. FI->setFramePointerSaveIndex(FPSI); } return DAG.getFrameIndex(FPSI, PtrVT); } SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { // Get the inputs. SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); SDLoc dl(Op); // Get the corect type for pointers. EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Negate the size. SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, DAG.getConstant(0, PtrVT), Size); // Construct a node for the frame pointer save index. SDValue FPSIdx = getFramePointerFrameIndex(DAG); // Build a DYNALLOC node. SDValue Ops[3] = { Chain, NegSize, FPSIdx }; SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); } SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1)); } SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), Op.getOperand(1)); } SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::i1 && "Custom lowering only for i1 loads"); // First, load 8 bits into 32 bits, then truncate to 1 bit. SDLoc dl(Op); LoadSDNode *LD = cast<LoadSDNode>(Op); SDValue Chain = LD->getChain(); SDValue BasePtr = LD->getBasePtr(); MachineMemOperand *MMO = LD->getMemOperand(); SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain, BasePtr, MVT::i8, MMO); SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; return DAG.getMergeValues(Ops, dl); } SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOperand(1).getValueType() == MVT::i1 && "Custom lowering only for i1 stores"); // First, zero extend to 32 bits, then use a truncating store to 8 bits. SDLoc dl(Op); StoreSDNode *ST = cast<StoreSDNode>(Op); SDValue Chain = ST->getChain(); SDValue BasePtr = ST->getBasePtr(); SDValue Value = ST->getValue(); MachineMemOperand *MMO = ST->getMemOperand(); Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value); return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); } // FIXME: Remove this once the ANDI glue bug is fixed: SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::i1 && "Custom lowering only for i1 results"); SDLoc DL(Op); return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); } /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when /// possible. SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { // Not FP? Not a fsel. if (!Op.getOperand(0).getValueType().isFloatingPoint() || !Op.getOperand(2).getValueType().isFloatingPoint()) return Op; // We might be able to do better than this under some circumstances, but in // general, fsel-based lowering of select is a finite-math-only optimization. // For more information, see section F.3 of the 2.06 ISA specification. if (!DAG.getTarget().Options.NoInfsFPMath || !DAG.getTarget().Options.NoNaNsFPMath) return Op; ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); EVT ResVT = Op.getValueType(); EVT CmpVT = Op.getOperand(0).getValueType(); SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); SDLoc dl(Op); // If the RHS of the comparison is a 0.0, we don't need to do the // subtraction at all. SDValue Sel1; if (isFloatingPointZero(RHS)) switch (CC) { default: break; // SETUO etc aren't handled by fsel. case ISD::SETNE: std::swap(TV, FV); case ISD::SETEQ: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); return DAG.getNode(PPCISD::FSEL, dl, ResVT, DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); case ISD::SETULT: case ISD::SETLT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETOGE: case ISD::SETGE: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); case ISD::SETUGT: case ISD::SETGT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETOLE: case ISD::SETLE: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); return DAG.getNode(PPCISD::FSEL, dl, ResVT, DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); } SDValue Cmp; switch (CC) { default: break; // SETUO etc aren't handled by fsel. case ISD::SETNE: std::swap(TV, FV); case ISD::SETEQ: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); return DAG.getNode(PPCISD::FSEL, dl, ResVT, DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); case ISD::SETULT: case ISD::SETLT: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); case ISD::SETOGE: case ISD::SETGE: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); case ISD::SETUGT: case ISD::SETGT: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); case ISD::SETOLE: case ISD::SETLE: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); } return Op; } // FIXME: Split this code up when LegalizeDAGTypes lands. SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const { assert(Op.getOperand(0).getValueType().isFloatingPoint()); SDValue Src = Op.getOperand(0); if (Src.getValueType() == MVT::f32) Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); SDValue Tmp; switch (Op.getSimpleValueType().SimpleTy) { default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); case MVT::i32: Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), dl, MVT::f64, Src); break; case MVT::i64: assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && "i64 FP_TO_UINT is supported only with FPCVT"); Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ, dl, MVT::f64, Src); break; } // Convert the FP value to an int value through memory. bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI); // Emit a store to the stack slot. SDValue Chain; if (i32Stack) { MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *MMO = MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); } else Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, false, false, 0); // Result is a load from the stack slot. If loading 4 bytes, make sure to // add in a bias. if (Op.getValueType() == MVT::i32 && !i32Stack) { FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, DAG.getConstant(4, FIPtr.getValueType())); MPI = MachinePointerInfo(); } return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI, false, false, false, 0); } SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); // Don't handle ppc_fp128 here; let it be lowered to a libcall. if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) return SDValue(); if (Op.getOperand(0).getValueType() == MVT::i1) return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), DAG.getConstantFP(1.0, Op.getValueType()), DAG.getConstantFP(0.0, Op.getValueType())); assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && "UINT_TO_FP is supported only with FPCVT"); // If we have FCFIDS, then use it when converting to single-precision. // Otherwise, convert to double-precision and then round. unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS : PPCISD::FCFIDS) : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU : PPCISD::FCFID); MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ? MVT::f32 : MVT::f64; if (Op.getOperand(0).getValueType() == MVT::i64) { SDValue SINT = Op.getOperand(0); // When converting to single-precision, we actually need to convert // to double-precision first and then round to single-precision. // To avoid double-rounding effects during that operation, we have // to prepare the input operand. Bits that might be truncated when // converting to double-precision are replaced by a bit that won't // be lost at this stage, but is below the single-precision rounding // position. // // However, if -enable-unsafe-fp-math is in effect, accept double // rounding to avoid the extra overhead. if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT() && !DAG.getTarget().Options.UnsafeFPMath) { // Twiddle input to make sure the low 11 bits are zero. (If this // is the case, we are guaranteed the value will fit into the 53 bit // mantissa of an IEEE double-precision value without rounding.) // If any of those low 11 bits were not zero originally, make sure // bit 12 (value 2048) is set instead, so that the final rounding // to single-precision gets the correct result. SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, SINT, DAG.getConstant(2047, MVT::i64)); Round = DAG.getNode(ISD::ADD, dl, MVT::i64, Round, DAG.getConstant(2047, MVT::i64)); Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); Round = DAG.getNode(ISD::AND, dl, MVT::i64, Round, DAG.getConstant(-2048, MVT::i64)); // However, we cannot use that value unconditionally: if the magnitude // of the input value is small, the bit-twiddling we did above might // end up visibly changing the output. Fortunately, in that case, we // don't need to twiddle bits since the original input will convert // exactly to double-precision floating-point already. Therefore, // construct a conditional to use the original value if the top 11 // bits are all sign-bit copies, and use the rounded value computed // above otherwise. SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, SINT, DAG.getConstant(53, MVT::i32)); Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, Cond, DAG.getConstant(1, MVT::i64)); Cond = DAG.getSetCC(dl, MVT::i32, Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT); SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); } SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); return FP; } assert(Op.getOperand(0).getValueType() == MVT::i32 && "Unhandled INT_TO_FP type in custom expander!"); // Since we only generate this in 64-bit mode, we can take advantage of // 64-bit registers. In particular, sign extend the input value into the // 64-bit register with extsw, store the WHOLE 64-bit value into the stack // then lfd it and fcfid it. MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *FrameInfo = MF.getFrameInfo(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue Ld; if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, MachinePointerInfo::getFixedStack(FrameIdx), false, false, 0); assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && "Expected an i32 store"); MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), MachineMemOperand::MOLoad, 4, 4); SDValue Ops[] = { Store, FIdx }; Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::LFIWZX : PPCISD::LFIWAX, dl, DAG.getVTList(MVT::f64, MVT::Other), Ops, MVT::i32, MMO); } else { assert(Subtarget.isPPC64() && "i32->FP without LFIWAX supported only on PPC64"); int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Op.getOperand(0)); // STD the extended value into the stack slot. SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx, MachinePointerInfo::getFixedStack(FrameIdx), false, false, 0); // Load the value as a double. Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo::getFixedStack(FrameIdx), false, false, false, 0); } // FCFID it and return it. SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); return FP; } SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); /* The rounding mode is in bits 30:31 of FPSR, and has the following settings: 00 Round to nearest 01 Round to 0 10 Round to +inf 11 Round to -inf FLT_ROUNDS, on the other hand, expects the following: -1 Undefined 0 Round to 0 1 Round to nearest 2 Round to +inf 3 Round to -inf To perform the conversion, we do: ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) */ MachineFunction &MF = DAG.getMachineFunction(); EVT VT = Op.getValueType(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Save FP Control Word to register EVT NodeTys[] = { MVT::f64, // return register MVT::Glue // unused in this context }; SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); // Save FP register to stack slot int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, MachinePointerInfo(), false, false,0); // Load FP Control Word from low 32 bits of stack slot. SDValue Four = DAG.getConstant(4, PtrVT); SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), false, false, false, 0); // Transform as necessary SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, CWD, DAG.getConstant(3, MVT::i32)); SDValue CWD2 = DAG.getNode(ISD::SRL, dl, MVT::i32, DAG.getNode(ISD::AND, dl, MVT::i32, DAG.getNode(ISD::XOR, dl, MVT::i32, CWD, DAG.getConstant(3, MVT::i32)), DAG.getConstant(3, MVT::i32)), DAG.getConstant(1, MVT::i32)); SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); return DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); } SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); unsigned BitWidth = VT.getSizeInBits(); SDLoc dl(Op); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SHL!"); // Expand into a bunch of logical ops. Note that these ops // depend on the PPC behavior for oversized shift amounts. SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Amt = Op.getOperand(2); EVT AmtVT = Amt.getValueType(); SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, AmtVT), Amt); SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, DAG.getConstant(-BitWidth, AmtVT)); SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); SDValue OutOps[] = { OutLo, OutHi }; return DAG.getMergeValues(OutOps, dl); } SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned BitWidth = VT.getSizeInBits(); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRL!"); // Expand into a bunch of logical ops. Note that these ops // depend on the PPC behavior for oversized shift amounts. SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Amt = Op.getOperand(2); EVT AmtVT = Amt.getValueType(); SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, AmtVT), Amt); SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, DAG.getConstant(-BitWidth, AmtVT)); SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); SDValue OutOps[] = { OutLo, OutHi }; return DAG.getMergeValues(OutOps, dl); } SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); unsigned BitWidth = VT.getSizeInBits(); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRA!"); // Expand into a bunch of logical ops, followed by a select_cc. SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Amt = Op.getOperand(2); EVT AmtVT = Amt.getValueType(); SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, AmtVT), Amt); SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, DAG.getConstant(-BitWidth, AmtVT)); SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), Tmp4, Tmp6, ISD::SETLE); SDValue OutOps[] = { OutLo, OutHi }; return DAG.getMergeValues(OutOps, dl); } //===----------------------------------------------------------------------===// // Vector related lowering. // /// BuildSplatI - Build a canonical splati of Val with an element size of /// SplatSize. Cast the result to VT. static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, SelectionDAG &DAG, SDLoc dl) { assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); static const EVT VTys[] = { // canonical VT to use for each size. MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 }; EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. if (Val == -1) SplatSize = 1; EVT CanonicalVT = VTys[SplatSize-1]; // Build a canonical splat for this value. SDValue Elt = DAG.getConstant(Val, MVT::i32); SmallVector<SDValue, 8> Ops; Ops.assign(CanonicalVT.getVectorNumElements(), Elt); SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); } /// BuildIntrinsicOp - Return a unary operator intrinsic node with the /// specified intrinsic ID. static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, SDLoc dl, EVT DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = Op.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, DAG.getConstant(IID, MVT::i32), Op); } /// BuildIntrinsicOp - Return a binary operator intrinsic node with the /// specified intrinsic ID. static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, SelectionDAG &DAG, SDLoc dl, EVT DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = LHS.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, DAG.getConstant(IID, MVT::i32), LHS, RHS); } /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the /// specified intrinsic ID. static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, SDValue Op2, SelectionDAG &DAG, SDLoc dl, EVT DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = Op0.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); } /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified /// amount. The result has the specified value type. static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, SelectionDAG &DAG, SDLoc dl) { // Force LHS/RHS to be the right type. LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); int Ops[16]; for (unsigned i = 0; i != 16; ++i) Ops[i] = i + Amt; SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); return DAG.getNode(ISD::BITCAST, dl, VT, T); } // If this is a case we can't handle, return null and let the default // expansion code take care of it. If we CAN select this case, and if it // selects to a single instruction, return Op. Otherwise, if we can codegen // this case more efficiently than a constant pool load, lower it to the // sequence of ops that should be used. SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); // Check if this is a splat of a constant value. APInt APSplatBits, APSplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, HasAnyUndefs, 0, true) || SplatBitSize > 32) return SDValue(); unsigned SplatBits = APSplatBits.getZExtValue(); unsigned SplatUndef = APSplatUndef.getZExtValue(); unsigned SplatSize = SplatBitSize / 8; // First, handle single instruction cases. // All zeros? if (SplatBits == 0) { // Canonicalize all zero vectors to be v4i32. if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { SDValue Z = DAG.getConstant(0, MVT::i32); Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); } return Op; } // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> (32-SplatBitSize)); if (SextVal >= -16 && SextVal <= 15) return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); // Two instruction sequences. // If this value is in the range [-32,30] and is even, use: // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) // If this value is in the range [17,31] and is odd, use: // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) // If this value is in the range [-31,-17] and is odd, use: // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) // Note the last two are three-instruction sequences. if (SextVal >= -32 && SextVal <= 31) { // To avoid having these optimizations undone by constant folding, // we convert to a pseudo that will be expanded later into one of // the above forms. SDValue Elt = DAG.getConstant(SextVal, MVT::i32); EVT VT = (SplatSize == 1 ? MVT::v16i8 : (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32); SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); if (VT == Op.getValueType()) return RetVal; else return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); } // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important // for fneg/fabs. if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { // Make -1 and vspltisw -1: SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); // Make the VSLW intrinsic, computing 0x8000_0000. SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, OnesV, DAG, dl); // xor by OnesV to invert it. Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); } // The remaining cases assume either big endian element order or // a splat-size that equates to the element size of the vector // to be built. An example that doesn't work for little endian is // {0, -1, 0, -1, 0, -1, 0, -1} which has a splat size of 32 bits // and a vector element size of 16 bits. The code below will // produce the vector in big endian element order, which for little // endian is {-1, 0, -1, 0, -1, 0, -1, 0}. // For now, just avoid these optimizations in that case. // FIXME: Develop correct optimizations for LE with mismatched // splat and element sizes. if (Subtarget.isLittleEndian() && SplatSize != Op.getValueType().getVectorElementType().getSizeInBits()) return SDValue(); // Check to see if this is a wide variety of vsplti*, binop self cases. static const signed char SplatCsts[] = { -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 }; for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { // Indirect through the SplatCsts array so that we favor 'vsplti -1' for // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' int i = SplatCsts[idx]; // Figure out what shift amount will be used by altivec if shifted by i in // this splat size. unsigned TypeShiftAmt = i & (SplatBitSize-1); // vsplti + shl self. if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, Intrinsic::ppc_altivec_vslw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); } // vsplti + srl self. if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, Intrinsic::ppc_altivec_vsrw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); } // vsplti + sra self. if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, Intrinsic::ppc_altivec_vsraw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); } // vsplti + rol self. if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, Intrinsic::ppc_altivec_vrlw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); } // t = vsplti c, result = vsldoi t, t, 1 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); } // t = vsplti c, result = vsldoi t, t, 2 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); } // t = vsplti c, result = vsldoi t, t, 3 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); } } return SDValue(); } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, SDLoc dl) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); enum { OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> OP_VMRGHW, OP_VMRGLW, OP_VSPLTISW0, OP_VSPLTISW1, OP_VSPLTISW2, OP_VSPLTISW3, OP_VSLDOI4, OP_VSLDOI8, OP_VSLDOI12 }; if (OpNum == OP_COPY) { if (LHSID == (1*9+2)*9+3) return LHS; assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); return RHS; } SDValue OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); int ShufIdxs[16]; switch (OpNum) { default: llvm_unreachable("Unknown i32 permute!"); case OP_VMRGHW: ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; break; case OP_VMRGLW: ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; break; case OP_VSPLTISW0: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+0; break; case OP_VSPLTISW1: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+4; break; case OP_VSPLTISW2: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+8; break; case OP_VSPLTISW3: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+12; break; case OP_VSLDOI4: return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); case OP_VSLDOI8: return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); case OP_VSLDOI12: return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); } EVT VT = OpLHS.getValueType(); OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); return DAG.getNode(ISD::BITCAST, dl, VT, T); } /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this /// is a shuffle we can handle in a single instruction, return it. Otherwise, /// return the code it can be lowered into. Worst case, it can always be /// lowered into a vperm. SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); EVT VT = Op.getValueType(); bool isLittleEndian = Subtarget.isLittleEndian(); // Cases that are handled by instructions that take permute immediates // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be // selected by the instruction selector. if (V2.getOpcode() == ISD::UNDEF) { if (PPC::isSplatShuffleMask(SVOp, 1) || PPC::isSplatShuffleMask(SVOp, 2) || PPC::isSplatShuffleMask(SVOp, 4) || PPC::isVPKUWUMShuffleMask(SVOp, true, DAG) || PPC::isVPKUHUMShuffleMask(SVOp, true, DAG) || PPC::isVSLDOIShuffleMask(SVOp, true, DAG) != -1 || PPC::isVMRGLShuffleMask(SVOp, 1, true, DAG) || PPC::isVMRGLShuffleMask(SVOp, 2, true, DAG) || PPC::isVMRGLShuffleMask(SVOp, 4, true, DAG) || PPC::isVMRGHShuffleMask(SVOp, 1, true, DAG) || PPC::isVMRGHShuffleMask(SVOp, 2, true, DAG) || PPC::isVMRGHShuffleMask(SVOp, 4, true, DAG)) { return Op; } } // Altivec has a variety of "shuffle immediates" that take two vector inputs // and produce a fixed permutation. If any of these match, do not lower to // VPERM. if (PPC::isVPKUWUMShuffleMask(SVOp, false, DAG) || PPC::isVPKUHUMShuffleMask(SVOp, false, DAG) || PPC::isVSLDOIShuffleMask(SVOp, false, DAG) != -1 || PPC::isVMRGLShuffleMask(SVOp, 1, false, DAG) || PPC::isVMRGLShuffleMask(SVOp, 2, false, DAG) || PPC::isVMRGLShuffleMask(SVOp, 4, false, DAG) || PPC::isVMRGHShuffleMask(SVOp, 1, false, DAG) || PPC::isVMRGHShuffleMask(SVOp, 2, false, DAG) || PPC::isVMRGHShuffleMask(SVOp, 4, false, DAG)) return Op; // Check to see if this is a shuffle of 4-byte values. If so, we can use our // perfect shuffle table to emit an optimal matching sequence. ArrayRef<int> PermMask = SVOp->getMask(); unsigned PFIndexes[4]; bool isFourElementShuffle = true; for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number unsigned EltNo = 8; // Start out undef. for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. if (PermMask[i*4+j] < 0) continue; // Undef, ignore it. unsigned ByteSource = PermMask[i*4+j]; if ((ByteSource & 3) != j) { isFourElementShuffle = false; break; } if (EltNo == 8) { EltNo = ByteSource/4; } else if (EltNo != ByteSource/4) { isFourElementShuffle = false; break; } } PFIndexes[i] = EltNo; } // If this shuffle can be expressed as a shuffle of 4-byte elements, use the // perfect shuffle vector to determine if it is cost effective to do this as // discrete instructions, or whether we should use a vperm. // For now, we skip this for little endian until such time as we have a // little-endian perfect shuffle table. if (isFourElementShuffle && !isLittleEndian) { // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); // Determining when to avoid vperm is tricky. Many things affect the cost // of vperm, particularly how many times the perm mask needs to be computed. // For example, if the perm mask can be hoisted out of a loop or is already // used (perhaps because there are multiple permutes with the same shuffle // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of // the loop requires an extra register. // // As a compromise, we only emit discrete instructions if the shuffle can be // generated in 3 or fewer operations. When we have loop information // available, if this block is within a loop, we should avoid using vperm // for 3-operation perms and use a constant pool load instead. if (Cost < 3) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); } // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant // vector that will get spilled to the constant pool. if (V2.getOpcode() == ISD::UNDEF) V2 = V1; // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except // that it is in input element units, not in bytes. Convert now. // For little endian, the order of the input vectors is reversed, and // the permutation mask is complemented with respect to 31. This is // necessary to produce proper semantics with the big-endian-biased vperm // instruction. EVT EltVT = V1.getValueType().getVectorElementType(); unsigned BytesPerElement = EltVT.getSizeInBits()/8; SmallVector<SDValue, 16> ResultMask; for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; for (unsigned j = 0; j != BytesPerElement; ++j) if (isLittleEndian) ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j), MVT::i32)); else ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, MVT::i32)); } SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, ResultMask); if (isLittleEndian) return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V2, V1, VPermMask); else return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); } /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an /// altivec comparison. If it is, return true and fill in Opc/isDot with /// information about the intrinsic. static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, bool &isDot) { unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); CompareOpc = -1; isDot = false; switch (IntrinsicID) { default: return false; // Comparison predicates. case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; // Normal Comparisons. case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; } return true; } /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom /// lower, do it, otherwise return null. SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { // If this is a lowered altivec predicate compare, CompareOpc is set to the // opcode number of the comparison. SDLoc dl(Op); int CompareOpc; bool isDot; if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) return SDValue(); // Don't custom lower most intrinsics. // If this is a non-dot comparison, make the VCMP node and we are done. if (!isDot) { SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), Op.getOperand(1), Op.getOperand(2), DAG.getConstant(CompareOpc, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); } // Create the PPCISD altivec 'dot' comparison node. SDValue Ops[] = { Op.getOperand(2), // LHS Op.getOperand(3), // RHS DAG.getConstant(CompareOpc, MVT::i32) }; EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); // Now that we have the comparison, emit a copy from the CR to a GPR. // This is flagged to the above dot comparison. SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, DAG.getRegister(PPC::CR6, MVT::i32), CompNode.getValue(1)); // Unpack the result based on how the target uses it. unsigned BitNo; // Bit # of CR6. bool InvertBit; // Invert result? switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { default: // Can't happen, don't crash on invalid number though. case 0: // Return the value of the EQ bit of CR6. BitNo = 0; InvertBit = false; break; case 1: // Return the inverted value of the EQ bit of CR6. BitNo = 0; InvertBit = true; break; case 2: // Return the value of the LT bit of CR6. BitNo = 2; InvertBit = false; break; case 3: // Return the inverted value of the LT bit of CR6. BitNo = 2; InvertBit = true; break; } // Shift the bit into the low position. Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, DAG.getConstant(8-(3-BitNo), MVT::i32)); // Isolate the bit. Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, DAG.getConstant(1, MVT::i32)); // If we are supposed to, toggle the bit. if (InvertBit) Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, DAG.getConstant(1, MVT::i32)); return Flags; } SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int // instructions), but for smaller types, we need to first extend up to v2i32 // before doing going farther. if (Op.getValueType() == MVT::v2i64) { EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); if (ExtVT != MVT::v2i32) { Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), ExtVT.getVectorElementType(), 4))); Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, DAG.getValueType(MVT::v2i32)); } return Op; } return SDValue(); } SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); // Create a stack slot that is 16-byte aligned. MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); EVT PtrVT = getPointerTy(); SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); // Store the input value into Value#0 of the stack slot. SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, MachinePointerInfo(), false, false, 0); // Load it out. return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), false, false, false, 0); } SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); if (Op.getValueType() == MVT::v4i32) { SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. SDValue RHSSwap = // = vrlw RHS, 16 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); // Shrinkify inputs to v8i16. LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); // Low parts multiplied together, generating 32-bit results (we ignore the // top parts). SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, LHS, RHS, DAG, dl, MVT::v4i32); SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); // Shift the high parts up 16 bits. HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG, dl); return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); } else if (Op.getValueType() == MVT::v8i16) { SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, LHS, RHS, Zero, DAG, dl); } else if (Op.getValueType() == MVT::v16i8) { SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); bool isLittleEndian = Subtarget.isLittleEndian(); // Multiply the even 8-bit parts, producing 16-bit sums. SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, LHS, RHS, DAG, dl, MVT::v8i16); EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); // Multiply the odd 8-bit parts, producing 16-bit sums. SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, LHS, RHS, DAG, dl, MVT::v8i16); OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); // Merge the results together. Because vmuleub and vmuloub are // instructions with a big-endian bias, we must reverse the // element numbering and reverse the meaning of "odd" and "even" // when generating little endian code. int Ops[16]; for (unsigned i = 0; i != 8; ++i) { if (isLittleEndian) { Ops[i*2 ] = 2*i; Ops[i*2+1] = 2*i+16; } else { Ops[i*2 ] = 2*i+1; Ops[i*2+1] = 2*i+1+16; } } if (isLittleEndian) return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); else return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); } else { llvm_unreachable("Unknown mul to lower!"); } } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Wasn't expecting to be able to lower this!"); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG, Subtarget); case ISD::VAARG: return LowerVAARG(Op, DAG, Subtarget); case ISD::VACOPY: return LowerVACOPY(Op, DAG, Subtarget); case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); case ISD::LOAD: return LowerLOAD(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); // Lower 64-bit shifts. case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); // Vector-related lowering. case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); // For counter-based loop handling. case ISD::INTRINSIC_W_CHAIN: return SDValue(); // Frame & Return address. case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); } } void PPCTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, SelectionDAG &DAG) const { const TargetMachine &TM = getTargetMachine(); SDLoc dl(N); switch (N->getOpcode()) { default: llvm_unreachable("Do not know how to custom type legalize this operation!"); case ISD::INTRINSIC_W_CHAIN: { if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != Intrinsic::ppc_is_decremented_ctr_nonzero) break; assert(N->getValueType(0) == MVT::i1 && "Unexpected result type for CTR decrement intrinsic"); EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0)); SDVTList VTs = DAG.getVTList(SVT, MVT::Other); SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), N->getOperand(1)); Results.push_back(NewInt); Results.push_back(NewInt.getValue(1)); break; } case ISD::VAARG: { if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() || TM.getSubtarget<PPCSubtarget>().isPPC64()) return; EVT VT = N->getValueType(0); if (VT == MVT::i64) { SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); Results.push_back(NewNode); Results.push_back(NewNode.getValue(1)); } return; } case ISD::FP_ROUND_INREG: { assert(N->getValueType(0) == MVT::ppcf128); assert(N->getOperand(0).getValueType() == MVT::ppcf128); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, N->getOperand(0), DAG.getIntPtrConstant(0)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, N->getOperand(0), DAG.getIntPtrConstant(1)); // Add the two halves of the long double in round-to-zero mode. SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); // We know the low half is about to be thrown away, so just use something // convenient. Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, FPreg, FPreg)); return; } case ISD::FP_TO_SINT: // LowerFP_TO_INT() can only handle f32 and f64. if (N->getOperand(0).getValueType() == MVT::ppcf128) return; Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); return; } } //===----------------------------------------------------------------------===// // Other Lowering Code //===----------------------------------------------------------------------===// MachineBasicBlock * PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, bool is64bit, unsigned BinOpcode) const { // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *F = BB->getParent(); MachineFunction::iterator It = BB; ++It; unsigned dest = MI->getOperand(0).getReg(); unsigned ptrA = MI->getOperand(1).getReg(); unsigned ptrB = MI->getOperand(2).getReg(); unsigned incr = MI->getOperand(3).getReg(); DebugLoc dl = MI->getDebugLoc(); MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loopMBB); F->insert(It, exitMBB); exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); MachineRegisterInfo &RegInfo = F->getRegInfo(); unsigned TmpReg = (!BinOpcode) ? incr : RegInfo.createVirtualRegister( is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : (const TargetRegisterClass *) &PPC::GPRCRegClass); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // loopMBB: // l[wd]arx dest, ptr // add r0, dest, incr // st[wd]cx. r0, ptr // bne- loopMBB // fallthrough --> exitMBB BB = loopMBB; BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) .addReg(ptrA).addReg(ptrB); if (BinOpcode) BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) .addReg(TmpReg).addReg(ptrA).addReg(ptrB); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; return BB; } MachineBasicBlock * PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, bool is8bit, // operation unsigned BinOpcode) const { // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); // In 64 bit mode we have to use 64 bits for addresses, even though the // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address // registers without caring whether they're 32 or 64, but here we're // doing actual arithmetic on the addresses. bool is64bit = Subtarget.isPPC64(); unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *F = BB->getParent(); MachineFunction::iterator It = BB; ++It; unsigned dest = MI->getOperand(0).getReg(); unsigned ptrA = MI->getOperand(1).getReg(); unsigned ptrB = MI->getOperand(2).getReg(); unsigned incr = MI->getOperand(3).getReg(); DebugLoc dl = MI->getDebugLoc(); MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loopMBB); F->insert(It, exitMBB); exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); MachineRegisterInfo &RegInfo = F->getRegInfo(); const TargetRegisterClass *RC = is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : (const TargetRegisterClass *) &PPC::GPRCRegClass; unsigned PtrReg = RegInfo.createVirtualRegister(RC); unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); unsigned ShiftReg = RegInfo.createVirtualRegister(RC); unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); unsigned MaskReg = RegInfo.createVirtualRegister(RC); unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); unsigned Ptr1Reg; unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // The 4-byte load must be aligned, while a char or short may be // anywhere in the word. Hence all this nasty bookkeeping code. // add ptr1, ptrA, ptrB [copy if ptrA==0] // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] // xori shift, shift1, 24 [16] // rlwinm ptr, ptr1, 0, 0, 29 // slw incr2, incr, shift // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] // slw mask, mask2, shift // loopMBB: // lwarx tmpDest, ptr // add tmp, tmpDest, incr2 // andc tmp2, tmpDest, mask // and tmp3, tmp, mask // or tmp4, tmp3, tmp2 // stwcx. tmp4, ptr // bne- loopMBB // fallthrough --> exitMBB // srw dest, tmpDest, shift if (ptrA != ZeroReg) { Ptr1Reg = RegInfo.createVirtualRegister(RC); BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) .addReg(ptrA).addReg(ptrB); } else { Ptr1Reg = ptrB; } BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); if (is64bit) BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) .addReg(Ptr1Reg).addImm(0).addImm(61); else BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) .addReg(incr).addReg(ShiftReg); if (is8bit) BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); else { BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); } BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) .addReg(Mask2Reg).addReg(ShiftReg); BB = loopMBB; BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) .addReg(ZeroReg).addReg(PtrReg); if (BinOpcode) BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) .addReg(Incr2Reg).addReg(TmpDestReg); BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) .addReg(TmpDestReg).addReg(MaskReg); BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) .addReg(TmpReg).addReg(MaskReg); BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) .addReg(Tmp3Reg).addReg(Tmp2Reg); BuildMI(BB, dl, TII->get(PPC::STWCX)) .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) .addReg(ShiftReg); return BB; } llvm::MachineBasicBlock* PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI->getDebugLoc(); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator I = MBB; ++I; // Memory Reference MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); unsigned DstReg = MI->getOperand(0).getReg(); const TargetRegisterClass *RC = MRI.getRegClass(DstReg); assert(RC->hasType(MVT::i32) && "Invalid destination!"); unsigned mainDstReg = MRI.createVirtualRegister(RC); unsigned restoreDstReg = MRI.createVirtualRegister(RC); MVT PVT = getPointerTy(); assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); // For v = setjmp(buf), we generate // // thisMBB: // SjLjSetup mainMBB // bl mainMBB // v_restore = 1 // b sinkMBB // // mainMBB: // buf[LabelOffset] = LR // v_main = 0 // // sinkMBB: // v = phi(main, restore) // MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); MF->insert(I, mainMBB); MF->insert(I, sinkMBB); MachineInstrBuilder MIB; // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // Note that the structure of the jmp_buf used here is not compatible // with that used by libc, and is not designed to be. Specifically, it // stores only those 'reserved' registers that LLVM does not otherwise // understand how to spill. Also, by convention, by the time this // intrinsic is called, Clang has already stored the frame address in the // first slot of the buffer and stack address in the third. Following the // X86 target code, we'll store the jump address in the second slot. We also // need to save the TOC pointer (R2) to handle jumps between shared // libraries, and that will be stored in the fourth slot. The thread // identifier (R13) is not affected. // thisMBB: const int64_t LabelOffset = 1 * PVT.getStoreSize(); const int64_t TOCOffset = 3 * PVT.getStoreSize(); const int64_t BPOffset = 4 * PVT.getStoreSize(); // Prepare IP either in reg. const TargetRegisterClass *PtrRC = getRegClassFor(PVT); unsigned LabelReg = MRI.createVirtualRegister(PtrRC); unsigned BufReg = MI->getOperand(1).getReg(); if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) .addReg(PPC::X2) .addImm(TOCOffset) .addReg(BufReg); MIB.setMemRefs(MMOBegin, MMOEnd); } // Naked functions never have a base pointer, and so we use r1. For all // other functions, this decision must be delayed until during PEI. unsigned BaseReg; if (MF->getFunction()->getAttributes().hasAttribute( AttributeSet::FunctionIndex, Attribute::Naked)) BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; else BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; MIB = BuildMI(*thisMBB, MI, DL, TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) .addReg(BaseReg) .addImm(BPOffset) .addReg(BufReg); MIB.setMemRefs(MMOBegin, MMOEnd); // Setup MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); const PPCRegisterInfo *TRI = static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo()); MIB.addRegMask(TRI->getNoPreservedMask()); BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) .addMBB(mainMBB); MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); thisMBB->addSuccessor(mainMBB, /* weight */ 0); thisMBB->addSuccessor(sinkMBB, /* weight */ 1); // mainMBB: // mainDstReg = 0 MIB = BuildMI(mainMBB, DL, TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); // Store IP if (Subtarget.isPPC64()) { MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) .addReg(LabelReg) .addImm(LabelOffset) .addReg(BufReg); } else { MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) .addReg(LabelReg) .addImm(LabelOffset) .addReg(BufReg); } MIB.setMemRefs(MMOBegin, MMOEnd); BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); mainMBB->addSuccessor(sinkMBB); // sinkMBB: BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(PPC::PHI), DstReg) .addReg(mainDstReg).addMBB(mainMBB) .addReg(restoreDstReg).addMBB(thisMBB); MI->eraseFromParent(); return sinkMBB; } MachineBasicBlock * PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI->getDebugLoc(); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); // Memory Reference MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); MVT PVT = getPointerTy(); assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); const TargetRegisterClass *RC = (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; unsigned Tmp = MRI.createVirtualRegister(RC); // Since FP is only updated here but NOT referenced, it's treated as GPR. unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; unsigned BP = (PVT == MVT::i64) ? PPC::X30 : PPC::R30; MachineInstrBuilder MIB; const int64_t LabelOffset = 1 * PVT.getStoreSize(); const int64_t SPOffset = 2 * PVT.getStoreSize(); const int64_t TOCOffset = 3 * PVT.getStoreSize(); const int64_t BPOffset = 4 * PVT.getStoreSize(); unsigned BufReg = MI->getOperand(0).getReg(); // Reload FP (the jumped-to function may not have had a // frame pointer, and if so, then its r31 will be restored // as necessary). if (PVT == MVT::i64) { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) .addImm(0) .addReg(BufReg); } else { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) .addImm(0) .addReg(BufReg); } MIB.setMemRefs(MMOBegin, MMOEnd); // Reload IP if (PVT == MVT::i64) { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) .addImm(LabelOffset) .addReg(BufReg); } else { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) .addImm(LabelOffset) .addReg(BufReg); } MIB.setMemRefs(MMOBegin, MMOEnd); // Reload SP if (PVT == MVT::i64) { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) .addImm(SPOffset) .addReg(BufReg); } else { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) .addImm(SPOffset) .addReg(BufReg); } MIB.setMemRefs(MMOBegin, MMOEnd); // Reload BP if (PVT == MVT::i64) { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) .addImm(BPOffset) .addReg(BufReg); } else { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) .addImm(BPOffset) .addReg(BufReg); } MIB.setMemRefs(MMOBegin, MMOEnd); // Reload TOC if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) .addImm(TOCOffset) .addReg(BufReg); MIB.setMemRefs(MMOBegin, MMOEnd); } // Jump BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); MI->eraseFromParent(); return MBB; } MachineBasicBlock * PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { return emitEHSjLjSetJmp(MI, BB); } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { return emitEHSjLjLongJmp(MI, BB); } const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); // To "insert" these instructions we actually have to insert their // control-flow patterns. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; MachineFunction *F = BB->getParent(); if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || MI->getOpcode() == PPC::SELECT_CC_I8 || MI->getOpcode() == PPC::SELECT_I4 || MI->getOpcode() == PPC::SELECT_I8)) { SmallVector<MachineOperand, 2> Cond; if (MI->getOpcode() == PPC::SELECT_CC_I4 || MI->getOpcode() == PPC::SELECT_CC_I8) Cond.push_back(MI->getOperand(4)); else Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); Cond.push_back(MI->getOperand(1)); DebugLoc dl = MI->getDebugLoc(); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), Cond, MI->getOperand(2).getReg(), MI->getOperand(3).getReg()); } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || MI->getOpcode() == PPC::SELECT_CC_I8 || MI->getOpcode() == PPC::SELECT_CC_F4 || MI->getOpcode() == PPC::SELECT_CC_F8 || MI->getOpcode() == PPC::SELECT_CC_VRRC || MI->getOpcode() == PPC::SELECT_I4 || MI->getOpcode() == PPC::SELECT_I8 || MI->getOpcode() == PPC::SELECT_F4 || MI->getOpcode() == PPC::SELECT_F8 || MI->getOpcode() == PPC::SELECT_VRRC) { // The incoming instruction knows the destination vreg to set, the // condition code register to branch on, the true/false values to // select between, and a branch opcode to use. // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); DebugLoc dl = MI->getDebugLoc(); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); if (MI->getOpcode() == PPC::SELECT_I4 || MI->getOpcode() == PPC::SELECT_I8 || MI->getOpcode() == PPC::SELECT_F4 || MI->getOpcode() == PPC::SELECT_F8 || MI->getOpcode() == PPC::SELECT_VRRC) { BuildMI(BB, dl, TII->get(PPC::BC)) .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); } else { unsigned SelectPred = MI->getOperand(4).getImm(); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); } // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); } else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::AND); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::OR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::NAND); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, 0); else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, 0); else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) BB = EmitAtomicBinary(MI, BB, false, 0); else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) BB = EmitAtomicBinary(MI, BB, true, 0); else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; unsigned dest = MI->getOperand(0).getReg(); unsigned ptrA = MI->getOperand(1).getReg(); unsigned ptrB = MI->getOperand(2).getReg(); unsigned oldval = MI->getOperand(3).getReg(); unsigned newval = MI->getOperand(4).getReg(); DebugLoc dl = MI->getDebugLoc(); MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loop1MBB); F->insert(It, loop2MBB); F->insert(It, midMBB); F->insert(It, exitMBB); exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loop1MBB); // loop1MBB: // l[wd]arx dest, ptr // cmp[wd] dest, oldval // bne- midMBB // loop2MBB: // st[wd]cx. newval, ptr // bne- loopMBB // b exitBB // midMBB: // st[wd]cx. dest, ptr // exitBB: BB = loop1MBB; BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) .addReg(ptrA).addReg(ptrB); BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) .addReg(oldval).addReg(dest); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); BB->addSuccessor(loop2MBB); BB->addSuccessor(midMBB); BB = loop2MBB; BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) .addReg(newval).addReg(ptrA).addReg(ptrB); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); BB->addSuccessor(loop1MBB); BB->addSuccessor(exitMBB); BB = midMBB; BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) .addReg(dest).addReg(ptrA).addReg(ptrB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { // We must use 64-bit registers for addresses when targeting 64-bit, // since we're actually doing arithmetic on them. Other registers // can be 32-bit. bool is64bit = Subtarget.isPPC64(); bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; unsigned dest = MI->getOperand(0).getReg(); unsigned ptrA = MI->getOperand(1).getReg(); unsigned ptrB = MI->getOperand(2).getReg(); unsigned oldval = MI->getOperand(3).getReg(); unsigned newval = MI->getOperand(4).getReg(); DebugLoc dl = MI->getDebugLoc(); MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loop1MBB); F->insert(It, loop2MBB); F->insert(It, midMBB); F->insert(It, exitMBB); exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); MachineRegisterInfo &RegInfo = F->getRegInfo(); const TargetRegisterClass *RC = is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : (const TargetRegisterClass *) &PPC::GPRCRegClass; unsigned PtrReg = RegInfo.createVirtualRegister(RC); unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); unsigned ShiftReg = RegInfo.createVirtualRegister(RC); unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); unsigned MaskReg = RegInfo.createVirtualRegister(RC); unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); unsigned Ptr1Reg; unsigned TmpReg = RegInfo.createVirtualRegister(RC); unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loop1MBB); // The 4-byte load must be aligned, while a char or short may be // anywhere in the word. Hence all this nasty bookkeeping code. // add ptr1, ptrA, ptrB [copy if ptrA==0] // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] // xori shift, shift1, 24 [16] // rlwinm ptr, ptr1, 0, 0, 29 // slw newval2, newval, shift // slw oldval2, oldval,shift // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] // slw mask, mask2, shift // and newval3, newval2, mask // and oldval3, oldval2, mask // loop1MBB: // lwarx tmpDest, ptr // and tmp, tmpDest, mask // cmpw tmp, oldval3 // bne- midMBB // loop2MBB: // andc tmp2, tmpDest, mask // or tmp4, tmp2, newval3 // stwcx. tmp4, ptr // bne- loop1MBB // b exitBB // midMBB: // stwcx. tmpDest, ptr // exitBB: // srw dest, tmpDest, shift if (ptrA != ZeroReg) { Ptr1Reg = RegInfo.createVirtualRegister(RC); BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) .addReg(ptrA).addReg(ptrB); } else { Ptr1Reg = ptrB; } BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); if (is64bit) BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) .addReg(Ptr1Reg).addImm(0).addImm(61); else BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) .addReg(newval).addReg(ShiftReg); BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) .addReg(oldval).addReg(ShiftReg); if (is8bit) BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); else { BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) .addReg(Mask3Reg).addImm(65535); } BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) .addReg(Mask2Reg).addReg(ShiftReg); BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) .addReg(NewVal2Reg).addReg(MaskReg); BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) .addReg(OldVal2Reg).addReg(MaskReg); BB = loop1MBB; BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) .addReg(ZeroReg).addReg(PtrReg); BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) .addReg(TmpDestReg).addReg(MaskReg); BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) .addReg(TmpReg).addReg(OldVal3Reg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); BB->addSuccessor(loop2MBB); BB->addSuccessor(midMBB); BB = loop2MBB; BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) .addReg(TmpDestReg).addReg(MaskReg); BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) .addReg(Tmp2Reg).addReg(NewVal3Reg); BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) .addReg(ZeroReg).addReg(PtrReg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); BB->addSuccessor(loop1MBB); BB->addSuccessor(exitMBB); BB = midMBB; BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) .addReg(ZeroReg).addReg(PtrReg); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) .addReg(ShiftReg); } else if (MI->getOpcode() == PPC::FADDrtz) { // This pseudo performs an FADD with rounding mode temporarily forced // to round-to-zero. We emit this via custom inserter since the FPSCR // is not modeled at the SelectionDAG level. unsigned Dest = MI->getOperand(0).getReg(); unsigned Src1 = MI->getOperand(1).getReg(); unsigned Src2 = MI->getOperand(2).getReg(); DebugLoc dl = MI->getDebugLoc(); MachineRegisterInfo &RegInfo = F->getRegInfo(); unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); // Save FPSCR value. BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); // Set rounding mode to round-to-zero. BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); // Perform addition. BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); // Restore FPSCR value. BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg); } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || MI->getOpcode() == PPC::ANDIo_1_GT_BIT || MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? PPC::ANDIo8 : PPC::ANDIo; bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); MachineRegisterInfo &RegInfo = F->getRegInfo(); unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); DebugLoc dl = MI->getDebugLoc(); BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) .addReg(MI->getOperand(1).getReg()).addImm(1); BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); } else { llvm_unreachable("Unexpected instr type to insert"); } MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } //===----------------------------------------------------------------------===// // Target Optimization Hooks //===----------------------------------------------------------------------===// SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const { if (DCI.isAfterLegalizeVectorOps()) return SDValue(); EVT VT = Op.getValueType(); if ((VT == MVT::f32 && Subtarget.hasFRES()) || (VT == MVT::f64 && Subtarget.hasFRE()) || (VT == MVT::v4f32 && Subtarget.hasAltivec()) || (VT == MVT::v2f64 && Subtarget.hasVSX())) { // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) // For the reciprocal, we need to find the zero of the function: // F(X) = A X - 1 [which has a zero at X = 1/A] // => // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form // does not require additional intermediate precision] // Convergence is quadratic, so we essentially double the number of digits // correct after every iteration. The minimum architected relative // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has // 23 digits and double has 52 digits. int Iterations = Subtarget.hasRecipPrec() ? 1 : 3; if (VT.getScalarType() == MVT::f64) ++Iterations; SelectionDAG &DAG = DCI.DAG; SDLoc dl(Op); SDValue FPOne = DAG.getConstantFP(1.0, VT.getScalarType()); if (VT.isVector()) { assert(VT.getVectorNumElements() == 4 && "Unknown vector type"); FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, FPOne, FPOne, FPOne, FPOne); } SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op); DCI.AddToWorklist(Est.getNode()); // Newton iterations: Est = Est + Est (1 - Arg * Est) for (int i = 0; i < Iterations; ++i) { SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est); DCI.AddToWorklist(NewEst.getNode()); NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst); DCI.AddToWorklist(NewEst.getNode()); NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst); DCI.AddToWorklist(NewEst.getNode()); Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst); DCI.AddToWorklist(Est.getNode()); } return Est; } return SDValue(); } SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const { if (DCI.isAfterLegalizeVectorOps()) return SDValue(); EVT VT = Op.getValueType(); if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || (VT == MVT::v4f32 && Subtarget.hasAltivec()) || (VT == MVT::v2f64 && Subtarget.hasVSX())) { // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) // For the reciprocal sqrt, we need to find the zero of the function: // F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] // => // X_{i+1} = X_i (1.5 - A X_i^2 / 2) // As a result, we precompute A/2 prior to the iteration loop. // Convergence is quadratic, so we essentially double the number of digits // correct after every iteration. The minimum architected relative // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has // 23 digits and double has 52 digits. int Iterations = Subtarget.hasRecipPrec() ? 1 : 3; if (VT.getScalarType() == MVT::f64) ++Iterations; SelectionDAG &DAG = DCI.DAG; SDLoc dl(Op); SDValue FPThreeHalves = DAG.getConstantFP(1.5, VT.getScalarType()); if (VT.isVector()) { assert(VT.getVectorNumElements() == 4 && "Unknown vector type"); FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, FPThreeHalves, FPThreeHalves, FPThreeHalves, FPThreeHalves); } SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op); DCI.AddToWorklist(Est.getNode()); // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that // this entire sequence requires only one FP constant. SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op); DCI.AddToWorklist(HalfArg.getNode()); HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op); DCI.AddToWorklist(HalfArg.getNode()); // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) for (int i = 0; i < Iterations; ++i) { SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est); DCI.AddToWorklist(NewEst.getNode()); NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst); DCI.AddToWorklist(NewEst.getNode()); NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst); DCI.AddToWorklist(NewEst.getNode()); Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst); DCI.AddToWorklist(Est.getNode()); } return Est; } return SDValue(); } // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does // not enforce equality of the chain operands. static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base, unsigned Bytes, int Dist, SelectionDAG &DAG) { EVT VT = LS->getMemoryVT(); if (VT.getSizeInBits() / 8 != Bytes) return false; SDValue Loc = LS->getBasePtr(); SDValue BaseLoc = Base->getBasePtr(); if (Loc.getOpcode() == ISD::FrameIndex) { if (BaseLoc.getOpcode() != ISD::FrameIndex) return false; const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); int FS = MFI->getObjectSize(FI); int BFS = MFI->getObjectSize(BFI); if (FS != BFS || FS != (int)Bytes) return false; return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); } // Handle X+C if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc && cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes) return true; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const GlobalValue *GV1 = nullptr; const GlobalValue *GV2 = nullptr; int64_t Offset1 = 0; int64_t Offset2 = 0; bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); if (isGA1 && isGA2 && GV1 == GV2) return Offset1 == (Offset2 + Dist*Bytes); return false; } // Return true is there is a nearyby consecutive load to the one provided // (regardless of alignment). We search up and down the chain, looking though // token factors and other loads (but nothing else). As a result, a true // results indicates that it is safe to create a new consecutive load adjacent // to the load provided. static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { SDValue Chain = LD->getChain(); EVT VT = LD->getMemoryVT(); SmallSet<SDNode *, 16> LoadRoots; SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); SmallSet<SDNode *, 16> Visited; // First, search up the chain, branching to follow all token-factor operands. // If we find a consecutive load, then we're done, otherwise, record all // nodes just above the top-level loads and token factors. while (!Queue.empty()) { SDNode *ChainNext = Queue.pop_back_val(); if (!Visited.insert(ChainNext)) continue; if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) { if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) return true; if (!Visited.count(ChainLD->getChain().getNode())) Queue.push_back(ChainLD->getChain().getNode()); } else if (ChainNext->getOpcode() == ISD::TokenFactor) { for (const SDUse &O : ChainNext->ops()) if (!Visited.count(O.getNode())) Queue.push_back(O.getNode()); } else LoadRoots.insert(ChainNext); } // Second, search down the chain, starting from the top-level nodes recorded // in the first phase. These top-level nodes are the nodes just above all // loads and token factors. Starting with their uses, recursively look though // all loads (just the chain uses) and token factors to find a consecutive // load. Visited.clear(); Queue.clear(); for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), IE = LoadRoots.end(); I != IE; ++I) { Queue.push_back(*I); while (!Queue.empty()) { SDNode *LoadRoot = Queue.pop_back_val(); if (!Visited.insert(LoadRoot)) continue; if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot)) if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) return true; for (SDNode::use_iterator UI = LoadRoot->use_begin(), UE = LoadRoot->use_end(); UI != UE; ++UI) if (((isa<LoadSDNode>(*UI) && cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) || UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) Queue.push_back(*UI); } } return false; } SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); // If we're tracking CR bits, we need to be careful that we don't have: // trunc(binary-ops(zext(x), zext(y))) // or // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) // such that we're unnecessarily moving things into GPRs when it would be // better to keep them in CR bits. // Note that trunc here can be an actual i1 trunc, or can be the effective // truncation that comes from a setcc or select_cc. if (N->getOpcode() == ISD::TRUNCATE && N->getValueType(0) != MVT::i1) return SDValue(); if (N->getOperand(0).getValueType() != MVT::i32 && N->getOperand(0).getValueType() != MVT::i64) return SDValue(); if (N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) { // If we're looking at a comparison, then we need to make sure that the // high bits (all except for the first) don't matter the result. ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand( N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); unsigned OpBits = N->getOperand(0).getValueSizeInBits(); if (ISD::isSignedIntSetCC(CC)) { if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) return SDValue(); } else if (ISD::isUnsignedIntSetCC(CC)) { if (!DAG.MaskedValueIsZero(N->getOperand(0), APInt::getHighBitsSet(OpBits, OpBits-1)) || !DAG.MaskedValueIsZero(N->getOperand(1), APInt::getHighBitsSet(OpBits, OpBits-1))) return SDValue(); } else { // This is neither a signed nor an unsigned comparison, just make sure // that the high bits are equal. APInt Op1Zero, Op1One; APInt Op2Zero, Op2One; DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); // We don't really care about what is known about the first bit (if // anything), so clear it in all masks prior to comparing them. Op1Zero.clearBit(0); Op1One.clearBit(0); Op2Zero.clearBit(0); Op2One.clearBit(0); if (Op1Zero != Op2Zero || Op1One != Op2One) return SDValue(); } } // We now know that the higher-order bits are irrelevant, we just need to // make sure that all of the intermediate operations are bit operations, and // all inputs are extensions. if (N->getOperand(0).getOpcode() != ISD::AND && N->getOperand(0).getOpcode() != ISD::OR && N->getOperand(0).getOpcode() != ISD::XOR && N->getOperand(0).getOpcode() != ISD::SELECT && N->getOperand(0).getOpcode() != ISD::SELECT_CC && N->getOperand(0).getOpcode() != ISD::TRUNCATE && N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) return SDValue(); if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && N->getOperand(1).getOpcode() != ISD::AND && N->getOperand(1).getOpcode() != ISD::OR && N->getOperand(1).getOpcode() != ISD::XOR && N->getOperand(1).getOpcode() != ISD::SELECT && N->getOperand(1).getOpcode() != ISD::SELECT_CC && N->getOperand(1).getOpcode() != ISD::TRUNCATE && N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) return SDValue(); SmallVector<SDValue, 4> Inputs; SmallVector<SDValue, 8> BinOps, PromOps; SmallPtrSet<SDNode *, 16> Visited; for (unsigned i = 0; i < 2; ++i) { if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || isa<ConstantSDNode>(N->getOperand(i))) Inputs.push_back(N->getOperand(i)); else BinOps.push_back(N->getOperand(i)); if (N->getOpcode() == ISD::TRUNCATE) break; } // Visit all inputs, collect all binary operations (and, or, xor and // select) that are all fed by extensions. while (!BinOps.empty()) { SDValue BinOp = BinOps.back(); BinOps.pop_back(); if (!Visited.insert(BinOp.getNode())) continue; PromOps.push_back(BinOp); for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { // The condition of the select is not promoted. if (BinOp.getOpcode() == ISD::SELECT && i == 0) continue; if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) continue; if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || isa<ConstantSDNode>(BinOp.getOperand(i))) { Inputs.push_back(BinOp.getOperand(i)); } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || BinOp.getOperand(i).getOpcode() == ISD::OR || BinOp.getOperand(i).getOpcode() == ISD::XOR || BinOp.getOperand(i).getOpcode() == ISD::SELECT || BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { BinOps.push_back(BinOp.getOperand(i)); } else { // We have an input that is not an extension or another binary // operation; we'll abort this transformation. return SDValue(); } } } // Make sure that this is a self-contained cluster of operations (which // is not quite the same thing as saying that everything has only one // use). for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { if (isa<ConstantSDNode>(Inputs[i])) continue; for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), UE = Inputs[i].getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User != N && !Visited.count(User)) return SDValue(); // Make sure that we're not going to promote the non-output-value // operand(s) or SELECT or SELECT_CC. // FIXME: Although we could sometimes handle this, and it does occur in // practice that one of the condition inputs to the select is also one of // the outputs, we currently can't deal with this. if (User->getOpcode() == ISD::SELECT) { if (User->getOperand(0) == Inputs[i]) return SDValue(); } else if (User->getOpcode() == ISD::SELECT_CC) { if (User->getOperand(0) == Inputs[i] || User->getOperand(1) == Inputs[i]) return SDValue(); } } } for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), UE = PromOps[i].getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User != N && !Visited.count(User)) return SDValue(); // Make sure that we're not going to promote the non-output-value // operand(s) or SELECT or SELECT_CC. // FIXME: Although we could sometimes handle this, and it does occur in // practice that one of the condition inputs to the select is also one of // the outputs, we currently can't deal with this. if (User->getOpcode() == ISD::SELECT) { if (User->getOperand(0) == PromOps[i]) return SDValue(); } else if (User->getOpcode() == ISD::SELECT_CC) { if (User->getOperand(0) == PromOps[i] || User->getOperand(1) == PromOps[i]) return SDValue(); } } } // Replace all inputs with the extension operand. for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { // Constants may have users outside the cluster of to-be-promoted nodes, // and so we need to replace those as we do the promotions. if (isa<ConstantSDNode>(Inputs[i])) continue; else DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); } // Replace all operations (these are all the same, but have a different // (i1) return type). DAG.getNode will validate that the types of // a binary operator match, so go through the list in reverse so that // we've likely promoted both operands first. Any intermediate truncations or // extensions disappear. while (!PromOps.empty()) { SDValue PromOp = PromOps.back(); PromOps.pop_back(); if (PromOp.getOpcode() == ISD::TRUNCATE || PromOp.getOpcode() == ISD::SIGN_EXTEND || PromOp.getOpcode() == ISD::ZERO_EXTEND || PromOp.getOpcode() == ISD::ANY_EXTEND) { if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && PromOp.getOperand(0).getValueType() != MVT::i1) { // The operand is not yet ready (see comment below). PromOps.insert(PromOps.begin(), PromOp); continue; } SDValue RepValue = PromOp.getOperand(0); if (isa<ConstantSDNode>(RepValue)) RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); continue; } unsigned C; switch (PromOp.getOpcode()) { default: C = 0; break; case ISD::SELECT: C = 1; break; case ISD::SELECT_CC: C = 2; break; } if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && PromOp.getOperand(C).getValueType() != MVT::i1) || (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && PromOp.getOperand(C+1).getValueType() != MVT::i1)) { // The to-be-promoted operands of this node have not yet been // promoted (this should be rare because we're going through the // list backward, but if one of the operands has several users in // this cluster of to-be-promoted nodes, it is possible). PromOps.insert(PromOps.begin(), PromOp); continue; } SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), PromOp.getNode()->op_end()); // If there are any constant inputs, make sure they're replaced now. for (unsigned i = 0; i < 2; ++i) if (isa<ConstantSDNode>(Ops[C+i])) Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); DAG.ReplaceAllUsesOfValueWith(PromOp, DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); } // Now we're left with the initial truncation itself. if (N->getOpcode() == ISD::TRUNCATE) return N->getOperand(0); // Otherwise, this is a comparison. The operands to be compared have just // changed type (to i1), but everything else is the same. return SDValue(N, 0); } SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); // If we're tracking CR bits, we need to be careful that we don't have: // zext(binary-ops(trunc(x), trunc(y))) // or // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) // such that we're unnecessarily moving things into CR bits that can more // efficiently stay in GPRs. Note that if we're not certain that the high // bits are set as required by the final extension, we still may need to do // some masking to get the proper behavior. // This same functionality is important on PPC64 when dealing with // 32-to-64-bit extensions; these occur often when 32-bit values are used as // the return values of functions. Because it is so similar, it is handled // here as well. if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64) return SDValue(); if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) return SDValue(); if (N->getOperand(0).getOpcode() != ISD::AND && N->getOperand(0).getOpcode() != ISD::OR && N->getOperand(0).getOpcode() != ISD::XOR && N->getOperand(0).getOpcode() != ISD::SELECT && N->getOperand(0).getOpcode() != ISD::SELECT_CC) return SDValue(); SmallVector<SDValue, 4> Inputs; SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; SmallPtrSet<SDNode *, 16> Visited; // Visit all inputs, collect all binary operations (and, or, xor and // select) that are all fed by truncations. while (!BinOps.empty()) { SDValue BinOp = BinOps.back(); BinOps.pop_back(); if (!Visited.insert(BinOp.getNode())) continue; PromOps.push_back(BinOp); for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { // The condition of the select is not promoted. if (BinOp.getOpcode() == ISD::SELECT && i == 0) continue; if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) continue; if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || isa<ConstantSDNode>(BinOp.getOperand(i))) { Inputs.push_back(BinOp.getOperand(i)); } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || BinOp.getOperand(i).getOpcode() == ISD::OR || BinOp.getOperand(i).getOpcode() == ISD::XOR || BinOp.getOperand(i).getOpcode() == ISD::SELECT || BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { BinOps.push_back(BinOp.getOperand(i)); } else { // We have an input that is not a truncation or another binary // operation; we'll abort this transformation. return SDValue(); } } } // Make sure that this is a self-contained cluster of operations (which // is not quite the same thing as saying that everything has only one // use). for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { if (isa<ConstantSDNode>(Inputs[i])) continue; for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), UE = Inputs[i].getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User != N && !Visited.count(User)) return SDValue(); // Make sure that we're not going to promote the non-output-value // operand(s) or SELECT or SELECT_CC. // FIXME: Although we could sometimes handle this, and it does occur in // practice that one of the condition inputs to the select is also one of // the outputs, we currently can't deal with this. if (User->getOpcode() == ISD::SELECT) { if (User->getOperand(0) == Inputs[i]) return SDValue(); } else if (User->getOpcode() == ISD::SELECT_CC) { if (User->getOperand(0) == Inputs[i] || User->getOperand(1) == Inputs[i]) return SDValue(); } } } for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), UE = PromOps[i].getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User != N && !Visited.count(User)) return SDValue(); // Make sure that we're not going to promote the non-output-value // operand(s) or SELECT or SELECT_CC. // FIXME: Although we could sometimes handle this, and it does occur in // practice that one of the condition inputs to the select is also one of // the outputs, we currently can't deal with this. if (User->getOpcode() == ISD::SELECT) { if (User->getOperand(0) == PromOps[i]) return SDValue(); } else if (User->getOpcode() == ISD::SELECT_CC) { if (User->getOperand(0) == PromOps[i] || User->getOperand(1) == PromOps[i]) return SDValue(); } } } unsigned PromBits = N->getOperand(0).getValueSizeInBits(); bool ReallyNeedsExt = false; if (N->getOpcode() != ISD::ANY_EXTEND) { // If all of the inputs are not already sign/zero extended, then // we'll still need to do that at the end. for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { if (isa<ConstantSDNode>(Inputs[i])) continue; unsigned OpBits = Inputs[i].getOperand(0).getValueSizeInBits(); assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); if ((N->getOpcode() == ISD::ZERO_EXTEND && !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), APInt::getHighBitsSet(OpBits, OpBits-PromBits))) || (N->getOpcode() == ISD::SIGN_EXTEND && DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < (OpBits-(PromBits-1)))) { ReallyNeedsExt = true; break; } } } // Replace all inputs, either with the truncation operand, or a // truncation or extension to the final output type. for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { // Constant inputs need to be replaced with the to-be-promoted nodes that // use them because they might have users outside of the cluster of // promoted nodes. if (isa<ConstantSDNode>(Inputs[i])) continue; SDValue InSrc = Inputs[i].getOperand(0); if (Inputs[i].getValueType() == N->getValueType(0)) DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); else if (N->getOpcode() == ISD::SIGN_EXTEND) DAG.ReplaceAllUsesOfValueWith(Inputs[i], DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); else if (N->getOpcode() == ISD::ZERO_EXTEND) DAG.ReplaceAllUsesOfValueWith(Inputs[i], DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); else DAG.ReplaceAllUsesOfValueWith(Inputs[i], DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); } // Replace all operations (these are all the same, but have a different // (promoted) return type). DAG.getNode will validate that the types of // a binary operator match, so go through the list in reverse so that // we've likely promoted both operands first. while (!PromOps.empty()) { SDValue PromOp = PromOps.back(); PromOps.pop_back(); unsigned C; switch (PromOp.getOpcode()) { default: C = 0; break; case ISD::SELECT: C = 1; break; case ISD::SELECT_CC: C = 2; break; } if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && PromOp.getOperand(C).getValueType() != N->getValueType(0)) || (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { // The to-be-promoted operands of this node have not yet been // promoted (this should be rare because we're going through the // list backward, but if one of the operands has several users in // this cluster of to-be-promoted nodes, it is possible). PromOps.insert(PromOps.begin(), PromOp); continue; } SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), PromOp.getNode()->op_end()); // If this node has constant inputs, then they'll need to be promoted here. for (unsigned i = 0; i < 2; ++i) { if (!isa<ConstantSDNode>(Ops[C+i])) continue; if (Ops[C+i].getValueType() == N->getValueType(0)) continue; if (N->getOpcode() == ISD::SIGN_EXTEND) Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); else if (N->getOpcode() == ISD::ZERO_EXTEND) Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); else Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); } DAG.ReplaceAllUsesOfValueWith(PromOp, DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); } // Now we're left with the initial extension itself. if (!ReallyNeedsExt) return N->getOperand(0); // To zero extend, just mask off everything except for the first bit (in the // i1 case). if (N->getOpcode() == ISD::ZERO_EXTEND) return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), DAG.getConstant(APInt::getLowBitsSet( N->getValueSizeInBits(0), PromBits), N->getValueType(0))); assert(N->getOpcode() == ISD::SIGN_EXTEND && "Invalid extension type"); EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0)); SDValue ShiftCst = DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy); return DAG.getNode(ISD::SRA, dl, N->getValueType(0), DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), ShiftCst); } SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { const TargetMachine &TM = getTargetMachine(); SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); switch (N->getOpcode()) { default: break; case PPCISD::SHL: if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { if (C->isNullValue()) // 0 << V -> 0. return N->getOperand(0); } break; case PPCISD::SRL: if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { if (C->isNullValue()) // 0 >>u V -> 0. return N->getOperand(0); } break; case PPCISD::SRA: if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { if (C->isNullValue() || // 0 >>s V -> 0. C->isAllOnesValue()) // -1 >>s V -> -1. return N->getOperand(0); } break; case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: return DAGCombineExtBoolTrunc(N, DCI); case ISD::TRUNCATE: case ISD::SETCC: case ISD::SELECT_CC: return DAGCombineTruncBoolExt(N, DCI); case ISD::FDIV: { assert(TM.Options.UnsafeFPMath && "Reciprocal estimates require UnsafeFPMath"); if (N->getOperand(1).getOpcode() == ISD::FSQRT) { SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI); if (RV.getNode()) { DCI.AddToWorklist(RV.getNode()); return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), N->getOperand(0), RV); } } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND && N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) { SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0), DCI); if (RV.getNode()) { DCI.AddToWorklist(RV.getNode()); RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)), N->getValueType(0), RV); DCI.AddToWorklist(RV.getNode()); return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), N->getOperand(0), RV); } } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND && N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) { SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0), DCI); if (RV.getNode()) { DCI.AddToWorklist(RV.getNode()); RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)), N->getValueType(0), RV, N->getOperand(1).getOperand(1)); DCI.AddToWorklist(RV.getNode()); return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), N->getOperand(0), RV); } } SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI); if (RV.getNode()) { DCI.AddToWorklist(RV.getNode()); return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), N->getOperand(0), RV); } } break; case ISD::FSQRT: { assert(TM.Options.UnsafeFPMath && "Reciprocal estimates require UnsafeFPMath"); // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the // reciprocal sqrt. SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI); if (RV.getNode()) { DCI.AddToWorklist(RV.getNode()); RV = DAGCombineFastRecip(RV, DCI); if (RV.getNode()) { // Unfortunately, RV is now NaN if the input was exactly 0. Select out // this case and force the answer to 0. EVT VT = RV.getValueType(); SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType()); if (VT.isVector()) { assert(VT.getVectorNumElements() == 4 && "Unknown vector type"); Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero); } SDValue ZeroCmp = DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT), N->getOperand(0), Zero, ISD::SETEQ); DCI.AddToWorklist(ZeroCmp.getNode()); DCI.AddToWorklist(RV.getNode()); RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT, ZeroCmp, Zero, RV); return RV; } } } break; case ISD::SINT_TO_FP: if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. // We allow the src/dst to be either f32/f64, but the intermediate // type must be i64. if (N->getOperand(0).getValueType() == MVT::i64 && N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { SDValue Val = N->getOperand(0).getOperand(0); if (Val.getValueType() == MVT::f32) { Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); DCI.AddToWorklist(Val.getNode()); } Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); DCI.AddToWorklist(Val.getNode()); Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); DCI.AddToWorklist(Val.getNode()); if (N->getValueType(0) == MVT::f32) { Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, DAG.getIntPtrConstant(0)); DCI.AddToWorklist(Val.getNode()); } return Val; } else if (N->getOperand(0).getValueType() == MVT::i32) { // If the intermediate type is i32, we can avoid the load/store here // too. } } } break; case ISD::STORE: // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && N->getOperand(1).getValueType() == MVT::i32 && N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { SDValue Val = N->getOperand(1).getOperand(0); if (Val.getValueType() == MVT::f32) { Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); DCI.AddToWorklist(Val.getNode()); } Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); DCI.AddToWorklist(Val.getNode()); SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), DAG.getValueType(N->getOperand(1).getValueType()) }; Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, DAG.getVTList(MVT::Other), Ops, cast<StoreSDNode>(N)->getMemoryVT(), cast<StoreSDNode>(N)->getMemOperand()); DCI.AddToWorklist(Val.getNode()); return Val; } // Turn STORE (BSWAP) -> sthbrx/stwbrx. if (cast<StoreSDNode>(N)->isUnindexed() && N->getOperand(1).getOpcode() == ISD::BSWAP && N->getOperand(1).getNode()->hasOneUse() && (N->getOperand(1).getValueType() == MVT::i32 || N->getOperand(1).getValueType() == MVT::i16 || (TM.getSubtarget<PPCSubtarget>().hasLDBRX() && TM.getSubtarget<PPCSubtarget>().isPPC64() && N->getOperand(1).getValueType() == MVT::i64))) { SDValue BSwapOp = N->getOperand(1).getOperand(0); // Do an any-extend to 32-bits if this is a half-word input. if (BSwapOp.getValueType() == MVT::i16) BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); SDValue Ops[] = { N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(N->getOperand(1).getValueType()) }; return DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), Ops, cast<StoreSDNode>(N)->getMemoryVT(), cast<StoreSDNode>(N)->getMemOperand()); } break; case ISD::LOAD: { LoadSDNode *LD = cast<LoadSDNode>(N); EVT VT = LD->getValueType(0); Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty); if (ISD::isNON_EXTLoad(N) && VT.isVector() && TM.getSubtarget<PPCSubtarget>().hasAltivec() && (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v4f32) && LD->getAlignment() < ABIAlignment) { // This is a type-legal unaligned Altivec load. SDValue Chain = LD->getChain(); SDValue Ptr = LD->getBasePtr(); bool isLittleEndian = Subtarget.isLittleEndian(); // This implements the loading of unaligned vectors as described in // the venerable Apple Velocity Engine overview. Specifically: // https://developer.apple.com/hardwaredrivers/ve/alignment.html // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html // // The general idea is to expand a sequence of one or more unaligned // loads into an alignment-based permutation-control instruction (lvsl // or lvsr), a series of regular vector loads (which always truncate // their input address to an aligned address), and a series of // permutations. The results of these permutations are the requested // loaded values. The trick is that the last "extra" load is not taken // from the address you might suspect (sizeof(vector) bytes after the // last requested load), but rather sizeof(vector) - 1 bytes after the // last requested vector. The point of this is to avoid a page fault if // the base address happened to be aligned. This works because if the // base address is aligned, then adding less than a full vector length // will cause the last vector in the sequence to be (re)loaded. // Otherwise, the next vector will be fetched as you might suspect was // necessary. // We might be able to reuse the permutation generation from // a different base address offset from this one by an aligned amount. // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this // optimization later. Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr : Intrinsic::ppc_altivec_lvsl); SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8); // Refine the alignment of the original load (a "new" load created here // which was identical to the first except for the alignment would be // merged with the existing node regardless). MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *MMO = MF.getMachineMemOperand(LD->getPointerInfo(), LD->getMemOperand()->getFlags(), LD->getMemoryVT().getStoreSize(), ABIAlignment); LD->refineAlignment(MMO); SDValue BaseLoad = SDValue(LD, 0); // Note that the value of IncOffset (which is provided to the next // load's pointer info offset value, and thus used to calculate the // alignment), and the value of IncValue (which is actually used to // increment the pointer value) are different! This is because we // require the next load to appear to be aligned, even though it // is actually offset from the base pointer by a lesser amount. int IncOffset = VT.getSizeInBits() / 8; int IncValue = IncOffset; // Walk (both up and down) the chain looking for another load at the real // (aligned) offset (the alignment of the other load does not matter in // this case). If found, then do not use the offset reduction trick, as // that will prevent the loads from being later combined (as they would // otherwise be duplicates). if (!findConsecutiveLoad(LD, DAG)) --IncValue; SDValue Increment = DAG.getConstant(IncValue, getPointerTy()); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); SDValue ExtraLoad = DAG.getLoad(VT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(IncOffset), LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), ABIAlignment); SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, BaseLoad.getValue(1), ExtraLoad.getValue(1)); if (BaseLoad.getValueType() != MVT::v4i32) BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad); if (ExtraLoad.getValueType() != MVT::v4i32) ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad); // Because vperm has a big-endian bias, we must reverse the order // of the input vectors and complement the permute control vector // when generating little endian code. We have already handled the // latter by using lvsr instead of lvsl, so just reverse BaseLoad // and ExtraLoad here. SDValue Perm; if (isLittleEndian) Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm, ExtraLoad, BaseLoad, PermCntl, DAG, dl); else Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm, BaseLoad, ExtraLoad, PermCntl, DAG, dl); if (VT != MVT::v4i32) Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm); // Now we need to be really careful about how we update the users of the // original load. We cannot just call DCI.CombineTo (or // DAG.ReplaceAllUsesWith for that matter), because the load still has // uses created here (the permutation for example) that need to stay. SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); while (UI != UE) { SDUse &Use = UI.getUse(); SDNode *User = *UI; // Note: BaseLoad is checked here because it might not be N, but a // bitcast of N. if (User == Perm.getNode() || User == BaseLoad.getNode() || User == TF.getNode() || Use.getResNo() > 1) { ++UI; continue; } SDValue To = Use.getResNo() ? TF : Perm; ++UI; SmallVector<SDValue, 8> Ops; for (const SDUse &O : User->ops()) { if (O == Use) Ops.push_back(To); else Ops.push_back(O); } DAG.UpdateNodeOperands(User, Ops); } return SDValue(N, 0); } } break; case ISD::INTRINSIC_WO_CHAIN: { bool isLittleEndian = Subtarget.isLittleEndian(); Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr : Intrinsic::ppc_altivec_lvsl); if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { SDValue Add = N->getOperand(1); if (DAG.MaskedValueIsZero(Add->getOperand(1), APInt::getAllOnesValue(4 /* 16 byte alignment */).zext( Add.getValueType().getScalarType().getSizeInBits()))) { SDNode *BasePtr = Add->getOperand(0).getNode(); for (SDNode::use_iterator UI = BasePtr->use_begin(), UE = BasePtr->use_end(); UI != UE; ++UI) { if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == Intr) { // We've found another LVSL/LVSR, and this address is an aligned // multiple of that one. The results will be the same, so use the // one we've just found instead. return SDValue(*UI, 0); } } } } } break; case ISD::BSWAP: // Turn BSWAP (LOAD) -> lhbrx/lwbrx. if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && N->getOperand(0).hasOneUse() && (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || (TM.getSubtarget<PPCSubtarget>().hasLDBRX() && TM.getSubtarget<PPCSubtarget>().isPPC64() && N->getValueType(0) == MVT::i64))) { SDValue Load = N->getOperand(0); LoadSDNode *LD = cast<LoadSDNode>(Load); // Create the byte-swapping load. SDValue Ops[] = { LD->getChain(), // Chain LD->getBasePtr(), // Ptr DAG.getValueType(N->getValueType(0)) // VT }; SDValue BSLoad = DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, DAG.getVTList(N->getValueType(0) == MVT::i64 ? MVT::i64 : MVT::i32, MVT::Other), Ops, LD->getMemoryVT(), LD->getMemOperand()); // If this is an i16 load, insert the truncate. SDValue ResVal = BSLoad; if (N->getValueType(0) == MVT::i16) ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); // First, combine the bswap away. This makes the value produced by the // load dead. DCI.CombineTo(N, ResVal); // Next, combine the load away, we give it a bogus result value but a real // chain result. The result value is dead because the bswap is dead. DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); // Return N so it doesn't get rechecked! return SDValue(N, 0); } break; case PPCISD::VCMP: { // If a VCMPo node already exists with exactly the same operands as this // node, use its result instead of this node (VCMPo computes both a CR6 and // a normal output). // if (!N->getOperand(0).hasOneUse() && !N->getOperand(1).hasOneUse() && !N->getOperand(2).hasOneUse()) { // Scan all of the users of the LHS, looking for VCMPo's that match. SDNode *VCMPoNode = nullptr; SDNode *LHSN = N->getOperand(0).getNode(); for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); UI != E; ++UI) if (UI->getOpcode() == PPCISD::VCMPo && UI->getOperand(1) == N->getOperand(1) && UI->getOperand(2) == N->getOperand(2) && UI->getOperand(0) == N->getOperand(0)) { VCMPoNode = *UI; break; } // If there is no VCMPo node, or if the flag value has a single use, don't // transform this. if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) break; // Look at the (necessarily single) use of the flag value. If it has a // chain, this transformation is more complex. Note that multiple things // could use the value result, which we should ignore. SDNode *FlagUser = nullptr; for (SDNode::use_iterator UI = VCMPoNode->use_begin(); FlagUser == nullptr; ++UI) { assert(UI != VCMPoNode->use_end() && "Didn't find user!"); SDNode *User = *UI; for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { FlagUser = User; break; } } } // If the user is a MFOCRF instruction, we know this is safe. // Otherwise we give up for right now. if (FlagUser->getOpcode() == PPCISD::MFOCRF) return SDValue(VCMPoNode, 0); } break; } case ISD::BRCOND: { SDValue Cond = N->getOperand(1); SDValue Target = N->getOperand(2); if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == Intrinsic::ppc_is_decremented_ctr_nonzero) { // We now need to make the intrinsic dead (it cannot be instruction // selected). DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); assert(Cond.getNode()->hasOneUse() && "Counter decrement has more than one use"); return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, N->getOperand(0), Target); } } break; case ISD::BR_CC: { // If this is a branch on an altivec predicate comparison, lower this so // that we don't have to do a MFOCRF: instead, branch directly on CR6. This // lowering is done pre-legalize, because the legalizer lowers the predicate // compare down to code that is difficult to reassemble. ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); // Sometimes the promoted value of the intrinsic is ANDed by some non-zero // value. If so, pass-through the AND to get to the intrinsic. if (LHS.getOpcode() == ISD::AND && LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == Intrinsic::ppc_is_decremented_ctr_nonzero && isa<ConstantSDNode>(LHS.getOperand(1)) && !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> isZero()) LHS = LHS.getOperand(0); if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == Intrinsic::ppc_is_decremented_ctr_nonzero && isa<ConstantSDNode>(RHS)) { assert((CC == ISD::SETEQ || CC == ISD::SETNE) && "Counter decrement comparison is not EQ or NE"); unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); bool isBDNZ = (CC == ISD::SETEQ && Val) || (CC == ISD::SETNE && !Val); // We now need to make the intrinsic dead (it cannot be instruction // selected). DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); assert(LHS.getNode()->hasOneUse() && "Counter decrement has more than one use"); return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, N->getOperand(0), N->getOperand(4)); } int CompareOpc; bool isDot; if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && getAltivecCompareInfo(LHS, CompareOpc, isDot)) { assert(isDot && "Can't compare against a vector result!"); // If this is a comparison against something other than 0/1, then we know // that the condition is never/always true. unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); if (Val != 0 && Val != 1) { if (CC == ISD::SETEQ) // Cond never true, remove branch. return N->getOperand(0); // Always !=, turn it into an unconditional branch. return DAG.getNode(ISD::BR, dl, MVT::Other, N->getOperand(0), N->getOperand(4)); } bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); // Create the PPCISD altivec 'dot' comparison node. SDValue Ops[] = { LHS.getOperand(2), // LHS of compare LHS.getOperand(3), // RHS of compare DAG.getConstant(CompareOpc, MVT::i32) }; EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); // Unpack the result based on how the target uses it. PPC::Predicate CompOpc; switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { default: // Can't happen, don't crash on invalid number though. case 0: // Branch on the value of the EQ bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; break; case 1: // Branch on the inverted value of the EQ bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; break; case 2: // Branch on the value of the LT bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; break; case 3: // Branch on the inverted value of the LT bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; break; } return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), DAG.getConstant(CompOpc, MVT::i32), DAG.getRegister(PPC::CR6, MVT::i32), N->getOperand(4), CompNode.getValue(1)); } break; } } return SDValue(); } //===----------------------------------------------------------------------===// // Inline Assembly Support //===----------------------------------------------------------------------===// void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); switch (Op.getOpcode()) { default: break; case PPCISD::LBRX: { // lhbrx is known to have the top bits cleared out. if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) KnownZero = 0xFFFF0000; break; } case ISD::INTRINSIC_WO_CHAIN: { switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { default: break; case Intrinsic::ppc_altivec_vcmpbfp_p: case Intrinsic::ppc_altivec_vcmpeqfp_p: case Intrinsic::ppc_altivec_vcmpequb_p: case Intrinsic::ppc_altivec_vcmpequh_p: case Intrinsic::ppc_altivec_vcmpequw_p: case Intrinsic::ppc_altivec_vcmpgefp_p: case Intrinsic::ppc_altivec_vcmpgtfp_p: case Intrinsic::ppc_altivec_vcmpgtsb_p: case Intrinsic::ppc_altivec_vcmpgtsh_p: case Intrinsic::ppc_altivec_vcmpgtsw_p: case Intrinsic::ppc_altivec_vcmpgtub_p: case Intrinsic::ppc_altivec_vcmpgtuh_p: case Intrinsic::ppc_altivec_vcmpgtuw_p: KnownZero = ~1U; // All bits but the low one are known to be zero. break; } } } } /// getConstraintType - Given a constraint, return the type of /// constraint it is for this target. PPCTargetLowering::ConstraintType PPCTargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'b': case 'r': case 'f': case 'v': case 'y': return C_RegisterClass; case 'Z': // FIXME: While Z does indicate a memory constraint, it specifically // indicates an r+r address (used in conjunction with the 'y' modifier // in the replacement string). Currently, we're forcing the base // register to be r0 in the asm printer (which is interpreted as zero) // and forming the complete address in the second register. This is // suboptimal. return C_Memory; } } else if (Constraint == "wc") { // individual CR bits. return C_RegisterClass; } else if (Constraint == "wa" || Constraint == "wd" || Constraint == "wf" || Constraint == "ws") { return C_RegisterClass; // VSX registers. } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight PPCTargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) return CW_Register; // an individual CR bit. else if ((StringRef(constraint) == "wa" || StringRef(constraint) == "wd" || StringRef(constraint) == "wf") && type->isVectorTy()) return CW_Register; else if (StringRef(constraint) == "ws" && type->isDoubleTy()) return CW_Register; switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'b': if (type->isIntegerTy()) weight = CW_Register; break; case 'f': if (type->isFloatTy()) weight = CW_Register; break; case 'd': if (type->isDoubleTy()) weight = CW_Register; break; case 'v': if (type->isVectorTy()) weight = CW_Register; break; case 'y': weight = CW_Register; break; case 'Z': weight = CW_Memory; break; } return weight; } std::pair<unsigned, const TargetRegisterClass*> PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { if (Constraint.size() == 1) { // GCC RS6000 Constraint Letters switch (Constraint[0]) { case 'b': // R1-R31 if (VT == MVT::i64 && Subtarget.isPPC64()) return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); case 'r': // R0-R31 if (VT == MVT::i64 && Subtarget.isPPC64()) return std::make_pair(0U, &PPC::G8RCRegClass); return std::make_pair(0U, &PPC::GPRCRegClass); case 'f': if (VT == MVT::f32 || VT == MVT::i32) return std::make_pair(0U, &PPC::F4RCRegClass); if (VT == MVT::f64 || VT == MVT::i64) return std::make_pair(0U, &PPC::F8RCRegClass); break; case 'v': return std::make_pair(0U, &PPC::VRRCRegClass); case 'y': // crrc return std::make_pair(0U, &PPC::CRRCRegClass); } } else if (Constraint == "wc") { // an individual CR bit. return std::make_pair(0U, &PPC::CRBITRCRegClass); } else if (Constraint == "wa" || Constraint == "wd" || Constraint == "wf") { return std::make_pair(0U, &PPC::VSRCRegClass); } else if (Constraint == "ws") { return std::make_pair(0U, &PPC::VSFRCRegClass); } std::pair<unsigned, const TargetRegisterClass*> R = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers // (which we call X[0-9]+). If a 64-bit value has been requested, and a // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent // register. // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use // the AsmName field from *RegisterInfo.td, then this would not be necessary. if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && PPC::GPRCRegClass.contains(R.first)) { const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); return std::make_pair(TRI->getMatchingSuperReg(R.first, PPC::sub_32, &PPC::G8RCRegClass), &PPC::G8RCRegClass); } return R; } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector<SDValue>&Ops, SelectionDAG &DAG) const { SDValue Result; // Only support length 1 constraints. if (Constraint.length() > 1) return; char Letter = Constraint[0]; switch (Letter) { default: break; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': { ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); if (!CST) return; // Must be an immediate to match. unsigned Value = CST->getZExtValue(); switch (Letter) { default: llvm_unreachable("Unknown constraint letter!"); case 'I': // "I" is a signed 16-bit constant. if ((short)Value == (int)Value) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'J': // "J" is a constant with only the high-order 16 bits nonzero. case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. if ((short)Value == 0) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'K': // "K" is a constant with only the low-order 16 bits nonzero. if ((Value >> 16) == 0) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'M': // "M" is a constant that is greater than 31. if (Value > 31) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'N': // "N" is a positive constant that is an exact power of two. if ((int)Value > 0 && isPowerOf2_32(Value)) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'O': // "O" is the constant zero. if (Value == 0) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'P': // "P" is a constant whose negation is a signed 16-bit constant. if ((short)-Value == (int)-Value) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; } break; } } if (Result.getNode()) { Ops.push_back(Result); return; } // Handle standard constraint letters. TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } // isLegalAddressingMode - Return true if the addressing mode represented // by AM is legal for this target, for a load/store of the specified type. bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { // FIXME: PPC does not allow r+i addressing modes for vectors! // PPC allows a sign-extended 16-bit immediate field. if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) return false; // No global is ever allowed as a base. if (AM.BaseGV) return false; // PPC only support r+r, switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. return false; // Otherwise we have r+r or r+i. break; case 2: if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. return false; // Allow 2*r as r+r. break; default: // No other scales are supported. return false; } return true; } SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MFI->setReturnAddressIsTaken(true); if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); SDLoc dl(Op); unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); // Make sure the function does not optimize away the store of the RA to // the stack. PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); FuncInfo->setLRStoreRequired(); bool isPPC64 = Subtarget.isPPC64(); bool isDarwinABI = Subtarget.isDarwinABI(); if (Depth > 0) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), isPPC64? MVT::i64 : MVT::i32); return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, getPointerTy(), FrameAddr, Offset), MachinePointerInfo(), false, false, false, 0); } // Just load the return address off the stack. SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), RetAddrFI, MachinePointerInfo(), false, false, false, 0); } SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MFI->setFrameAddressIsTaken(true); // Naked functions never have a frame pointer, and so we use r1. For all // other functions, this decision must be delayed until during PEI. unsigned FrameReg; if (MF.getFunction()->getAttributes().hasAttribute( AttributeSet::FunctionIndex, Attribute::Naked)) FrameReg = isPPC64 ? PPC::X1 : PPC::R1; else FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); while (Depth--) FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo(), false, false, false, 0); return FrameAddr; } // FIXME? Maybe this could be a TableGen attribute on some registers and // this table could be generated automatically from RegInfo. unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT) const { bool isPPC64 = Subtarget.isPPC64(); bool isDarwinABI = Subtarget.isDarwinABI(); if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || (!isPPC64 && VT != MVT::i32)) report_fatal_error("Invalid register global variable type"); bool is64Bit = isPPC64 && VT == MVT::i64; unsigned Reg = StringSwitch<unsigned>(RegName) .Case("r1", is64Bit ? PPC::X1 : PPC::R1) .Case("r2", isDarwinABI ? 0 : (is64Bit ? PPC::X2 : PPC::R2)) .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : (is64Bit ? PPC::X13 : PPC::R13)) .Default(0); if (Reg) return Reg; report_fatal_error("Invalid register name global variable"); } bool PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // The PowerPC target isn't yet aware of offsets. return false; } /// getOptimalMemOpType - Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, /// probably because the source does not need to be loaded. If 'IsMemset' is /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy /// source is constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { if (Subtarget.isPPC64()) { return MVT::i64; } else { return MVT::i32; } } /// \brief Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0 || BitSize > 64) return false; return true; } bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 == 64 && NumBits2 == 32; } bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (!VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 == 64 && NumBits2 == 32; } bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { return isInt<16>(Imm) || isUInt<16>(Imm); } bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { return isInt<16>(Imm) || isUInt<16>(Imm); } bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, unsigned, bool *Fast) const { if (DisablePPCUnaligned) return false; // PowerPC supports unaligned memory access for simple non-vector types. // Although accessing unaligned addresses is not as efficient as accessing // aligned addresses, it is generally more efficient than manual expansion, // and generally only traps for software emulation when crossing page // boundaries. if (!VT.isSimple()) return false; if (VT.getSimpleVT().isVector()) { if (Subtarget.hasVSX()) { if (VT != MVT::v2f64 && VT != MVT::v2i64) return false; } else { return false; } } if (VT == MVT::ppcf128) return false; if (Fast) *Fast = true; return true; } bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: case MVT::f64: return true; default: break; } return false; } bool PPCTargetLowering::shouldExpandBuildVectorWithShuffles( EVT VT , unsigned DefinedValues) const { if (VT == MVT::v2i64) return false; return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); } Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { if (DisableILPPref || Subtarget.enableMachineScheduler()) return TargetLowering::getSchedulingPreference(N); return Sched::ILP; } // Create a fast isel object. FastISel * PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { return PPC::createFastISel(FuncInfo, LibInfo); }