//===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the JIT interfaces for the X86 target. // //===----------------------------------------------------------------------===// #include "X86JITInfo.h" #include "X86Relocations.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/IR/Function.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Valgrind.h" #include <cstdlib> #include <cstring> using namespace llvm; #define DEBUG_TYPE "jit" // Determine the platform we're running on #if defined (__x86_64__) || defined (_M_AMD64) || defined (_M_X64) # define X86_64_JIT #elif defined(__i386__) || defined(i386) || defined(_M_IX86) # define X86_32_JIT #endif void X86JITInfo::replaceMachineCodeForFunction(void *Old, void *New) { unsigned char *OldByte = (unsigned char *)Old; *OldByte++ = 0xE9; // Emit JMP opcode. unsigned *OldWord = (unsigned *)OldByte; unsigned NewAddr = (intptr_t)New; unsigned OldAddr = (intptr_t)OldWord; *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code. // X86 doesn't need to invalidate the processor cache, so just invalidate // Valgrind's cache directly. sys::ValgrindDiscardTranslations(Old, 5); } /// JITCompilerFunction - This contains the address of the JIT function used to /// compile a function lazily. static TargetJITInfo::JITCompilerFn JITCompilerFunction; // Get the ASMPREFIX for the current host. This is often '_'. #ifndef __USER_LABEL_PREFIX__ #define __USER_LABEL_PREFIX__ #endif #define GETASMPREFIX2(X) #X #define GETASMPREFIX(X) GETASMPREFIX2(X) #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__) // For ELF targets, use a .size and .type directive, to let tools // know the extent of functions defined in assembler. #if defined(__ELF__) # define SIZE(sym) ".size " #sym ", . - " #sym "\n" # define TYPE_FUNCTION(sym) ".type " #sym ", @function\n" #else # define SIZE(sym) # define TYPE_FUNCTION(sym) #endif // Provide a convenient way for disabling usage of CFI directives. // This is needed for old/broken assemblers (for example, gas on // Darwin is pretty old and doesn't support these directives) #if defined(__APPLE__) # define CFI(x) #else // FIXME: Disable this until we really want to use it. Also, we will // need to add some workarounds for compilers, which support // only subset of these directives. # define CFI(x) #endif // Provide a wrapper for LLVMX86CompilationCallback2 that saves non-traditional // callee saved registers, for the fastcc calling convention. extern "C" { #if defined(X86_64_JIT) # ifndef _MSC_VER // No need to save EAX/EDX for X86-64. void X86CompilationCallback(void); asm( ".text\n" ".align 8\n" ".globl " ASMPREFIX "X86CompilationCallback\n" TYPE_FUNCTION(X86CompilationCallback) ASMPREFIX "X86CompilationCallback:\n" CFI(".cfi_startproc\n") // Save RBP "pushq %rbp\n" CFI(".cfi_def_cfa_offset 16\n") CFI(".cfi_offset %rbp, -16\n") // Save RSP "movq %rsp, %rbp\n" CFI(".cfi_def_cfa_register %rbp\n") // Save all int arg registers "pushq %rdi\n" CFI(".cfi_rel_offset %rdi, 0\n") "pushq %rsi\n" CFI(".cfi_rel_offset %rsi, 8\n") "pushq %rdx\n" CFI(".cfi_rel_offset %rdx, 16\n") "pushq %rcx\n" CFI(".cfi_rel_offset %rcx, 24\n") "pushq %r8\n" CFI(".cfi_rel_offset %r8, 32\n") "pushq %r9\n" CFI(".cfi_rel_offset %r9, 40\n") // Align stack on 16-byte boundary. ESP might not be properly aligned // (8 byte) if this is called from an indirect stub. "andq $-16, %rsp\n" // Save all XMM arg registers "subq $128, %rsp\n" "movaps %xmm0, (%rsp)\n" "movaps %xmm1, 16(%rsp)\n" "movaps %xmm2, 32(%rsp)\n" "movaps %xmm3, 48(%rsp)\n" "movaps %xmm4, 64(%rsp)\n" "movaps %xmm5, 80(%rsp)\n" "movaps %xmm6, 96(%rsp)\n" "movaps %xmm7, 112(%rsp)\n" // JIT callee #if defined(_WIN64) || defined(__CYGWIN__) "subq $32, %rsp\n" "movq %rbp, %rcx\n" // Pass prev frame and return address "movq 8(%rbp), %rdx\n" "call " ASMPREFIX "LLVMX86CompilationCallback2\n" "addq $32, %rsp\n" #else "movq %rbp, %rdi\n" // Pass prev frame and return address "movq 8(%rbp), %rsi\n" "call " ASMPREFIX "LLVMX86CompilationCallback2\n" #endif // Restore all XMM arg registers "movaps 112(%rsp), %xmm7\n" "movaps 96(%rsp), %xmm6\n" "movaps 80(%rsp), %xmm5\n" "movaps 64(%rsp), %xmm4\n" "movaps 48(%rsp), %xmm3\n" "movaps 32(%rsp), %xmm2\n" "movaps 16(%rsp), %xmm1\n" "movaps (%rsp), %xmm0\n" // Restore RSP "movq %rbp, %rsp\n" CFI(".cfi_def_cfa_register %rsp\n") // Restore all int arg registers "subq $48, %rsp\n" CFI(".cfi_adjust_cfa_offset 48\n") "popq %r9\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %r9\n") "popq %r8\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %r8\n") "popq %rcx\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %rcx\n") "popq %rdx\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %rdx\n") "popq %rsi\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %rsi\n") "popq %rdi\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %rdi\n") // Restore RBP "popq %rbp\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %rbp\n") "ret\n" CFI(".cfi_endproc\n") SIZE(X86CompilationCallback) ); # else // No inline assembler support on this platform. The routine is in external // file. void X86CompilationCallback(); # endif #elif defined (X86_32_JIT) # ifndef _MSC_VER void X86CompilationCallback(void); asm( ".text\n" ".align 8\n" ".globl " ASMPREFIX "X86CompilationCallback\n" TYPE_FUNCTION(X86CompilationCallback) ASMPREFIX "X86CompilationCallback:\n" CFI(".cfi_startproc\n") "pushl %ebp\n" CFI(".cfi_def_cfa_offset 8\n") CFI(".cfi_offset %ebp, -8\n") "movl %esp, %ebp\n" // Standard prologue CFI(".cfi_def_cfa_register %ebp\n") "pushl %eax\n" CFI(".cfi_rel_offset %eax, 0\n") "pushl %edx\n" // Save EAX/EDX/ECX CFI(".cfi_rel_offset %edx, 4\n") "pushl %ecx\n" CFI(".cfi_rel_offset %ecx, 8\n") # if defined(__APPLE__) "andl $-16, %esp\n" // Align ESP on 16-byte boundary # endif "subl $16, %esp\n" "movl 4(%ebp), %eax\n" // Pass prev frame and return address "movl %eax, 4(%esp)\n" "movl %ebp, (%esp)\n" "call " ASMPREFIX "LLVMX86CompilationCallback2\n" "movl %ebp, %esp\n" // Restore ESP CFI(".cfi_def_cfa_register %esp\n") "subl $12, %esp\n" CFI(".cfi_adjust_cfa_offset 12\n") "popl %ecx\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %ecx\n") "popl %edx\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %edx\n") "popl %eax\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %eax\n") "popl %ebp\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %ebp\n") "ret\n" CFI(".cfi_endproc\n") SIZE(X86CompilationCallback) ); // Same as X86CompilationCallback but also saves XMM argument registers. void X86CompilationCallback_SSE(void); asm( ".text\n" ".align 8\n" ".globl " ASMPREFIX "X86CompilationCallback_SSE\n" TYPE_FUNCTION(X86CompilationCallback_SSE) ASMPREFIX "X86CompilationCallback_SSE:\n" CFI(".cfi_startproc\n") "pushl %ebp\n" CFI(".cfi_def_cfa_offset 8\n") CFI(".cfi_offset %ebp, -8\n") "movl %esp, %ebp\n" // Standard prologue CFI(".cfi_def_cfa_register %ebp\n") "pushl %eax\n" CFI(".cfi_rel_offset %eax, 0\n") "pushl %edx\n" // Save EAX/EDX/ECX CFI(".cfi_rel_offset %edx, 4\n") "pushl %ecx\n" CFI(".cfi_rel_offset %ecx, 8\n") "andl $-16, %esp\n" // Align ESP on 16-byte boundary // Save all XMM arg registers "subl $64, %esp\n" // FIXME: provide frame move information for xmm registers. // This can be tricky, because CFA register is ebp (unaligned) // and we need to produce offsets relative to it. "movaps %xmm0, (%esp)\n" "movaps %xmm1, 16(%esp)\n" "movaps %xmm2, 32(%esp)\n" "movaps %xmm3, 48(%esp)\n" "subl $16, %esp\n" "movl 4(%ebp), %eax\n" // Pass prev frame and return address "movl %eax, 4(%esp)\n" "movl %ebp, (%esp)\n" "call " ASMPREFIX "LLVMX86CompilationCallback2\n" "addl $16, %esp\n" "movaps 48(%esp), %xmm3\n" CFI(".cfi_restore %xmm3\n") "movaps 32(%esp), %xmm2\n" CFI(".cfi_restore %xmm2\n") "movaps 16(%esp), %xmm1\n" CFI(".cfi_restore %xmm1\n") "movaps (%esp), %xmm0\n" CFI(".cfi_restore %xmm0\n") "movl %ebp, %esp\n" // Restore ESP CFI(".cfi_def_cfa_register esp\n") "subl $12, %esp\n" CFI(".cfi_adjust_cfa_offset 12\n") "popl %ecx\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %ecx\n") "popl %edx\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %edx\n") "popl %eax\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %eax\n") "popl %ebp\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %ebp\n") "ret\n" CFI(".cfi_endproc\n") SIZE(X86CompilationCallback_SSE) ); # else void LLVMX86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr); _declspec(naked) void X86CompilationCallback(void) { __asm { push ebp mov ebp, esp push eax push edx push ecx and esp, -16 sub esp, 16 mov eax, dword ptr [ebp+4] mov dword ptr [esp+4], eax mov dword ptr [esp], ebp call LLVMX86CompilationCallback2 mov esp, ebp sub esp, 12 pop ecx pop edx pop eax pop ebp ret } } # endif // _MSC_VER #else // Not an i386 host void X86CompilationCallback() { llvm_unreachable("Cannot call X86CompilationCallback() on a non-x86 arch!"); } #endif } /// This is the target-specific function invoked by the /// function stub when we did not know the real target of a call. This function /// must locate the start of the stub or call site and pass it into the JIT /// compiler function. extern "C" { LLVM_ATTRIBUTE_USED // Referenced from inline asm. LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr) { intptr_t *RetAddrLoc = &StackPtr[1]; // We are reading raw stack data here. Tell MemorySanitizer that it is // sufficiently initialized. __msan_unpoison(RetAddrLoc, sizeof(*RetAddrLoc)); assert(*RetAddrLoc == RetAddr && "Could not find return address on the stack!"); // It's a stub if there is an interrupt marker after the call. bool isStub = ((unsigned char*)RetAddr)[0] == 0xCE; // The call instruction should have pushed the return value onto the stack... #if defined (X86_64_JIT) RetAddr--; // Backtrack to the reference itself... #else RetAddr -= 4; // Backtrack to the reference itself... #endif #if 0 DEBUG(dbgs() << "In callback! Addr=" << (void*)RetAddr << " ESP=" << (void*)StackPtr << ": Resolving call to function: " << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"); #endif // Sanity check to make sure this really is a call instruction. #if defined (X86_64_JIT) assert(((unsigned char*)RetAddr)[-2] == 0x41 &&"Not a call instr!"); assert(((unsigned char*)RetAddr)[-1] == 0xFF &&"Not a call instr!"); #else assert(((unsigned char*)RetAddr)[-1] == 0xE8 &&"Not a call instr!"); #endif intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)RetAddr); // Rewrite the call target... so that we don't end up here every time we // execute the call. #if defined (X86_64_JIT) assert(isStub && "X86-64 doesn't support rewriting non-stub lazy compilation calls:" " the call instruction varies too much."); #else *(intptr_t *)RetAddr = (intptr_t)(NewVal-RetAddr-4); #endif if (isStub) { // If this is a stub, rewrite the call into an unconditional branch // instruction so that two return addresses are not pushed onto the stack // when the requested function finally gets called. This also makes the // 0xCE byte (interrupt) dead, so the marker doesn't effect anything. #if defined (X86_64_JIT) // If the target address is within 32-bit range of the stub, use a // PC-relative branch instead of loading the actual address. (This is // considerably shorter than the 64-bit immediate load already there.) // We assume here intptr_t is 64 bits. intptr_t diff = NewVal-RetAddr+7; if (diff >= -2147483648LL && diff <= 2147483647LL) { *(unsigned char*)(RetAddr-0xc) = 0xE9; *(intptr_t *)(RetAddr-0xb) = diff & 0xffffffff; } else { *(intptr_t *)(RetAddr - 0xa) = NewVal; ((unsigned char*)RetAddr)[0] = (2 | (4 << 3) | (3 << 6)); } sys::ValgrindDiscardTranslations((void*)(RetAddr-0xc), 0xd); #else ((unsigned char*)RetAddr)[-1] = 0xE9; sys::ValgrindDiscardTranslations((void*)(RetAddr-1), 5); #endif } // Change the return address to reexecute the call instruction... #if defined (X86_64_JIT) *RetAddrLoc -= 0xd; #else *RetAddrLoc -= 5; #endif } } TargetJITInfo::LazyResolverFn X86JITInfo::getLazyResolverFunction(JITCompilerFn F) { TsanIgnoreWritesBegin(); JITCompilerFunction = F; TsanIgnoreWritesEnd(); #if defined (X86_32_JIT) && !defined (_MSC_VER) #if defined(__SSE__) // SSE Callback should be called for SSE-enabled LLVM. return X86CompilationCallback_SSE; #else if (useSSE) return X86CompilationCallback_SSE; #endif #endif return X86CompilationCallback; } X86JITInfo::X86JITInfo(bool UseSSE) { useSSE = UseSSE; useGOT = 0; TLSOffset = nullptr; } void *X86JITInfo::emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr, JITCodeEmitter &JCE) { #if defined (X86_64_JIT) const unsigned Alignment = 8; uint8_t Buffer[8]; uint8_t *Cur = Buffer; MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(intptr_t)ptr); MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(((intptr_t)ptr) >> 32)); #else const unsigned Alignment = 4; uint8_t Buffer[4]; uint8_t *Cur = Buffer; MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)ptr); #endif return JCE.allocIndirectGV(GV, Buffer, sizeof(Buffer), Alignment); } TargetJITInfo::StubLayout X86JITInfo::getStubLayout() { // The 64-bit stub contains: // movabs r10 <- 8-byte-target-address # 10 bytes // call|jmp *r10 # 3 bytes // The 32-bit stub contains a 5-byte call|jmp. // If the stub is a call to the compilation callback, an extra byte is added // to mark it as a stub. StubLayout Result = {14, 4}; return Result; } void *X86JITInfo::emitFunctionStub(const Function* F, void *Target, JITCodeEmitter &JCE) { // Note, we cast to intptr_t here to silence a -pedantic warning that // complains about casting a function pointer to a normal pointer. #if defined (X86_32_JIT) && !defined (_MSC_VER) bool NotCC = (Target != (void*)(intptr_t)X86CompilationCallback && Target != (void*)(intptr_t)X86CompilationCallback_SSE); #else bool NotCC = Target != (void*)(intptr_t)X86CompilationCallback; #endif JCE.emitAlignment(4); void *Result = (void*)JCE.getCurrentPCValue(); if (NotCC) { #if defined (X86_64_JIT) JCE.emitByte(0x49); // REX prefix JCE.emitByte(0xB8+2); // movabsq r10 JCE.emitWordLE((unsigned)(intptr_t)Target); JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32)); JCE.emitByte(0x41); // REX prefix JCE.emitByte(0xFF); // jmpq *r10 JCE.emitByte(2 | (4 << 3) | (3 << 6)); #else JCE.emitByte(0xE9); JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4); #endif return Result; } #if defined (X86_64_JIT) JCE.emitByte(0x49); // REX prefix JCE.emitByte(0xB8+2); // movabsq r10 JCE.emitWordLE((unsigned)(intptr_t)Target); JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32)); JCE.emitByte(0x41); // REX prefix JCE.emitByte(0xFF); // callq *r10 JCE.emitByte(2 | (2 << 3) | (3 << 6)); #else JCE.emitByte(0xE8); // Call with 32 bit pc-rel destination... JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4); #endif // This used to use 0xCD, but that value is used by JITMemoryManager to // initialize the buffer with garbage, which means it may follow a // noreturn function call, confusing LLVMX86CompilationCallback2. PR 4929. JCE.emitByte(0xCE); // Interrupt - Just a marker identifying the stub! return Result; } /// getPICJumpTableEntry - Returns the value of the jumptable entry for the /// specific basic block. uintptr_t X86JITInfo::getPICJumpTableEntry(uintptr_t BB, uintptr_t Entry) { #if defined(X86_64_JIT) return BB - Entry; #else return BB - PICBase; #endif } template<typename T> static void addUnaligned(void *Pos, T Delta) { T Value; std::memcpy(reinterpret_cast<char*>(&Value), reinterpret_cast<char*>(Pos), sizeof(T)); Value += Delta; std::memcpy(reinterpret_cast<char*>(Pos), reinterpret_cast<char*>(&Value), sizeof(T)); } /// relocate - Before the JIT can run a block of code that has been emitted, /// it must rewrite the code to contain the actual addresses of any /// referenced global symbols. void X86JITInfo::relocate(void *Function, MachineRelocation *MR, unsigned NumRelocs, unsigned char* GOTBase) { for (unsigned i = 0; i != NumRelocs; ++i, ++MR) { void *RelocPos = (char*)Function + MR->getMachineCodeOffset(); intptr_t ResultPtr = (intptr_t)MR->getResultPointer(); switch ((X86::RelocationType)MR->getRelocationType()) { case X86::reloc_pcrel_word: { // PC relative relocation, add the relocated value to the value already in // memory, after we adjust it for where the PC is. ResultPtr = ResultPtr -(intptr_t)RelocPos - 4 - MR->getConstantVal(); addUnaligned<unsigned>(RelocPos, ResultPtr); break; } case X86::reloc_picrel_word: { // PIC base relative relocation, add the relocated value to the value // already in memory, after we adjust it for where the PIC base is. ResultPtr = ResultPtr - ((intptr_t)Function + MR->getConstantVal()); addUnaligned<unsigned>(RelocPos, ResultPtr); break; } case X86::reloc_absolute_word: case X86::reloc_absolute_word_sext: // Absolute relocation, just add the relocated value to the value already // in memory. addUnaligned<unsigned>(RelocPos, ResultPtr); break; case X86::reloc_absolute_dword: addUnaligned<intptr_t>(RelocPos, ResultPtr); break; } } } char* X86JITInfo::allocateThreadLocalMemory(size_t size) { #if defined(X86_32_JIT) && !defined(__APPLE__) && !defined(_MSC_VER) TLSOffset -= size; return TLSOffset; #else llvm_unreachable("Cannot allocate thread local storage on this arch!"); #endif }