/* * Stack-less Just-In-Time compiler * * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void) { return "x86" SLJIT_CPUINFO; } /* 32b register indexes: 0 - EAX 1 - ECX 2 - EDX 3 - EBX 4 - none 5 - EBP 6 - ESI 7 - EDI */ /* 64b register indexes: 0 - RAX 1 - RCX 2 - RDX 3 - RBX 4 - none 5 - RBP 6 - RSI 7 - RDI 8 - R8 - From now on REX prefix is required 9 - R9 10 - R10 11 - R11 12 - R12 13 - R13 14 - R14 15 - R15 */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) /* Last register + 1. */ #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2) static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 3] = { 0, 0, 2, 1, 0, 0, 0, 0, 7, 6, 3, 4, 5 }; #define CHECK_EXTRA_REGS(p, w, do) \ if (p >= SLJIT_R3 && p <= SLJIT_R6) { \ w = FIXED_LOCALS_OFFSET + ((p) - (SLJIT_R3 + 4)) * sizeof(sljit_sw); \ p = SLJIT_MEM1(SLJIT_SP); \ do; \ } #else /* SLJIT_CONFIG_X86_32 */ /* Last register + 1. */ #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2) #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3) #define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4) /* Note: r12 & 0x7 == 0b100, which decoded as SIB byte present Note: avoid to use r12 and r13 for memory addessing therefore r12 is better for SAVED_EREG than SAVED_REG. */ #ifndef _WIN64 /* 1st passed in rdi, 2nd argument passed in rsi, 3rd in rdx. */ static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 5] = { 0, 0, 6, 1, 8, 11, 10, 12, 5, 13, 14, 15, 3, 4, 2, 7, 9 }; /* low-map. reg_map & 0x7. */ static SLJIT_CONST sljit_ub reg_lmap[SLJIT_NUMBER_OF_REGISTERS + 5] = { 0, 0, 6, 1, 0, 3, 2, 4, 5, 5, 6, 7, 3, 4, 2, 7, 1 }; #else /* 1st passed in rcx, 2nd argument passed in rdx, 3rd in r8. */ static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 5] = { 0, 0, 2, 1, 11, 12, 5, 13, 14, 15, 7, 6, 3, 4, 10, 8, 9 }; /* low-map. reg_map & 0x7. */ static SLJIT_CONST sljit_ub reg_lmap[SLJIT_NUMBER_OF_REGISTERS + 5] = { 0, 0, 2, 1, 3, 4, 5, 5, 6, 7, 7, 6, 3, 4, 2, 0, 1 }; #endif #define REX_W 0x48 #define REX_R 0x44 #define REX_X 0x42 #define REX_B 0x41 #define REX 0x40 #ifndef _WIN64 #define HALFWORD_MAX 0x7fffffffl #define HALFWORD_MIN -0x80000000l #else #define HALFWORD_MAX 0x7fffffffll #define HALFWORD_MIN -0x80000000ll #endif #define IS_HALFWORD(x) ((x) <= HALFWORD_MAX && (x) >= HALFWORD_MIN) #define NOT_HALFWORD(x) ((x) > HALFWORD_MAX || (x) < HALFWORD_MIN) #define CHECK_EXTRA_REGS(p, w, do) #endif /* SLJIT_CONFIG_X86_32 */ #define TMP_FREG (0) /* Size flags for emit_x86_instruction: */ #define EX86_BIN_INS 0x0010 #define EX86_SHIFT_INS 0x0020 #define EX86_REX 0x0040 #define EX86_NO_REXW 0x0080 #define EX86_BYTE_ARG 0x0100 #define EX86_HALF_ARG 0x0200 #define EX86_PREF_66 0x0400 #define EX86_PREF_F2 0x0800 #define EX86_PREF_F3 0x1000 #define EX86_SSE2_OP1 0x2000 #define EX86_SSE2_OP2 0x4000 #define EX86_SSE2 (EX86_SSE2_OP1 | EX86_SSE2_OP2) /* --------------------------------------------------------------------- */ /* Instrucion forms */ /* --------------------------------------------------------------------- */ #define ADD (/* BINARY */ 0 << 3) #define ADD_EAX_i32 0x05 #define ADD_r_rm 0x03 #define ADD_rm_r 0x01 #define ADDSD_x_xm 0x58 #define ADC (/* BINARY */ 2 << 3) #define ADC_EAX_i32 0x15 #define ADC_r_rm 0x13 #define ADC_rm_r 0x11 #define AND (/* BINARY */ 4 << 3) #define AND_EAX_i32 0x25 #define AND_r_rm 0x23 #define AND_rm_r 0x21 #define ANDPD_x_xm 0x54 #define BSR_r_rm (/* GROUP_0F */ 0xbd) #define CALL_i32 0xe8 #define CALL_rm (/* GROUP_FF */ 2 << 3) #define CDQ 0x99 #define CMOVNE_r_rm (/* GROUP_0F */ 0x45) #define CMP (/* BINARY */ 7 << 3) #define CMP_EAX_i32 0x3d #define CMP_r_rm 0x3b #define CMP_rm_r 0x39 #define CVTPD2PS_x_xm 0x5a #define CVTSI2SD_x_rm 0x2a #define CVTTSD2SI_r_xm 0x2c #define DIV (/* GROUP_F7 */ 6 << 3) #define DIVSD_x_xm 0x5e #define INT3 0xcc #define IDIV (/* GROUP_F7 */ 7 << 3) #define IMUL (/* GROUP_F7 */ 5 << 3) #define IMUL_r_rm (/* GROUP_0F */ 0xaf) #define IMUL_r_rm_i8 0x6b #define IMUL_r_rm_i32 0x69 #define JE_i8 0x74 #define JMP_i8 0xeb #define JMP_i32 0xe9 #define JMP_rm (/* GROUP_FF */ 4 << 3) #define LEA_r_m 0x8d #define MOV_r_rm 0x8b #define MOV_r_i32 0xb8 #define MOV_rm_r 0x89 #define MOV_rm_i32 0xc7 #define MOV_rm8_i8 0xc6 #define MOV_rm8_r8 0x88 #define MOVSD_x_xm 0x10 #define MOVSD_xm_x 0x11 #define MOVSXD_r_rm 0x63 #define MOVSX_r_rm8 (/* GROUP_0F */ 0xbe) #define MOVSX_r_rm16 (/* GROUP_0F */ 0xbf) #define MOVZX_r_rm8 (/* GROUP_0F */ 0xb6) #define MOVZX_r_rm16 (/* GROUP_0F */ 0xb7) #define MUL (/* GROUP_F7 */ 4 << 3) #define MULSD_x_xm 0x59 #define NEG_rm (/* GROUP_F7 */ 3 << 3) #define NOP 0x90 #define NOT_rm (/* GROUP_F7 */ 2 << 3) #define OR (/* BINARY */ 1 << 3) #define OR_r_rm 0x0b #define OR_EAX_i32 0x0d #define OR_rm_r 0x09 #define OR_rm8_r8 0x08 #define POP_r 0x58 #define POP_rm 0x8f #define POPF 0x9d #define PUSH_i32 0x68 #define PUSH_r 0x50 #define PUSH_rm (/* GROUP_FF */ 6 << 3) #define PUSHF 0x9c #define RET_near 0xc3 #define RET_i16 0xc2 #define SBB (/* BINARY */ 3 << 3) #define SBB_EAX_i32 0x1d #define SBB_r_rm 0x1b #define SBB_rm_r 0x19 #define SAR (/* SHIFT */ 7 << 3) #define SHL (/* SHIFT */ 4 << 3) #define SHR (/* SHIFT */ 5 << 3) #define SUB (/* BINARY */ 5 << 3) #define SUB_EAX_i32 0x2d #define SUB_r_rm 0x2b #define SUB_rm_r 0x29 #define SUBSD_x_xm 0x5c #define TEST_EAX_i32 0xa9 #define TEST_rm_r 0x85 #define UCOMISD_x_xm 0x2e #define UNPCKLPD_x_xm 0x14 #define XCHG_EAX_r 0x90 #define XCHG_r_rm 0x87 #define XOR (/* BINARY */ 6 << 3) #define XOR_EAX_i32 0x35 #define XOR_r_rm 0x33 #define XOR_rm_r 0x31 #define XORPD_x_xm 0x57 #define GROUP_0F 0x0f #define GROUP_F7 0xf7 #define GROUP_FF 0xff #define GROUP_BINARY_81 0x81 #define GROUP_BINARY_83 0x83 #define GROUP_SHIFT_1 0xd1 #define GROUP_SHIFT_N 0xc1 #define GROUP_SHIFT_CL 0xd3 #define MOD_REG 0xc0 #define MOD_DISP8 0x40 #define INC_SIZE(s) (*inst++ = (s), compiler->size += (s)) #define PUSH_REG(r) (*inst++ = (PUSH_r + (r))) #define POP_REG(r) (*inst++ = (POP_r + (r))) #define RET() (*inst++ = (RET_near)) #define RET_I16(n) (*inst++ = (RET_i16), *inst++ = n, *inst++ = 0) /* r32, r/m32 */ #define MOV_RM(mod, reg, rm) (*inst++ = (MOV_r_rm), *inst++ = (mod) << 6 | (reg) << 3 | (rm)) /* Multithreading does not affect these static variables, since they store built-in CPU features. Therefore they can be overwritten by different threads if they detect the CPU features in the same time. */ #if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2) static sljit_si cpu_has_sse2 = -1; #endif static sljit_si cpu_has_cmov = -1; #if defined(_MSC_VER) && _MSC_VER >= 1400 #include <intrin.h> #endif static void get_cpu_features(void) { sljit_ui features; #if defined(_MSC_VER) && _MSC_VER >= 1400 int CPUInfo[4]; __cpuid(CPUInfo, 1); features = (sljit_ui)CPUInfo[3]; #elif defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) /* AT&T syntax. */ __asm__ ( "movl $0x1, %%eax\n" #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) /* On x86-32, there is no red zone, so this should work (no need for a local variable). */ "push %%ebx\n" #endif "cpuid\n" #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) "pop %%ebx\n" #endif "movl %%edx, %0\n" : "=g" (features) : #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) : "%eax", "%ecx", "%edx" #else : "%rax", "%rbx", "%rcx", "%rdx" #endif ); #else /* _MSC_VER && _MSC_VER >= 1400 */ /* Intel syntax. */ __asm { mov eax, 1 cpuid mov features, edx } #endif /* _MSC_VER && _MSC_VER >= 1400 */ #if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2) cpu_has_sse2 = (features >> 26) & 0x1; #endif cpu_has_cmov = (features >> 15) & 0x1; } static sljit_ub get_jump_code(sljit_si type) { switch (type) { case SLJIT_C_EQUAL: case SLJIT_C_FLOAT_EQUAL: return 0x84 /* je */; case SLJIT_C_NOT_EQUAL: case SLJIT_C_FLOAT_NOT_EQUAL: return 0x85 /* jne */; case SLJIT_C_LESS: case SLJIT_C_FLOAT_LESS: return 0x82 /* jc */; case SLJIT_C_GREATER_EQUAL: case SLJIT_C_FLOAT_GREATER_EQUAL: return 0x83 /* jae */; case SLJIT_C_GREATER: case SLJIT_C_FLOAT_GREATER: return 0x87 /* jnbe */; case SLJIT_C_LESS_EQUAL: case SLJIT_C_FLOAT_LESS_EQUAL: return 0x86 /* jbe */; case SLJIT_C_SIG_LESS: return 0x8c /* jl */; case SLJIT_C_SIG_GREATER_EQUAL: return 0x8d /* jnl */; case SLJIT_C_SIG_GREATER: return 0x8f /* jnle */; case SLJIT_C_SIG_LESS_EQUAL: return 0x8e /* jle */; case SLJIT_C_OVERFLOW: case SLJIT_C_MUL_OVERFLOW: return 0x80 /* jo */; case SLJIT_C_NOT_OVERFLOW: case SLJIT_C_MUL_NOT_OVERFLOW: return 0x81 /* jno */; case SLJIT_C_FLOAT_UNORDERED: return 0x8a /* jp */; case SLJIT_C_FLOAT_ORDERED: return 0x8b /* jpo */; } return 0; } static sljit_ub* generate_far_jump_code(struct sljit_jump *jump, sljit_ub *code_ptr, sljit_si type); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) static sljit_ub* generate_fixed_jump(sljit_ub *code_ptr, sljit_sw addr, sljit_si type); #endif static sljit_ub* generate_near_jump_code(struct sljit_jump *jump, sljit_ub *code_ptr, sljit_ub *code, sljit_si type) { sljit_si short_jump; sljit_uw label_addr; if (jump->flags & JUMP_LABEL) label_addr = (sljit_uw)(code + jump->u.label->size); else label_addr = jump->u.target; short_jump = (sljit_sw)(label_addr - (jump->addr + 2)) >= -128 && (sljit_sw)(label_addr - (jump->addr + 2)) <= 127; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((sljit_sw)(label_addr - (jump->addr + 1)) > HALFWORD_MAX || (sljit_sw)(label_addr - (jump->addr + 1)) < HALFWORD_MIN) return generate_far_jump_code(jump, code_ptr, type); #endif if (type == SLJIT_JUMP) { if (short_jump) *code_ptr++ = JMP_i8; else *code_ptr++ = JMP_i32; jump->addr++; } else if (type >= SLJIT_FAST_CALL) { short_jump = 0; *code_ptr++ = CALL_i32; jump->addr++; } else if (short_jump) { *code_ptr++ = get_jump_code(type) - 0x10; jump->addr++; } else { *code_ptr++ = GROUP_0F; *code_ptr++ = get_jump_code(type); jump->addr += 2; } if (short_jump) { jump->flags |= PATCH_MB; code_ptr += sizeof(sljit_sb); } else { jump->flags |= PATCH_MW; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) code_ptr += sizeof(sljit_sw); #else code_ptr += sizeof(sljit_si); #endif } return code_ptr; } SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_ub *code; sljit_ub *code_ptr; sljit_ub *buf_ptr; sljit_ub *buf_end; sljit_ub len; struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; CHECK_ERROR_PTR(); check_sljit_generate_code(compiler); reverse_buf(compiler); /* Second code generation pass. */ code = (sljit_ub*)SLJIT_MALLOC_EXEC(compiler->size); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; code_ptr = code; label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; do { buf_ptr = buf->memory; buf_end = buf_ptr + buf->used_size; do { len = *buf_ptr++; if (len > 0) { /* The code is already generated. */ SLJIT_MEMMOVE(code_ptr, buf_ptr, len); code_ptr += len; buf_ptr += len; } else { if (*buf_ptr >= 4) { jump->addr = (sljit_uw)code_ptr; if (!(jump->flags & SLJIT_REWRITABLE_JUMP)) code_ptr = generate_near_jump_code(jump, code_ptr, code, *buf_ptr - 4); else code_ptr = generate_far_jump_code(jump, code_ptr, *buf_ptr - 4); jump = jump->next; } else if (*buf_ptr == 0) { label->addr = (sljit_uw)code_ptr; label->size = code_ptr - code; label = label->next; } else if (*buf_ptr == 1) { const_->addr = ((sljit_uw)code_ptr) - sizeof(sljit_sw); const_ = const_->next; } else { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *code_ptr++ = (*buf_ptr == 2) ? CALL_i32 : JMP_i32; buf_ptr++; *(sljit_sw*)code_ptr = *(sljit_sw*)buf_ptr - ((sljit_sw)code_ptr + sizeof(sljit_sw)); code_ptr += sizeof(sljit_sw); buf_ptr += sizeof(sljit_sw) - 1; #else code_ptr = generate_fixed_jump(code_ptr, *(sljit_sw*)(buf_ptr + 1), *buf_ptr); buf_ptr += sizeof(sljit_sw); #endif } buf_ptr++; } } while (buf_ptr < buf_end); SLJIT_ASSERT(buf_ptr == buf_end); buf = buf->next; } while (buf); SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); jump = compiler->jumps; while (jump) { if (jump->flags & PATCH_MB) { SLJIT_ASSERT((sljit_sw)(jump->u.label->addr - (jump->addr + sizeof(sljit_sb))) >= -128 && (sljit_sw)(jump->u.label->addr - (jump->addr + sizeof(sljit_sb))) <= 127); *(sljit_ub*)jump->addr = (sljit_ub)(jump->u.label->addr - (jump->addr + sizeof(sljit_sb))); } else if (jump->flags & PATCH_MW) { if (jump->flags & JUMP_LABEL) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *(sljit_sw*)jump->addr = (sljit_sw)(jump->u.label->addr - (jump->addr + sizeof(sljit_sw))); #else SLJIT_ASSERT((sljit_sw)(jump->u.label->addr - (jump->addr + sizeof(sljit_si))) >= HALFWORD_MIN && (sljit_sw)(jump->u.label->addr - (jump->addr + sizeof(sljit_si))) <= HALFWORD_MAX); *(sljit_si*)jump->addr = (sljit_si)(jump->u.label->addr - (jump->addr + sizeof(sljit_si))); #endif } else { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *(sljit_sw*)jump->addr = (sljit_sw)(jump->u.target - (jump->addr + sizeof(sljit_sw))); #else SLJIT_ASSERT((sljit_sw)(jump->u.target - (jump->addr + sizeof(sljit_si))) >= HALFWORD_MIN && (sljit_sw)(jump->u.target - (jump->addr + sizeof(sljit_si))) <= HALFWORD_MAX); *(sljit_si*)jump->addr = (sljit_si)(jump->u.target - (jump->addr + sizeof(sljit_si))); #endif } } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) else if (jump->flags & PATCH_MD) *(sljit_sw*)jump->addr = jump->u.label->addr; #endif jump = jump->next; } /* Maybe we waste some space because of short jumps. */ SLJIT_ASSERT(code_ptr <= code + compiler->size); compiler->error = SLJIT_ERR_COMPILED; compiler->executable_size = code_ptr - code; return (void*)code; } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ static sljit_si emit_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w); static sljit_si emit_non_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w); static sljit_si emit_mov(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw); static SLJIT_INLINE sljit_si emit_save_flags(struct sljit_compiler *compiler) { sljit_ub *inst; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) inst = (sljit_ub*)ensure_buf(compiler, 1 + 5); FAIL_IF(!inst); INC_SIZE(5); #else inst = (sljit_ub*)ensure_buf(compiler, 1 + 6); FAIL_IF(!inst); INC_SIZE(6); *inst++ = REX_W; #endif *inst++ = LEA_r_m; /* lea esp/rsp, [esp/rsp + sizeof(sljit_sw)] */ *inst++ = 0x64; *inst++ = 0x24; *inst++ = (sljit_ub)sizeof(sljit_sw); *inst++ = PUSHF; compiler->flags_saved = 1; return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_si emit_restore_flags(struct sljit_compiler *compiler, sljit_si keep_flags) { sljit_ub *inst; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) inst = (sljit_ub*)ensure_buf(compiler, 1 + 5); FAIL_IF(!inst); INC_SIZE(5); *inst++ = POPF; #else inst = (sljit_ub*)ensure_buf(compiler, 1 + 6); FAIL_IF(!inst); INC_SIZE(6); *inst++ = POPF; *inst++ = REX_W; #endif *inst++ = LEA_r_m; /* lea esp/rsp, [esp/rsp - sizeof(sljit_sw)] */ *inst++ = 0x64; *inst++ = 0x24; *inst++ = (sljit_ub)-(sljit_sb)sizeof(sljit_sw); compiler->flags_saved = keep_flags; return SLJIT_SUCCESS; } #ifdef _WIN32 #include <malloc.h> static void SLJIT_CALL sljit_grow_stack(sljit_sw local_size) { /* Workaround for calling the internal _chkstk() function on Windows. This function touches all 4k pages belongs to the requested stack space, which size is passed in local_size. This is necessary on Windows where the stack can only grow in 4k steps. However, this function just burn CPU cycles if the stack is large enough. However, you don't know it in advance, so it must always be called. I think this is a bad design in general even if it has some reasons. */ *(volatile sljit_si*)alloca(local_size) = 0; } #endif #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) #include "sljitNativeX86_32.c" #else #include "sljitNativeX86_64.c" #endif static sljit_si emit_mov(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_ub* inst; if (dst == SLJIT_UNUSED) { /* No destination, doesn't need to setup flags. */ if (src & SLJIT_MEM) { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src, srcw); FAIL_IF(!inst); *inst = MOV_r_rm; } return SLJIT_SUCCESS; } if (FAST_IS_REG(src)) { inst = emit_x86_instruction(compiler, 1, src, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; return SLJIT_SUCCESS; } if (src & SLJIT_IMM) { if (FAST_IS_REG(dst)) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, MOV_r_i32 + reg_map[dst], srcw); #else if (!compiler->mode32) { if (NOT_HALFWORD(srcw)) return emit_load_imm64(compiler, dst, srcw); } else return emit_do_imm32(compiler, (reg_map[dst] >= 8) ? REX_B : 0, MOV_r_i32 + reg_lmap[dst], srcw); #endif } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (!compiler->mode32 && NOT_HALFWORD(srcw)) { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, srcw)); inst = emit_x86_instruction(compiler, 1, TMP_REG2, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; return SLJIT_SUCCESS; } #endif inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; } if (FAST_IS_REG(dst)) { inst = emit_x86_instruction(compiler, 1, dst, 0, src, srcw); FAIL_IF(!inst); *inst = MOV_r_rm; return SLJIT_SUCCESS; } /* Memory to memory move. Requires two instruction. */ inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src, srcw); FAIL_IF(!inst); *inst = MOV_r_rm; inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; return SLJIT_SUCCESS; } #define EMIT_MOV(compiler, dst, dstw, src, srcw) \ FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw)); SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op) { sljit_ub *inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) sljit_si size; #endif CHECK_ERROR(); check_sljit_emit_op0(compiler, op); switch (GET_OPCODE(op)) { case SLJIT_BREAKPOINT: inst = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = INT3; break; case SLJIT_NOP: inst = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = NOP; break; case SLJIT_UMUL: case SLJIT_SMUL: case SLJIT_UDIV: case SLJIT_SDIV: compiler->flags_saved = 0; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) #ifdef _WIN64 SLJIT_COMPILE_ASSERT( reg_map[SLJIT_R0] == 0 && reg_map[SLJIT_R1] == 2 && reg_map[TMP_REG1] > 7, invalid_register_assignment_for_div_mul); #else SLJIT_COMPILE_ASSERT( reg_map[SLJIT_R0] == 0 && reg_map[SLJIT_R1] < 7 && reg_map[TMP_REG1] == 2, invalid_register_assignment_for_div_mul); #endif compiler->mode32 = op & SLJIT_INT_OP; #endif op = GET_OPCODE(op); if (op == SLJIT_UDIV) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R1, 0); inst = emit_x86_instruction(compiler, 1, SLJIT_R1, 0, SLJIT_R1, 0); #else inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, TMP_REG1, 0); #endif FAIL_IF(!inst); *inst = XOR_r_rm; } if (op == SLJIT_SDIV) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R1, 0); #endif #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) inst = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = CDQ; #else if (compiler->mode32) { inst = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = CDQ; } else { inst = (sljit_ub*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); *inst++ = REX_W; *inst = CDQ; } #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) inst = (sljit_ub*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); *inst++ = GROUP_F7; *inst = MOD_REG | ((op >= SLJIT_UDIV) ? reg_map[TMP_REG1] : reg_map[SLJIT_R1]); #else #ifdef _WIN64 size = (!compiler->mode32 || op >= SLJIT_UDIV) ? 3 : 2; #else size = (!compiler->mode32) ? 3 : 2; #endif inst = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); #ifdef _WIN64 if (!compiler->mode32) *inst++ = REX_W | ((op >= SLJIT_UDIV) ? REX_B : 0); else if (op >= SLJIT_UDIV) *inst++ = REX_B; *inst++ = GROUP_F7; *inst = MOD_REG | ((op >= SLJIT_UDIV) ? reg_lmap[TMP_REG1] : reg_lmap[SLJIT_R1]); #else if (!compiler->mode32) *inst++ = REX_W; *inst++ = GROUP_F7; *inst = MOD_REG | reg_map[SLJIT_R1]; #endif #endif switch (op) { case SLJIT_UMUL: *inst |= MUL; break; case SLJIT_SMUL: *inst |= IMUL; break; case SLJIT_UDIV: *inst |= DIV; break; case SLJIT_SDIV: *inst |= IDIV; break; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) && !defined(_WIN64) EMIT_MOV(compiler, SLJIT_R1, 0, TMP_REG1, 0); #endif break; } return SLJIT_SUCCESS; } #define ENCODE_PREFIX(prefix) \ do { \ inst = (sljit_ub*)ensure_buf(compiler, 1 + 1); \ FAIL_IF(!inst); \ INC_SIZE(1); \ *inst = (prefix); \ } while (0) static sljit_si emit_mov_byte(struct sljit_compiler *compiler, sljit_si sign, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_ub* inst; sljit_si dst_r; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) sljit_si work_r; #endif #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif if (dst == SLJIT_UNUSED && !(src & SLJIT_MEM)) return SLJIT_SUCCESS; /* Empty instruction. */ if (src & SLJIT_IMM) { if (FAST_IS_REG(dst)) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, MOV_r_i32 + reg_map[dst], srcw); #else inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, 0); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; #endif } inst = emit_x86_instruction(compiler, 1 | EX86_BYTE_ARG | EX86_NO_REXW, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm8_i8; return SLJIT_SUCCESS; } dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; if ((dst & SLJIT_MEM) && FAST_IS_REG(src)) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (reg_map[src] >= 4) { SLJIT_ASSERT(dst_r == TMP_REG1); EMIT_MOV(compiler, TMP_REG1, 0, src, 0); } else dst_r = src; #else dst_r = src; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else if (FAST_IS_REG(src) && reg_map[src] >= 4) { /* src, dst are registers. */ SLJIT_ASSERT(SLOW_IS_REG(dst)); if (reg_map[dst] < 4) { if (dst != src) EMIT_MOV(compiler, dst, 0, src, 0); inst = emit_x86_instruction(compiler, 2, dst, 0, dst, 0); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = sign ? MOVSX_r_rm8 : MOVZX_r_rm8; } else { if (dst != src) EMIT_MOV(compiler, dst, 0, src, 0); if (sign) { /* shl reg, 24 */ inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0); FAIL_IF(!inst); *inst |= SHL; /* sar reg, 24 */ inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0); FAIL_IF(!inst); *inst |= SAR; } else { inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 0xff, dst, 0); FAIL_IF(!inst); *(inst + 1) |= AND; } } return SLJIT_SUCCESS; } #endif else { /* src can be memory addr or reg_map[src] < 4 on x86_32 architectures. */ inst = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = sign ? MOVSX_r_rm8 : MOVZX_r_rm8; } if (dst & SLJIT_MEM) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (dst_r == TMP_REG1) { /* Find a non-used register, whose reg_map[src] < 4. */ if ((dst & REG_MASK) == SLJIT_R0) { if ((dst & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_R1)) work_r = SLJIT_R2; else work_r = SLJIT_R1; } else { if ((dst & OFFS_REG_MASK) != TO_OFFS_REG(SLJIT_R0)) work_r = SLJIT_R0; else if ((dst & REG_MASK) == SLJIT_R1) work_r = SLJIT_R2; else work_r = SLJIT_R1; } if (work_r == SLJIT_R0) { ENCODE_PREFIX(XCHG_EAX_r + reg_map[TMP_REG1]); } else { inst = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0); FAIL_IF(!inst); *inst = XCHG_r_rm; } inst = emit_x86_instruction(compiler, 1, work_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm8_r8; if (work_r == SLJIT_R0) { ENCODE_PREFIX(XCHG_EAX_r + reg_map[TMP_REG1]); } else { inst = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0); FAIL_IF(!inst); *inst = XCHG_r_rm; } } else { inst = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm8_r8; } #else inst = emit_x86_instruction(compiler, 1 | EX86_REX | EX86_NO_REXW, dst_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm8_r8; #endif } return SLJIT_SUCCESS; } static sljit_si emit_mov_half(struct sljit_compiler *compiler, sljit_si sign, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_ub* inst; sljit_si dst_r; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif if (dst == SLJIT_UNUSED && !(src & SLJIT_MEM)) return SLJIT_SUCCESS; /* Empty instruction. */ if (src & SLJIT_IMM) { if (FAST_IS_REG(dst)) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, MOV_r_i32 + reg_map[dst], srcw); #else inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, 0); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; #endif } inst = emit_x86_instruction(compiler, 1 | EX86_HALF_ARG | EX86_NO_REXW | EX86_PREF_66, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; } dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; if ((dst & SLJIT_MEM) && FAST_IS_REG(src)) dst_r = src; else { inst = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = sign ? MOVSX_r_rm16 : MOVZX_r_rm16; } if (dst & SLJIT_MEM) { inst = emit_x86_instruction(compiler, 1 | EX86_NO_REXW | EX86_PREF_66, dst_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; } return SLJIT_SUCCESS; } static sljit_si emit_unary(struct sljit_compiler *compiler, sljit_ub opcode, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_ub* inst; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= opcode; return SLJIT_SUCCESS; } if (dst == src && dstw == srcw) { /* Same input and output */ inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= opcode; return SLJIT_SUCCESS; } if (FAST_IS_REG(dst)) { EMIT_MOV(compiler, dst, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= opcode; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= opcode; EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } static sljit_si emit_not_with_flags(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_ub* inst; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= NOT_rm; inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst = OR_r_rm; return SLJIT_SUCCESS; } if (FAST_IS_REG(dst)) { EMIT_MOV(compiler, dst, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= NOT_rm; inst = emit_x86_instruction(compiler, 1, dst, 0, dst, 0); FAIL_IF(!inst); *inst = OR_r_rm; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= NOT_rm; inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst = OR_r_rm; EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } static sljit_si emit_clz(struct sljit_compiler *compiler, sljit_si op_flags, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_ub* inst; sljit_si dst_r; SLJIT_UNUSED_ARG(op_flags); if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) { /* Just set the zero flag. */ EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= NOT_rm; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 31, TMP_REG1, 0); #else inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, !(op_flags & SLJIT_INT_OP) ? 63 : 31, TMP_REG1, 0); #endif FAIL_IF(!inst); *inst |= SHR; return SLJIT_SUCCESS; } if (SLJIT_UNLIKELY(src & SLJIT_IMM)) { EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, srcw); src = TMP_REG1; srcw = 0; } inst = emit_x86_instruction(compiler, 2, TMP_REG1, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = BSR_r_rm; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (FAST_IS_REG(dst)) dst_r = dst; else { /* Find an unused temporary register. */ if ((dst & REG_MASK) != SLJIT_R0 && (dst & OFFS_REG_MASK) != TO_OFFS_REG(SLJIT_R0)) dst_r = SLJIT_R0; else if ((dst & REG_MASK) != SLJIT_R1 && (dst & OFFS_REG_MASK) != TO_OFFS_REG(SLJIT_R1)) dst_r = SLJIT_R1; else dst_r = SLJIT_R2; EMIT_MOV(compiler, dst, dstw, dst_r, 0); } EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, 32 + 31); #else dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2; compiler->mode32 = 0; EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, !(op_flags & SLJIT_INT_OP) ? 64 + 63 : 32 + 31); compiler->mode32 = op_flags & SLJIT_INT_OP; #endif if (cpu_has_cmov == -1) get_cpu_features(); if (cpu_has_cmov) { inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = CMOVNE_r_rm; } else { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) inst = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); *inst++ = JE_i8; *inst++ = 2; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_map[dst_r] << 3) | reg_map[TMP_REG1]; #else inst = (sljit_ub*)ensure_buf(compiler, 1 + 5); FAIL_IF(!inst); INC_SIZE(5); *inst++ = JE_i8; *inst++ = 3; *inst++ = REX_W | (reg_map[dst_r] >= 8 ? REX_R : 0) | (reg_map[TMP_REG1] >= 8 ? REX_B : 0); *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_lmap[dst_r] << 3) | reg_lmap[TMP_REG1]; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 31, dst_r, 0); #else inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, !(op_flags & SLJIT_INT_OP) ? 63 : 31, dst_r, 0); #endif FAIL_IF(!inst); *(inst + 1) |= XOR; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (dst & SLJIT_MEM) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw); FAIL_IF(!inst); *inst = XCHG_r_rm; } #else if (dst & SLJIT_MEM) EMIT_MOV(compiler, dst, dstw, TMP_REG2, 0); #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_ub* inst; sljit_si update = 0; sljit_si op_flags = GET_ALL_FLAGS(op); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) sljit_si dst_is_ereg = 0; sljit_si src_is_ereg = 0; #else # define src_is_ereg 0 #endif CHECK_ERROR(); check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src, srcw); CHECK_EXTRA_REGS(dst, dstw, dst_is_ereg = 1); CHECK_EXTRA_REGS(src, srcw, src_is_ereg = 1); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = op_flags & SLJIT_INT_OP; #endif op = GET_OPCODE(op); if (op >= SLJIT_MOV && op <= SLJIT_MOVU_P) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif if (op_flags & SLJIT_INT_OP) { if (FAST_IS_REG(src) && src == dst) { if (!TYPE_CAST_NEEDED(op)) return SLJIT_SUCCESS; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (op == SLJIT_MOV_SI && (src & SLJIT_MEM)) op = SLJIT_MOV_UI; if (op == SLJIT_MOVU_SI && (src & SLJIT_MEM)) op = SLJIT_MOVU_UI; if (op == SLJIT_MOV_UI && (src & SLJIT_IMM)) op = SLJIT_MOV_SI; if (op == SLJIT_MOVU_UI && (src & SLJIT_IMM)) op = SLJIT_MOVU_SI; #endif } SLJIT_COMPILE_ASSERT(SLJIT_MOV + 8 == SLJIT_MOVU, movu_offset); if (op >= SLJIT_MOVU) { update = 1; op -= 8; } if (src & SLJIT_IMM) { switch (op) { case SLJIT_MOV_UB: srcw = (sljit_ub)srcw; break; case SLJIT_MOV_SB: srcw = (sljit_sb)srcw; break; case SLJIT_MOV_UH: srcw = (sljit_uh)srcw; break; case SLJIT_MOV_SH: srcw = (sljit_sh)srcw; break; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) case SLJIT_MOV_UI: srcw = (sljit_ui)srcw; break; case SLJIT_MOV_SI: srcw = (sljit_si)srcw; break; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg)) return emit_mov(compiler, dst, dstw, src, srcw); #endif } if (SLJIT_UNLIKELY(update) && (src & SLJIT_MEM) && !src_is_ereg && (src & REG_MASK) && (srcw != 0 || (src & OFFS_REG_MASK) != 0)) { inst = emit_x86_instruction(compiler, 1, src & REG_MASK, 0, src, srcw); FAIL_IF(!inst); *inst = LEA_r_m; src &= SLJIT_MEM | 0xf; srcw = 0; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg) && (!(op == SLJIT_MOV || op == SLJIT_MOV_UI || op == SLJIT_MOV_SI || op == SLJIT_MOV_P) || (src & SLJIT_MEM))) { SLJIT_ASSERT(dst == SLJIT_MEM1(SLJIT_SP)); dst = TMP_REG1; } #endif switch (op) { case SLJIT_MOV: case SLJIT_MOV_P: #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) case SLJIT_MOV_UI: case SLJIT_MOV_SI: #endif FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw)); break; case SLJIT_MOV_UB: FAIL_IF(emit_mov_byte(compiler, 0, dst, dstw, src, srcw)); break; case SLJIT_MOV_SB: FAIL_IF(emit_mov_byte(compiler, 1, dst, dstw, src, srcw)); break; case SLJIT_MOV_UH: FAIL_IF(emit_mov_half(compiler, 0, dst, dstw, src, srcw)); break; case SLJIT_MOV_SH: FAIL_IF(emit_mov_half(compiler, 1, dst, dstw, src, srcw)); break; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) case SLJIT_MOV_UI: FAIL_IF(emit_mov_int(compiler, 0, dst, dstw, src, srcw)); break; case SLJIT_MOV_SI: FAIL_IF(emit_mov_int(compiler, 1, dst, dstw, src, srcw)); break; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg) && dst == TMP_REG1) return emit_mov(compiler, SLJIT_MEM1(SLJIT_SP), dstw, TMP_REG1, 0); #endif if (SLJIT_UNLIKELY(update) && (dst & SLJIT_MEM) && (dst & REG_MASK) && (dstw != 0 || (dst & OFFS_REG_MASK) != 0)) { inst = emit_x86_instruction(compiler, 1, dst & REG_MASK, 0, dst, dstw); FAIL_IF(!inst); *inst = LEA_r_m; } return SLJIT_SUCCESS; } if (SLJIT_UNLIKELY(GET_FLAGS(op_flags))) compiler->flags_saved = 0; switch (op) { case SLJIT_NOT: if (SLJIT_UNLIKELY(op_flags & SLJIT_SET_E)) return emit_not_with_flags(compiler, dst, dstw, src, srcw); return emit_unary(compiler, NOT_rm, dst, dstw, src, srcw); case SLJIT_NEG: if (SLJIT_UNLIKELY(op_flags & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); return emit_unary(compiler, NEG_rm, dst, dstw, src, srcw); case SLJIT_CLZ: if (SLJIT_UNLIKELY(op_flags & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); return emit_clz(compiler, op_flags, dst, dstw, src, srcw); } return SLJIT_SUCCESS; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) # undef src_is_ereg #endif } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) #define BINARY_IMM(op_imm, op_mr, immw, arg, argw) \ if (IS_HALFWORD(immw) || compiler->mode32) { \ inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \ FAIL_IF(!inst); \ *(inst + 1) |= (op_imm); \ } \ else { \ FAIL_IF(emit_load_imm64(compiler, TMP_REG2, immw)); \ inst = emit_x86_instruction(compiler, 1, TMP_REG2, 0, arg, argw); \ FAIL_IF(!inst); \ *inst = (op_mr); \ } #define BINARY_EAX_IMM(op_eax_imm, immw) \ FAIL_IF(emit_do_imm32(compiler, (!compiler->mode32) ? REX_W : 0, (op_eax_imm), immw)) #else #define BINARY_IMM(op_imm, op_mr, immw, arg, argw) \ inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \ FAIL_IF(!inst); \ *(inst + 1) |= (op_imm); #define BINARY_EAX_IMM(op_eax_imm, immw) \ FAIL_IF(emit_do_imm(compiler, (op_eax_imm), immw)) #endif static sljit_si emit_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { sljit_ub* inst; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0); } else { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } return SLJIT_SUCCESS; } if (dst == src1 && dstw == src1w) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src2w); } else { BINARY_IMM(op_imm, op_mr, src2w, dst, dstw); } } else if (FAST_IS_REG(dst)) { inst = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } else if (FAST_IS_REG(src2)) { /* Special exception for sljit_emit_op_flags. */ inst = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } else { EMIT_MOV(compiler, TMP_REG1, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } return SLJIT_SUCCESS; } /* Only for cumulative operations. */ if (dst == src2 && dstw == src2w) { if (src1 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_R0) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) { #else if ((dst == SLJIT_R0) && (src1w > 127 || src1w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src1w); } else { BINARY_IMM(op_imm, op_mr, src1w, dst, dstw); } } else if (FAST_IS_REG(dst)) { inst = emit_x86_instruction(compiler, 1, dst, dstw, src1, src1w); FAIL_IF(!inst); *inst = op_rm; } else if (FAST_IS_REG(src1)) { inst = emit_x86_instruction(compiler, 1, src1, src1w, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } else { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } return SLJIT_SUCCESS; } /* General version. */ if (FAST_IS_REG(dst)) { EMIT_MOV(compiler, dst, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, dst, 0); } else { inst = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } } else { /* This version requires less memory writing. */ EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0); } else { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); } return SLJIT_SUCCESS; } static sljit_si emit_non_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { sljit_ub* inst; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0); } else { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } return SLJIT_SUCCESS; } if (dst == src1 && dstw == src1w) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src2w); } else { BINARY_IMM(op_imm, op_mr, src2w, dst, dstw); } } else if (FAST_IS_REG(dst)) { inst = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } else if (FAST_IS_REG(src2)) { inst = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } else { EMIT_MOV(compiler, TMP_REG1, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } return SLJIT_SUCCESS; } /* General version. */ if (FAST_IS_REG(dst) && dst != src2) { EMIT_MOV(compiler, dst, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, dst, 0); } else { inst = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } } else { /* This version requires less memory writing. */ EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0); } else { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); } return SLJIT_SUCCESS; } static sljit_si emit_mul(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { sljit_ub* inst; sljit_si dst_r; dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; /* Register destination. */ if (dst_r == src1 && !(src2 & SLJIT_IMM)) { inst = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = IMUL_r_rm; } else if (dst_r == src2 && !(src1 & SLJIT_IMM)) { inst = emit_x86_instruction(compiler, 2, dst_r, 0, src1, src1w); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = IMUL_r_rm; } else if (src1 & SLJIT_IMM) { if (src2 & SLJIT_IMM) { EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, src2w); src2 = dst_r; src2w = 0; } if (src1w <= 127 && src1w >= -128) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!inst); *inst = IMUL_r_rm_i8; inst = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = (sljit_sb)src1w; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!inst); *inst = IMUL_r_rm_i32; inst = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); *(sljit_sw*)inst = src1w; } #else else if (IS_HALFWORD(src1w)) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!inst); *inst = IMUL_r_rm_i32; inst = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); *(sljit_si*)inst = (sljit_si)src1w; } else { EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, src1w); if (dst_r != src2) EMIT_MOV(compiler, dst_r, 0, src2, src2w); inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = IMUL_r_rm; } #endif } else if (src2 & SLJIT_IMM) { /* Note: src1 is NOT immediate. */ if (src2w <= 127 && src2w >= -128) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!inst); *inst = IMUL_r_rm_i8; inst = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = (sljit_sb)src2w; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!inst); *inst = IMUL_r_rm_i32; inst = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); *(sljit_sw*)inst = src2w; } #else else if (IS_HALFWORD(src2w)) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!inst); *inst = IMUL_r_rm_i32; inst = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); *(sljit_si*)inst = (sljit_si)src2w; } else { EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, src1w); if (dst_r != src1) EMIT_MOV(compiler, dst_r, 0, src1, src1w); inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = IMUL_r_rm; } #endif } else { /* Neither argument is immediate. */ if (ADDRESSING_DEPENDS_ON(src2, dst_r)) dst_r = TMP_REG1; EMIT_MOV(compiler, dst_r, 0, src1, src1w); inst = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = IMUL_r_rm; } if (dst_r == TMP_REG1) EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } static sljit_si emit_lea_binary(struct sljit_compiler *compiler, sljit_si keep_flags, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { sljit_ub* inst; sljit_si dst_r, done = 0; /* These cases better be left to handled by normal way. */ if (!keep_flags) { if (dst == src1 && dstw == src1w) return SLJIT_ERR_UNSUPPORTED; if (dst == src2 && dstw == src2w) return SLJIT_ERR_UNSUPPORTED; } dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; if (FAST_IS_REG(src1)) { if (FAST_IS_REG(src2)) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM2(src1, src2), 0); FAIL_IF(!inst); *inst = LEA_r_m; done = 1; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src2 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src2w))) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), (sljit_si)src2w); #else if (src2 & SLJIT_IMM) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), src2w); #endif FAIL_IF(!inst); *inst = LEA_r_m; done = 1; } } else if (FAST_IS_REG(src2)) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src1 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src1w))) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), (sljit_si)src1w); #else if (src1 & SLJIT_IMM) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), src1w); #endif FAIL_IF(!inst); *inst = LEA_r_m; done = 1; } } if (done) { if (dst_r == TMP_REG1) return emit_mov(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } return SLJIT_ERR_UNSUPPORTED; } static sljit_si emit_cmp_binary(struct sljit_compiler *compiler, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { sljit_ub* inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(CMP_EAX_i32, src2w); return SLJIT_SUCCESS; } if (FAST_IS_REG(src1)) { if (src2 & SLJIT_IMM) { BINARY_IMM(CMP, CMP_rm_r, src2w, src1, 0); } else { inst = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w); FAIL_IF(!inst); *inst = CMP_r_rm; } return SLJIT_SUCCESS; } if (FAST_IS_REG(src2) && !(src1 & SLJIT_IMM)) { inst = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w); FAIL_IF(!inst); *inst = CMP_rm_r; return SLJIT_SUCCESS; } if (src2 & SLJIT_IMM) { if (src1 & SLJIT_IMM) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); src1 = TMP_REG1; src1w = 0; } BINARY_IMM(CMP, CMP_rm_r, src2w, src1, src1w); } else { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = CMP_r_rm; } return SLJIT_SUCCESS; } static sljit_si emit_test_binary(struct sljit_compiler *compiler, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { sljit_ub* inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(TEST_EAX_i32, src2w); return SLJIT_SUCCESS; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src2 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) { #else if (src2 == SLJIT_R0 && (src1 & SLJIT_IMM) && (src1w > 127 || src1w < -128)) { #endif BINARY_EAX_IMM(TEST_EAX_i32, src1w); return SLJIT_SUCCESS; } if (FAST_IS_REG(src1)) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src2w) || compiler->mode32) { inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, 0); FAIL_IF(!inst); *inst = GROUP_F7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w)); inst = emit_x86_instruction(compiler, 1, TMP_REG2, 0, src1, 0); FAIL_IF(!inst); *inst = TEST_rm_r; } #else inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, 0); FAIL_IF(!inst); *inst = GROUP_F7; #endif } else { inst = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w); FAIL_IF(!inst); *inst = TEST_rm_r; } return SLJIT_SUCCESS; } if (FAST_IS_REG(src2)) { if (src1 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src1w) || compiler->mode32) { inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src1w, src2, 0); FAIL_IF(!inst); *inst = GROUP_F7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src1w)); inst = emit_x86_instruction(compiler, 1, TMP_REG2, 0, src2, 0); FAIL_IF(!inst); *inst = TEST_rm_r; } #else inst = emit_x86_instruction(compiler, 1, src1, src1w, src2, 0); FAIL_IF(!inst); *inst = GROUP_F7; #endif } else { inst = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w); FAIL_IF(!inst); *inst = TEST_rm_r; } return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src2w) || compiler->mode32) { inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REG1, 0); FAIL_IF(!inst); *inst = GROUP_F7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w)); inst = emit_x86_instruction(compiler, 1, TMP_REG2, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst = TEST_rm_r; } #else inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REG1, 0); FAIL_IF(!inst); *inst = GROUP_F7; #endif } else { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = TEST_rm_r; } return SLJIT_SUCCESS; } static sljit_si emit_shift(struct sljit_compiler *compiler, sljit_ub mode, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { sljit_ub* inst; if ((src2 & SLJIT_IMM) || (src2 == SLJIT_PREF_SHIFT_REG)) { if (dst == src1 && dstw == src1w) { inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, dstw); FAIL_IF(!inst); *inst |= mode; return SLJIT_SUCCESS; } if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; return SLJIT_SUCCESS; } if (dst == SLJIT_PREF_SHIFT_REG && src2 == SLJIT_PREF_SHIFT_REG) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); return SLJIT_SUCCESS; } if (FAST_IS_REG(dst)) { EMIT_MOV(compiler, dst, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, 0); FAIL_IF(!inst); *inst |= mode; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } if (dst == SLJIT_PREF_SHIFT_REG) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); } else if (FAST_IS_REG(dst) && dst != src2 && !ADDRESSING_DEPENDS_ON(src2, dst)) { if (src1 != dst) EMIT_MOV(compiler, dst, 0, src1, src1w); EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_PREF_SHIFT_REG, 0); EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, dst, 0); FAIL_IF(!inst); *inst |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); } else { /* This case is really difficult, since ecx itself may used for addressing, and we must ensure to work even in that case. */ EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_PREF_SHIFT_REG, 0); #else /* [esp+0] contains the flags. */ EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), sizeof(sljit_sw), SLJIT_PREF_SHIFT_REG, 0); #endif EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG2, 0); #else EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, SLJIT_MEM1(SLJIT_SP), sizeof(sljit_sw)); #endif EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); } return SLJIT_SUCCESS; } static sljit_si emit_shift_with_flags(struct sljit_compiler *compiler, sljit_ub mode, sljit_si set_flags, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { /* The CPU does not set flags if the shift count is 0. */ if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src2w & 0x3f) != 0 || (compiler->mode32 && (src2w & 0x1f) != 0)) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); #else if ((src2w & 0x1f) != 0) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); #endif if (!set_flags) return emit_mov(compiler, dst, dstw, src1, src1w); /* OR dst, src, 0 */ return emit_cum_binary(compiler, OR_r_rm, OR_rm_r, OR, OR_EAX_i32, dst, dstw, src1, src1w, SLJIT_IMM, 0); } if (!set_flags) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); if (!FAST_IS_REG(dst)) FAIL_IF(emit_cmp_binary(compiler, src1, src1w, SLJIT_IMM, 0)); FAIL_IF(emit_shift(compiler,mode, dst, dstw, src1, src1w, src2, src2w)); if (FAST_IS_REG(dst)) return emit_cmp_binary(compiler, dst, dstw, SLJIT_IMM, 0); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { CHECK_ERROR(); check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); CHECK_EXTRA_REGS(dst, dstw, (void)0); CHECK_EXTRA_REGS(src1, src1w, (void)0); CHECK_EXTRA_REGS(src2, src2w, (void)0); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = op & SLJIT_INT_OP; #endif if (GET_OPCODE(op) >= SLJIT_MUL) { if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); } switch (GET_OPCODE(op)) { case SLJIT_ADD: if (!GET_FLAGS(op)) { if (emit_lea_binary(compiler, op & SLJIT_KEEP_FLAGS, dst, dstw, src1, src1w, src2, src2w) != SLJIT_ERR_UNSUPPORTED) return compiler->error; } else compiler->flags_saved = 0; if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); return emit_cum_binary(compiler, ADD_r_rm, ADD_rm_r, ADD, ADD_EAX_i32, dst, dstw, src1, src1w, src2, src2w); case SLJIT_ADDC: if (SLJIT_UNLIKELY(compiler->flags_saved)) /* C flag must be restored. */ FAIL_IF(emit_restore_flags(compiler, 1)); else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS)) FAIL_IF(emit_save_flags(compiler)); if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; return emit_cum_binary(compiler, ADC_r_rm, ADC_rm_r, ADC, ADC_EAX_i32, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUB: if (!GET_FLAGS(op)) { if ((src2 & SLJIT_IMM) && emit_lea_binary(compiler, op & SLJIT_KEEP_FLAGS, dst, dstw, src1, src1w, SLJIT_IMM, -src2w) != SLJIT_ERR_UNSUPPORTED) return compiler->error; } else compiler->flags_saved = 0; if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); if (dst == SLJIT_UNUSED) return emit_cmp_binary(compiler, src1, src1w, src2, src2w); return emit_non_cum_binary(compiler, SUB_r_rm, SUB_rm_r, SUB, SUB_EAX_i32, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUBC: if (SLJIT_UNLIKELY(compiler->flags_saved)) /* C flag must be restored. */ FAIL_IF(emit_restore_flags(compiler, 1)); else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS)) FAIL_IF(emit_save_flags(compiler)); if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; return emit_non_cum_binary(compiler, SBB_r_rm, SBB_rm_r, SBB, SBB_EAX_i32, dst, dstw, src1, src1w, src2, src2w); case SLJIT_MUL: return emit_mul(compiler, dst, dstw, src1, src1w, src2, src2w); case SLJIT_AND: if (dst == SLJIT_UNUSED) return emit_test_binary(compiler, src1, src1w, src2, src2w); return emit_cum_binary(compiler, AND_r_rm, AND_rm_r, AND, AND_EAX_i32, dst, dstw, src1, src1w, src2, src2w); case SLJIT_OR: return emit_cum_binary(compiler, OR_r_rm, OR_rm_r, OR, OR_EAX_i32, dst, dstw, src1, src1w, src2, src2w); case SLJIT_XOR: return emit_cum_binary(compiler, XOR_r_rm, XOR_rm_r, XOR, XOR_EAX_i32, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SHL: return emit_shift_with_flags(compiler, SHL, GET_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); case SLJIT_LSHR: return emit_shift_with_flags(compiler, SHR, GET_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); case SLJIT_ASHR: return emit_shift_with_flags(compiler, SAR, GET_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg) { check_sljit_get_register_index(reg); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (reg >= SLJIT_R3 && reg <= SLJIT_R6) return -1; #endif return reg_map[reg]; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg) { check_sljit_get_float_register_index(reg); return reg; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler, void *instruction, sljit_si size) { sljit_ub *inst; CHECK_ERROR(); check_sljit_emit_op_custom(compiler, instruction, size); SLJIT_ASSERT(size > 0 && size < 16); inst = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); SLJIT_MEMMOVE(inst, instruction, size); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Floating point operators */ /* --------------------------------------------------------------------- */ /* Alignment + 2 * 16 bytes. */ static sljit_si sse2_data[3 + (4 + 4) * 2]; static sljit_si *sse2_buffer; static void init_compiler(void) { sse2_buffer = (sljit_si*)(((sljit_uw)sse2_data + 15) & ~0xf); /* Single precision constants. */ sse2_buffer[0] = 0x80000000; sse2_buffer[4] = 0x7fffffff; /* Double precision constants. */ sse2_buffer[8] = 0; sse2_buffer[9] = 0x80000000; sse2_buffer[12] = 0xffffffff; sse2_buffer[13] = 0x7fffffff; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void) { #ifdef SLJIT_IS_FPU_AVAILABLE return SLJIT_IS_FPU_AVAILABLE; #elif (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2) if (cpu_has_sse2 == -1) get_cpu_features(); return cpu_has_sse2; #else /* SLJIT_DETECT_SSE2 */ return 1; #endif /* SLJIT_DETECT_SSE2 */ } static sljit_si emit_sse2(struct sljit_compiler *compiler, sljit_ub opcode, sljit_si single, sljit_si xmm1, sljit_si xmm2, sljit_sw xmm2w) { sljit_ub *inst; inst = emit_x86_instruction(compiler, 2 | (single ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2, xmm1, 0, xmm2, xmm2w); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = opcode; return SLJIT_SUCCESS; } static sljit_si emit_sse2_logic(struct sljit_compiler *compiler, sljit_ub opcode, sljit_si pref66, sljit_si xmm1, sljit_si xmm2, sljit_sw xmm2w) { sljit_ub *inst; inst = emit_x86_instruction(compiler, 2 | (pref66 ? EX86_PREF_66 : 0) | EX86_SSE2, xmm1, 0, xmm2, xmm2w); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = opcode; return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_si emit_sse2_load(struct sljit_compiler *compiler, sljit_si single, sljit_si dst, sljit_si src, sljit_sw srcw) { return emit_sse2(compiler, MOVSD_x_xm, single, dst, src, srcw); } static SLJIT_INLINE sljit_si emit_sse2_store(struct sljit_compiler *compiler, sljit_si single, sljit_si dst, sljit_sw dstw, sljit_si src) { return emit_sse2(compiler, MOVSD_xm_x, single, src, dst, dstw); } static SLJIT_INLINE sljit_si sljit_emit_fop1_convw_fromd(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_si dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1; sljit_ub *inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (GET_OPCODE(op) == SLJIT_CONVW_FROMD) compiler->mode32 = 0; #endif inst = emit_x86_instruction(compiler, 2 | ((op & SLJIT_SINGLE_OP) ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2_OP2, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = CVTTSD2SI_r_xm; if (dst_r == TMP_REG1 && dst != SLJIT_UNUSED) return emit_mov(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_si sljit_emit_fop1_convd_fromw(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_si dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG; sljit_ub *inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (GET_OPCODE(op) == SLJIT_CONVD_FROMW) compiler->mode32 = 0; #endif if (src & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (GET_OPCODE(op) == SLJIT_CONVD_FROMI) srcw = (sljit_si)srcw; #endif EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); src = TMP_REG1; srcw = 0; } inst = emit_x86_instruction(compiler, 2 | ((op & SLJIT_SINGLE_OP) ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2_OP1, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = CVTSI2SD_x_rm; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif if (dst_r == TMP_FREG) return emit_sse2_store(compiler, op & SLJIT_SINGLE_OP, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_si sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_si op, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { compiler->flags_saved = 0; if (!FAST_IS_REG(src1)) { FAIL_IF(emit_sse2_load(compiler, op & SLJIT_SINGLE_OP, TMP_FREG, src1, src1w)); src1 = TMP_FREG; } return emit_sse2_logic(compiler, UCOMISD_x_xm, !(op & SLJIT_SINGLE_OP), src1, src2, src2w); } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_si dst_r; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif CHECK_ERROR(); SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw); if (GET_OPCODE(op) == SLJIT_MOVD) { if (FAST_IS_REG(dst)) return emit_sse2_load(compiler, op & SLJIT_SINGLE_OP, dst, src, srcw); if (FAST_IS_REG(src)) return emit_sse2_store(compiler, op & SLJIT_SINGLE_OP, dst, dstw, src); FAIL_IF(emit_sse2_load(compiler, op & SLJIT_SINGLE_OP, TMP_FREG, src, srcw)); return emit_sse2_store(compiler, op & SLJIT_SINGLE_OP, dst, dstw, TMP_FREG); } if (GET_OPCODE(op) == SLJIT_CONVD_FROMS) { dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG; if (FAST_IS_REG(src)) { /* We overwrite the high bits of source. From SLJIT point of view, this is not an issue. Note: In SSE3, we could also use MOVDDUP and MOVSLDUP. */ FAIL_IF(emit_sse2_logic(compiler, UNPCKLPD_x_xm, op & SLJIT_SINGLE_OP, src, src, 0)); } else { FAIL_IF(emit_sse2_load(compiler, !(op & SLJIT_SINGLE_OP), TMP_FREG, src, srcw)); src = TMP_FREG; } FAIL_IF(emit_sse2_logic(compiler, CVTPD2PS_x_xm, op & SLJIT_SINGLE_OP, dst_r, src, 0)); if (dst_r == TMP_FREG) return emit_sse2_store(compiler, op & SLJIT_SINGLE_OP, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } if (SLOW_IS_REG(dst)) { dst_r = dst; if (dst != src) FAIL_IF(emit_sse2_load(compiler, op & SLJIT_SINGLE_OP, dst_r, src, srcw)); } else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, op & SLJIT_SINGLE_OP, dst_r, src, srcw)); } switch (GET_OPCODE(op)) { case SLJIT_NEGD: FAIL_IF(emit_sse2_logic(compiler, XORPD_x_xm, 1, dst_r, SLJIT_MEM0(), (sljit_sw)(op & SLJIT_SINGLE_OP ? sse2_buffer : sse2_buffer + 8))); break; case SLJIT_ABSD: FAIL_IF(emit_sse2_logic(compiler, ANDPD_x_xm, 1, dst_r, SLJIT_MEM0(), (sljit_sw)(op & SLJIT_SINGLE_OP ? sse2_buffer + 4 : sse2_buffer + 12))); break; } if (dst_r == TMP_FREG) return emit_sse2_store(compiler, op & SLJIT_SINGLE_OP, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w) { sljit_si dst_r; CHECK_ERROR(); check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif if (FAST_IS_REG(dst)) { dst_r = dst; if (dst == src1) ; /* Do nothing here. */ else if (dst == src2 && (op == SLJIT_ADDD || op == SLJIT_MULD)) { /* Swap arguments. */ src2 = src1; src2w = src1w; } else if (dst != src2) FAIL_IF(emit_sse2_load(compiler, op & SLJIT_SINGLE_OP, dst_r, src1, src1w)); else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, op & SLJIT_SINGLE_OP, TMP_FREG, src1, src1w)); } } else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, op & SLJIT_SINGLE_OP, TMP_FREG, src1, src1w)); } switch (GET_OPCODE(op)) { case SLJIT_ADDD: FAIL_IF(emit_sse2(compiler, ADDSD_x_xm, op & SLJIT_SINGLE_OP, dst_r, src2, src2w)); break; case SLJIT_SUBD: FAIL_IF(emit_sse2(compiler, SUBSD_x_xm, op & SLJIT_SINGLE_OP, dst_r, src2, src2w)); break; case SLJIT_MULD: FAIL_IF(emit_sse2(compiler, MULSD_x_xm, op & SLJIT_SINGLE_OP, dst_r, src2, src2w)); break; case SLJIT_DIVD: FAIL_IF(emit_sse2(compiler, DIVSD_x_xm, op & SLJIT_SINGLE_OP, dst_r, src2, src2w)); break; } if (dst_r == TMP_FREG) return emit_sse2_store(compiler, op & SLJIT_SINGLE_OP, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Conditional instructions */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) { sljit_ub *inst; struct sljit_label *label; CHECK_ERROR_PTR(); check_sljit_emit_label(compiler); /* We should restore the flags before the label, since other taken jumps has their own flags as well. */ if (SLJIT_UNLIKELY(compiler->flags_saved)) PTR_FAIL_IF(emit_restore_flags(compiler, 0)); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); inst = (sljit_ub*)ensure_buf(compiler, 2); PTR_FAIL_IF(!inst); *inst++ = 0; *inst++ = 0; return label; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type) { sljit_ub *inst; struct sljit_jump *jump; CHECK_ERROR_PTR(); check_sljit_emit_jump(compiler, type); if (SLJIT_UNLIKELY(compiler->flags_saved)) { if ((type & 0xff) <= SLJIT_JUMP) PTR_FAIL_IF(emit_restore_flags(compiler, 0)); compiler->flags_saved = 0; } jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF_NULL(jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; if (type >= SLJIT_CALL1) PTR_FAIL_IF(call_with_args(compiler, type)); /* Worst case size. */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) compiler->size += (type >= SLJIT_JUMP) ? 5 : 6; #else compiler->size += (type >= SLJIT_JUMP) ? (10 + 3) : (2 + 10 + 3); #endif inst = (sljit_ub*)ensure_buf(compiler, 2); PTR_FAIL_IF_NULL(inst); *inst++ = 0; *inst++ = type + 4; return jump; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw) { sljit_ub *inst; struct sljit_jump *jump; CHECK_ERROR(); check_sljit_emit_ijump(compiler, type, src, srcw); ADJUST_LOCAL_OFFSET(src, srcw); CHECK_EXTRA_REGS(src, srcw, (void)0); if (SLJIT_UNLIKELY(compiler->flags_saved)) { if (type <= SLJIT_JUMP) FAIL_IF(emit_restore_flags(compiler, 0)); compiler->flags_saved = 0; } if (type >= SLJIT_CALL1) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) #if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) if (src == SLJIT_R2) { EMIT_MOV(compiler, TMP_REG1, 0, src, 0); src = TMP_REG1; } if (src == SLJIT_MEM1(SLJIT_SP) && type >= SLJIT_CALL3) srcw += sizeof(sljit_sw); #endif #endif #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) && defined(_WIN64) if (src == SLJIT_R2) { EMIT_MOV(compiler, TMP_REG1, 0, src, 0); src = TMP_REG1; } #endif FAIL_IF(call_with_args(compiler, type)); } if (src == SLJIT_IMM) { jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF_NULL(jump); set_jump(jump, compiler, JUMP_ADDR); jump->u.target = srcw; /* Worst case size. */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) compiler->size += 5; #else compiler->size += 10 + 3; #endif inst = (sljit_ub*)ensure_buf(compiler, 2); FAIL_IF_NULL(inst); *inst++ = 0; *inst++ = type + 4; } else { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) /* REX_W is not necessary (src is not immediate). */ compiler->mode32 = 1; #endif inst = emit_x86_instruction(compiler, 1, 0, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_FF; *inst |= (type >= SLJIT_FAST_CALL) ? CALL_rm : JMP_rm; } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw, sljit_si type) { sljit_ub *inst; sljit_ub cond_set = 0; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) sljit_si reg; #else /* CHECK_EXTRA_REGS migh overwrite these values. */ sljit_si dst_save = dst; sljit_sw dstw_save = dstw; #endif CHECK_ERROR(); check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type); if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; ADJUST_LOCAL_OFFSET(dst, dstw); CHECK_EXTRA_REGS(dst, dstw, (void)0); if (SLJIT_UNLIKELY(compiler->flags_saved)) FAIL_IF(emit_restore_flags(compiler, op & SLJIT_KEEP_FLAGS)); /* setcc = jcc + 0x10. */ cond_set = get_jump_code(type) + 0x10; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (GET_OPCODE(op) == SLJIT_OR && !GET_ALL_FLAGS(op) && FAST_IS_REG(dst) && dst == src) { inst = (sljit_ub*)ensure_buf(compiler, 1 + 4 + 3); FAIL_IF(!inst); INC_SIZE(4 + 3); /* Set low register to conditional flag. */ *inst++ = (reg_map[TMP_REG1] <= 7) ? REX : REX_B; *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | reg_lmap[TMP_REG1]; *inst++ = REX | (reg_map[TMP_REG1] <= 7 ? 0 : REX_R) | (reg_map[dst] <= 7 ? 0 : REX_B); *inst++ = OR_rm8_r8; *inst++ = MOD_REG | (reg_lmap[TMP_REG1] << 3) | reg_lmap[dst]; return SLJIT_SUCCESS; } reg = (op == SLJIT_MOV && FAST_IS_REG(dst)) ? dst : TMP_REG1; inst = (sljit_ub*)ensure_buf(compiler, 1 + 4 + 4); FAIL_IF(!inst); INC_SIZE(4 + 4); /* Set low register to conditional flag. */ *inst++ = (reg_map[reg] <= 7) ? REX : REX_B; *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | reg_lmap[reg]; *inst++ = REX_W | (reg_map[reg] <= 7 ? 0 : (REX_B | REX_R)); *inst++ = GROUP_0F; *inst++ = MOVZX_r_rm8; *inst = MOD_REG | (reg_lmap[reg] << 3) | reg_lmap[reg]; if (reg != TMP_REG1) return SLJIT_SUCCESS; if (GET_OPCODE(op) < SLJIT_ADD) { compiler->mode32 = GET_OPCODE(op) != SLJIT_MOV; return emit_mov(compiler, dst, dstw, TMP_REG1, 0); } #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, op, dst, dstw, dst, dstw, TMP_REG1, 0); #else /* SLJIT_CONFIG_X86_64 */ if (GET_OPCODE(op) < SLJIT_ADD && FAST_IS_REG(dst)) { if (reg_map[dst] <= 4) { /* Low byte is accessible. */ inst = (sljit_ub*)ensure_buf(compiler, 1 + 3 + 3); FAIL_IF(!inst); INC_SIZE(3 + 3); /* Set low byte to conditional flag. */ *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | reg_map[dst]; *inst++ = GROUP_0F; *inst++ = MOVZX_r_rm8; *inst = MOD_REG | (reg_map[dst] << 3) | reg_map[dst]; return SLJIT_SUCCESS; } /* Low byte is not accessible. */ if (cpu_has_cmov == -1) get_cpu_features(); if (cpu_has_cmov) { EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, 1); /* a xor reg, reg operation would overwrite the flags. */ EMIT_MOV(compiler, dst, 0, SLJIT_IMM, 0); inst = (sljit_ub*)ensure_buf(compiler, 1 + 3); FAIL_IF(!inst); INC_SIZE(3); *inst++ = GROUP_0F; /* cmovcc = setcc - 0x50. */ *inst++ = cond_set - 0x50; *inst++ = MOD_REG | (reg_map[dst] << 3) | reg_map[TMP_REG1]; return SLJIT_SUCCESS; } inst = (sljit_ub*)ensure_buf(compiler, 1 + 1 + 3 + 3 + 1); FAIL_IF(!inst); INC_SIZE(1 + 3 + 3 + 1); *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; /* Set al to conditional flag. */ *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | 0 /* eax */; *inst++ = GROUP_0F; *inst++ = MOVZX_r_rm8; *inst++ = MOD_REG | (reg_map[dst] << 3) | 0 /* eax */; *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; return SLJIT_SUCCESS; } if (GET_OPCODE(op) == SLJIT_OR && !GET_ALL_FLAGS(op) && FAST_IS_REG(dst) && dst == src && reg_map[dst] <= 4) { SLJIT_COMPILE_ASSERT(reg_map[SLJIT_R0] == 0, scratch_reg1_must_be_eax); if (dst != SLJIT_R0) { inst = (sljit_ub*)ensure_buf(compiler, 1 + 1 + 3 + 2 + 1); FAIL_IF(!inst); INC_SIZE(1 + 3 + 2 + 1); /* Set low register to conditional flag. */ *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | 0 /* eax */; *inst++ = OR_rm8_r8; *inst++ = MOD_REG | (0 /* eax */ << 3) | reg_map[dst]; *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; } else { inst = (sljit_ub*)ensure_buf(compiler, 1 + 2 + 3 + 2 + 2); FAIL_IF(!inst); INC_SIZE(2 + 3 + 2 + 2); /* Set low register to conditional flag. */ *inst++ = XCHG_r_rm; *inst++ = MOD_REG | (1 /* ecx */ << 3) | reg_map[TMP_REG1]; *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | 1 /* ecx */; *inst++ = OR_rm8_r8; *inst++ = MOD_REG | (1 /* ecx */ << 3) | 0 /* eax */; *inst++ = XCHG_r_rm; *inst++ = MOD_REG | (1 /* ecx */ << 3) | reg_map[TMP_REG1]; } return SLJIT_SUCCESS; } /* Set TMP_REG1 to the bit. */ inst = (sljit_ub*)ensure_buf(compiler, 1 + 1 + 3 + 3 + 1); FAIL_IF(!inst); INC_SIZE(1 + 3 + 3 + 1); *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; /* Set al to conditional flag. */ *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | 0 /* eax */; *inst++ = GROUP_0F; *inst++ = MOVZX_r_rm8; *inst++ = MOD_REG | (0 << 3) /* eax */ | 0 /* eax */; *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; if (GET_OPCODE(op) < SLJIT_ADD) return emit_mov(compiler, dst, dstw, TMP_REG1, 0); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, op, dst_save, dstw_save, dst_save, dstw_save, TMP_REG1, 0); #endif /* SLJIT_CONFIG_X86_64 */ } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset) { CHECK_ERROR(); check_sljit_get_local_base(compiler, dst, dstw, offset); ADJUST_LOCAL_OFFSET(dst, dstw); CHECK_EXTRA_REGS(dst, dstw, (void)0); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif ADJUST_LOCAL_OFFSET(SLJIT_MEM1(SLJIT_SP), offset); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (NOT_HALFWORD(offset)) { FAIL_IF(emit_load_imm64(compiler, TMP_REG1, offset)); #if (defined SLJIT_DEBUG && SLJIT_DEBUG) SLJIT_ASSERT(emit_lea_binary(compiler, SLJIT_KEEP_FLAGS, dst, dstw, SLJIT_SP, 0, TMP_REG1, 0) != SLJIT_ERR_UNSUPPORTED); return compiler->error; #else return emit_lea_binary(compiler, SLJIT_KEEP_FLAGS, dst, dstw, SLJIT_SP, 0, TMP_REG1, 0); #endif } #endif if (offset != 0) return emit_lea_binary(compiler, SLJIT_KEEP_FLAGS, dst, dstw, SLJIT_SP, 0, SLJIT_IMM, offset); return emit_mov(compiler, dst, dstw, SLJIT_SP, 0); } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value) { sljit_ub *inst; struct sljit_const *const_; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) sljit_si reg; #endif CHECK_ERROR_PTR(); check_sljit_emit_const(compiler, dst, dstw, init_value); ADJUST_LOCAL_OFFSET(dst, dstw); CHECK_EXTRA_REGS(dst, dstw, (void)0); const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); set_const(const_, compiler); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; reg = SLOW_IS_REG(dst) ? dst : TMP_REG1; if (emit_load_imm64(compiler, reg, init_value)) return NULL; #else if (dst == SLJIT_UNUSED) dst = TMP_REG1; if (emit_mov(compiler, dst, dstw, SLJIT_IMM, init_value)) return NULL; #endif inst = (sljit_ub*)ensure_buf(compiler, 2); PTR_FAIL_IF(!inst); *inst++ = 0; *inst++ = 1; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (dst & SLJIT_MEM) if (emit_mov(compiler, dst, dstw, TMP_REG1, 0)) return NULL; #endif return const_; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *(sljit_sw*)addr = new_addr - (addr + 4); #else *(sljit_uw*)addr = new_addr; #endif } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant) { *(sljit_sw*)addr = new_constant; }