/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Simplify.h" #undef SkASSERT #define SkASSERT(cond) while (!(cond)) { sk_throw(); } // FIXME: remove once debugging is complete #if 01 // set to 1 for no debugging whatsoever //const bool gRunTestsInOneThread = false; #define DEBUG_ACTIVE_LESS_THAN 0 #define DEBUG_ADD 0 #define DEBUG_ADD_BOTTOM_TS 0 #define DEBUG_ADD_INTERSECTING_TS 0 #define DEBUG_ADJUST_COINCIDENT 0 #define DEBUG_ASSEMBLE 0 #define DEBUG_BOTTOM 0 #define DEBUG_BRIDGE 0 #define DEBUG_DUMP 0 #define DEBUG_SORT_HORIZONTAL 0 #define DEBUG_OUT 0 #define DEBUG_OUT_LESS_THAN 0 #define DEBUG_SPLIT 0 #define DEBUG_STITCH_EDGE 0 #define DEBUG_TRIM_LINE 0 #else //const bool gRunTestsInOneThread = true; #define DEBUG_ACTIVE_LESS_THAN 0 #define DEBUG_ADD 01 #define DEBUG_ADD_BOTTOM_TS 0 #define DEBUG_ADD_INTERSECTING_TS 0 #define DEBUG_ADJUST_COINCIDENT 1 #define DEBUG_ASSEMBLE 1 #define DEBUG_BOTTOM 0 #define DEBUG_BRIDGE 1 #define DEBUG_DUMP 1 #define DEBUG_SORT_HORIZONTAL 01 #define DEBUG_OUT 01 #define DEBUG_OUT_LESS_THAN 0 #define DEBUG_SPLIT 1 #define DEBUG_STITCH_EDGE 1 #define DEBUG_TRIM_LINE 1 #endif #if DEBUG_ASSEMBLE || DEBUG_BRIDGE static const char* kLVerbStr[] = {"", "line", "quad", "cubic"}; #endif #if DEBUG_STITCH_EDGE static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"}; #endif static int LineIntersect(const SkPoint a[2], const SkPoint b[2], Intersections& intersections) { const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; return intersect(aLine, bLine, intersections); } static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2], Intersections& intersections) { const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; intersect(aQuad, bLine, intersections); return intersections.fUsed; } static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3], Intersections& intersections) { const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; return intersect(aCubic, bLine, intersections); } static int QuadIntersect(const SkPoint a[3], const SkPoint b[3], Intersections& intersections) { const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}}; intersect2(aQuad, bQuad, intersections); return intersections.fUsed; } static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], Intersections& intersections) { const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}, {b[3].fX, b[3].fY}}; intersect(aCubic, bCubic, intersections); return intersections.fUsed; } static int LineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, SkScalar y, double aRange[2]) { const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; return horizontalLineIntersect(aLine, left, right, y, aRange); } static int QuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, SkScalar y, double aRange[3]) { const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; return horizontalIntersect(aQuad, left, right, y, aRange); } static int CubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, SkScalar y, double aRange[4]) { const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; return horizontalIntersect(aCubic, left, right, y, aRange); } static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) { const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; double x, y; xy_at_t(line, t, x, y); out->fX = SkDoubleToScalar(x); out->fY = SkDoubleToScalar(y); } static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) { const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; double x, y; xy_at_t(quad, t, x, y); out->fX = SkDoubleToScalar(x); out->fY = SkDoubleToScalar(y); } static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) { const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; double x, y; xy_at_t(cubic, t, x, y); out->fX = SkDoubleToScalar(x); out->fY = SkDoubleToScalar(y); } static SkScalar LineYAtT(const SkPoint a[2], double t) { const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; double y; xy_at_t(aLine, t, *(double*) 0, y); return SkDoubleToScalar(y); } static SkScalar QuadYAtT(const SkPoint a[3], double t) { const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; double y; xy_at_t(quad, t, *(double*) 0, y); return SkDoubleToScalar(y); } static SkScalar CubicYAtT(const SkPoint a[4], double t) { const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; double y; xy_at_t(cubic, t, *(double*) 0, y); return SkDoubleToScalar(y); } static void LineSubDivide(const SkPoint a[2], double startT, double endT, SkPoint sub[2]) { const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; _Line dst; sub_divide(aLine, startT, endT, dst); sub[0].fX = SkDoubleToScalar(dst[0].x); sub[0].fY = SkDoubleToScalar(dst[0].y); sub[1].fX = SkDoubleToScalar(dst[1].x); sub[1].fY = SkDoubleToScalar(dst[1].y); } static void QuadSubDivide(const SkPoint a[3], double startT, double endT, SkPoint sub[3]) { const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; Quadratic dst; sub_divide(aQuad, startT, endT, dst); sub[0].fX = SkDoubleToScalar(dst[0].x); sub[0].fY = SkDoubleToScalar(dst[0].y); sub[1].fX = SkDoubleToScalar(dst[1].x); sub[1].fY = SkDoubleToScalar(dst[1].y); sub[2].fX = SkDoubleToScalar(dst[2].x); sub[2].fY = SkDoubleToScalar(dst[2].y); } static void CubicSubDivide(const SkPoint a[4], double startT, double endT, SkPoint sub[4]) { const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; Cubic dst; sub_divide(aCubic, startT, endT, dst); sub[0].fX = SkDoubleToScalar(dst[0].x); sub[0].fY = SkDoubleToScalar(dst[0].y); sub[1].fX = SkDoubleToScalar(dst[1].x); sub[1].fY = SkDoubleToScalar(dst[1].y); sub[2].fX = SkDoubleToScalar(dst[2].x); sub[2].fY = SkDoubleToScalar(dst[2].y); sub[3].fX = SkDoubleToScalar(dst[3].x); sub[3].fY = SkDoubleToScalar(dst[3].y); } static void QuadSubBounds(const SkPoint a[3], double startT, double endT, SkRect& bounds) { SkPoint dst[3]; QuadSubDivide(a, startT, endT, dst); bounds.fLeft = bounds.fRight = dst[0].fX; bounds.fTop = bounds.fBottom = dst[0].fY; for (int index = 1; index < 3; ++index) { bounds.growToInclude(dst[index].fX, dst[index].fY); } } static void CubicSubBounds(const SkPoint a[4], double startT, double endT, SkRect& bounds) { SkPoint dst[4]; CubicSubDivide(a, startT, endT, dst); bounds.fLeft = bounds.fRight = dst[0].fX; bounds.fTop = bounds.fBottom = dst[0].fY; for (int index = 1; index < 4; ++index) { bounds.growToInclude(dst[index].fX, dst[index].fY); } } static SkPath::Verb QuadReduceOrder(SkPoint a[4]) { const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; Quadratic dst; int order = reduceOrder(aQuad, dst, kReduceOrder_TreatAsFill); for (int index = 0; index < order; ++index) { a[index].fX = SkDoubleToScalar(dst[index].x); a[index].fY = SkDoubleToScalar(dst[index].y); } if (order == 1) { // FIXME: allow returning points, caller should discard a[1] = a[0]; return (SkPath::Verb) order; } return (SkPath::Verb) (order - 1); } static SkPath::Verb CubicReduceOrder(SkPoint a[4]) { const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; Cubic dst; int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); for (int index = 0; index < order; ++index) { a[index].fX = SkDoubleToScalar(dst[index].x); a[index].fY = SkDoubleToScalar(dst[index].y); } if (order == 1) { // FIXME: allow returning points, caller should discard a[1] = a[0]; return (SkPath::Verb) order; } return (SkPath::Verb) (order - 1); } static bool IsCoincident(const SkPoint a[2], const SkPoint& above, const SkPoint& below) { const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}}; return implicit_matches_ulps(aLine, bLine, 32); } /* list of edges bounds for edge sort active T if a contour's bounds is outside of the active area, no need to create edges */ /* given one or more paths, find the bounds of each contour, select the active contours for each active contour, compute a set of edges each edge corresponds to one or more lines and curves leave edges unbroken as long as possible when breaking edges, compute the t at the break but leave the control points alone */ void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray) { SkPath::Iter iter(path, false); SkPoint pts[4]; SkPath::Verb verb; SkRect bounds; bounds.setEmpty(); int count = 0; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: if (!bounds.isEmpty()) { *boundsArray.append() = bounds; } bounds.set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY); count = 0; break; case SkPath::kLine_Verb: count = 1; break; case SkPath::kQuad_Verb: count = 2; break; case SkPath::kCubic_Verb: count = 3; break; case SkPath::kClose_Verb: count = 0; break; default: SkDEBUGFAIL("bad verb"); return; } for (int i = 1; i <= count; ++i) { bounds.growToInclude(pts[i].fX, pts[i].fY); } } } static bool extendLine(const SkPoint line[2], const SkPoint& add) { // FIXME: allow this to extend lines that have slopes that are nearly equal SkScalar dx1 = line[1].fX - line[0].fX; SkScalar dy1 = line[1].fY - line[0].fY; SkScalar dx2 = add.fX - line[0].fX; SkScalar dy2 = add.fY - line[0].fY; return dx1 * dy2 == dx2 * dy1; } // OPTIMIZATION: this should point to a list of input data rather than duplicating // the line data here. This would reduce the need to assemble the results. struct OutEdge { bool operator<(const OutEdge& rh) const { const SkPoint& first = fPts[0]; const SkPoint& rhFirst = rh.fPts[0]; return first.fY == rhFirst.fY ? first.fX < rhFirst.fX : first.fY < rhFirst.fY; } SkPoint fPts[4]; int fID; // id of edge generating data uint8_t fVerb; // FIXME: not read from everywhere bool fCloseCall; // edge is trimmable if not originally coincident }; class OutEdgeBuilder { public: OutEdgeBuilder(bool fill) : fFill(fill) { } void addCurve(const SkPoint line[4], SkPath::Verb verb, int id, bool closeCall) { OutEdge& newEdge = fEdges.push_back(); memcpy(newEdge.fPts, line, (verb + 1) * sizeof(SkPoint)); newEdge.fVerb = verb; newEdge.fID = id; newEdge.fCloseCall = closeCall; } bool trimLine(SkScalar y, int id) { size_t count = fEdges.count(); while (count-- != 0) { OutEdge& edge = fEdges[count]; if (edge.fID != id) { continue; } if (edge.fCloseCall) { return false; } SkASSERT(edge.fPts[0].fY <= y); if (edge.fPts[1].fY <= y) { continue; } edge.fPts[1].fX = edge.fPts[0].fX + (y - edge.fPts[0].fY) * (edge.fPts[1].fX - edge.fPts[0].fX) / (edge.fPts[1].fY - edge.fPts[0].fY); edge.fPts[1].fY = y; #if DEBUG_TRIM_LINE SkDebugf("%s edge=%d %1.9g,%1.9g\n", __FUNCTION__, id, edge.fPts[1].fX, y); #endif return true; } return false; } void assemble(SkPath& simple) { size_t listCount = fEdges.count(); if (listCount == 0) { return; } do { size_t listIndex = 0; int advance = 1; while (listIndex < listCount && fTops[listIndex] == 0) { ++listIndex; } if (listIndex >= listCount) { break; } int closeEdgeIndex = -listIndex - 1; // the curve is deferred and not added right away because the // following edge may extend the first curve. SkPoint firstPt, lastCurve[4]; uint8_t lastVerb; #if DEBUG_ASSEMBLE int firstIndex, lastIndex; const int tab = 8; #endif bool doMove = true; int edgeIndex; do { SkPoint* ptArray = fEdges[listIndex].fPts; uint8_t verb = fEdges[listIndex].fVerb; SkPoint* curve[4]; if (advance < 0) { curve[0] = &ptArray[verb]; if (verb == SkPath::kCubic_Verb) { curve[1] = &ptArray[2]; curve[2] = &ptArray[1]; } curve[verb] = &ptArray[0]; } else { curve[0] = &ptArray[0]; if (verb == SkPath::kCubic_Verb) { curve[1] = &ptArray[1]; curve[2] = &ptArray[2]; } curve[verb] = &ptArray[verb]; } if (verb == SkPath::kQuad_Verb) { curve[1] = &ptArray[1]; } if (doMove) { firstPt = *curve[0]; simple.moveTo(curve[0]->fX, curve[0]->fY); #if DEBUG_ASSEMBLE SkDebugf("%s %d moveTo (%g,%g)\n", __FUNCTION__, listIndex + 1, curve[0]->fX, curve[0]->fY); firstIndex = listIndex; #endif for (int index = 0; index <= verb; ++index) { lastCurve[index] = *curve[index]; } doMove = false; } else { bool gap = lastCurve[lastVerb] != *curve[0]; if (gap || lastVerb != SkPath::kLine_Verb) { // output the accumulated curve before the gap // FIXME: see comment in bridge -- this probably // conceals errors SkASSERT(fFill && UlpsDiff(lastCurve[lastVerb].fY, curve[0]->fY) <= 10); switch (lastVerb) { case SkPath::kLine_Verb: simple.lineTo(lastCurve[1].fX, lastCurve[1].fY); break; case SkPath::kQuad_Verb: simple.quadTo(lastCurve[1].fX, lastCurve[1].fY, lastCurve[2].fX, lastCurve[2].fY); break; case SkPath::kCubic_Verb: simple.cubicTo(lastCurve[1].fX, lastCurve[1].fY, lastCurve[2].fX, lastCurve[2].fY, lastCurve[3].fX, lastCurve[3].fY); break; } #if DEBUG_ASSEMBLE SkDebugf("%*s %d %sTo (%g,%g)\n", tab, "", lastIndex + 1, kLVerbStr[lastVerb], lastCurve[lastVerb].fX, lastCurve[lastVerb].fY); #endif } int firstCopy = 1; if (gap || (lastVerb == SkPath::kLine_Verb && (verb != SkPath::kLine_Verb || !extendLine(lastCurve, *curve[verb])))) { // FIXME: see comment in bridge -- this probably // conceals errors SkASSERT(lastCurve[lastVerb] == *curve[0] || (fFill && UlpsDiff(lastCurve[lastVerb].fY, curve[0]->fY) <= 10)); simple.lineTo(curve[0]->fX, curve[0]->fY); #if DEBUG_ASSEMBLE SkDebugf("%*s %d gap lineTo (%g,%g)\n", tab, "", lastIndex + 1, curve[0]->fX, curve[0]->fY); #endif firstCopy = 0; } else if (lastVerb != SkPath::kLine_Verb) { firstCopy = 0; } for (int index = firstCopy; index <= verb; ++index) { lastCurve[index] = *curve[index]; } } lastVerb = verb; #if DEBUG_ASSEMBLE lastIndex = listIndex; #endif if (advance < 0) { edgeIndex = fTops[listIndex]; fTops[listIndex] = 0; } else { edgeIndex = fBottoms[listIndex]; fBottoms[listIndex] = 0; } if (edgeIndex) { listIndex = abs(edgeIndex) - 1; if (edgeIndex < 0) { fTops[listIndex] = 0; } else { fBottoms[listIndex] = 0; } } if (edgeIndex == closeEdgeIndex || edgeIndex == 0) { switch (lastVerb) { case SkPath::kLine_Verb: simple.lineTo(lastCurve[1].fX, lastCurve[1].fY); break; case SkPath::kQuad_Verb: simple.quadTo(lastCurve[1].fX, lastCurve[1].fY, lastCurve[2].fX, lastCurve[2].fY); break; case SkPath::kCubic_Verb: simple.cubicTo(lastCurve[1].fX, lastCurve[1].fY, lastCurve[2].fX, lastCurve[2].fY, lastCurve[3].fX, lastCurve[3].fY); break; } #if DEBUG_ASSEMBLE SkDebugf("%*s %d %sTo last (%g, %g)\n", tab, "", lastIndex + 1, kLVerbStr[lastVerb], lastCurve[lastVerb].fX, lastCurve[lastVerb].fY); #endif if (lastCurve[lastVerb] != firstPt) { simple.lineTo(firstPt.fX, firstPt.fY); #if DEBUG_ASSEMBLE SkDebugf("%*s %d final line (%g, %g)\n", tab, "", firstIndex + 1, firstPt.fX, firstPt.fY); #endif } simple.close(); #if DEBUG_ASSEMBLE SkDebugf("%*s close\n", tab, ""); #endif break; } // if this and next edge go different directions #if DEBUG_ASSEMBLE SkDebugf("%*s advance=%d edgeIndex=%d flip=%s\n", tab, "", advance, edgeIndex, advance > 0 ^ edgeIndex < 0 ? "true" : "false"); #endif if (advance > 0 ^ edgeIndex < 0) { advance = -advance; } } while (edgeIndex); } while (true); } // sort points by y, then x // if x/y is identical, sort bottoms before tops // if identical and both tops/bottoms, sort by angle static bool lessThan(SkTArray<OutEdge>& edges, const int one, const int two) { const OutEdge& oneEdge = edges[abs(one) - 1]; int oneIndex = one < 0 ? 0 : oneEdge.fVerb; const SkPoint& startPt1 = oneEdge.fPts[oneIndex]; const OutEdge& twoEdge = edges[abs(two) - 1]; int twoIndex = two < 0 ? 0 : twoEdge.fVerb; const SkPoint& startPt2 = twoEdge.fPts[twoIndex]; if (startPt1.fY != startPt2.fY) { #if DEBUG_OUT_LESS_THAN SkDebugf("%s %d<%d (%g,%g) %s startPt1.fY < startPt2.fY\n", __FUNCTION__, one, two, startPt1.fY, startPt2.fY, startPt1.fY < startPt2.fY ? "true" : "false"); #endif return startPt1.fY < startPt2.fY; } if (startPt1.fX != startPt2.fX) { #if DEBUG_OUT_LESS_THAN SkDebugf("%s %d<%d (%g,%g) %s startPt1.fX < startPt2.fX\n", __FUNCTION__, one, two, startPt1.fX, startPt2.fX, startPt1.fX < startPt2.fX ? "true" : "false"); #endif return startPt1.fX < startPt2.fX; } const SkPoint& endPt1 = oneEdge.fPts[oneIndex ^ oneEdge.fVerb]; const SkPoint& endPt2 = twoEdge.fPts[twoIndex ^ twoEdge.fVerb]; SkScalar dy1 = startPt1.fY - endPt1.fY; SkScalar dy2 = startPt2.fY - endPt2.fY; SkScalar dy1y2 = dy1 * dy2; if (dy1y2 < 0) { // different signs #if DEBUG_OUT_LESS_THAN SkDebugf("%s %d<%d %s dy1 > 0\n", __FUNCTION__, one, two, dy1 > 0 ? "true" : "false"); #endif return dy1 > 0; // one < two if one goes up and two goes down } if (dy1y2 == 0) { #if DEBUG_OUT_LESS_THAN SkDebugf("%s %d<%d %s endPt1.fX < endPt2.fX\n", __FUNCTION__, one, two, endPt1.fX < endPt2.fX ? "true" : "false"); #endif return endPt1.fX < endPt2.fX; } SkScalar dx1y2 = (startPt1.fX - endPt1.fX) * dy2; SkScalar dx2y1 = (startPt2.fX - endPt2.fX) * dy1; #if DEBUG_OUT_LESS_THAN SkDebugf("%s %d<%d %s dy2 < 0 ^ dx1y2 < dx2y1\n", __FUNCTION__, one, two, dy2 < 0 ^ dx1y2 < dx2y1 ? "true" : "false"); #endif return dy2 > 0 ^ dx1y2 < dx2y1; } // Sort the indices of paired points and then create more indices so // assemble() can find the next edge and connect the top or bottom void bridge() { size_t index; size_t count = fEdges.count(); if (!count) { return; } SkASSERT(!fFill || count > 1); fTops.setCount(count); sk_bzero(fTops.begin(), sizeof(fTops[0]) * count); fBottoms.setCount(count); sk_bzero(fBottoms.begin(), sizeof(fBottoms[0]) * count); SkTDArray<int> order; for (index = 1; index <= count; ++index) { *order.append() = -index; } for (index = 1; index <= count; ++index) { *order.append() = index; } QSort<SkTArray<OutEdge>, int>(fEdges, order.begin(), order.end() - 1, lessThan); int* lastPtr = order.end() - 1; int* leftPtr = order.begin(); while (leftPtr < lastPtr) { int leftIndex = *leftPtr; int leftOutIndex = abs(leftIndex) - 1; const OutEdge& left = fEdges[leftOutIndex]; int* rightPtr = leftPtr + 1; int rightIndex = *rightPtr; int rightOutIndex = abs(rightIndex) - 1; const OutEdge& right = fEdges[rightOutIndex]; bool pairUp = fFill; if (!pairUp) { const SkPoint& leftMatch = left.fPts[leftIndex < 0 ? 0 : left.fVerb]; const SkPoint& rightMatch = right.fPts[rightIndex < 0 ? 0 : right.fVerb]; pairUp = leftMatch == rightMatch; } else { #if DEBUG_OUT // FIXME : not happy that error in low bit is allowed // this probably conceals error elsewhere if (UlpsDiff(left.fPts[leftIndex < 0 ? 0 : left.fVerb].fY, right.fPts[rightIndex < 0 ? 0 : right.fVerb].fY) > 1) { *fMismatches.append() = leftIndex; if (rightPtr == lastPtr) { *fMismatches.append() = rightIndex; } pairUp = false; } #else SkASSERT(UlpsDiff(left.fPts[leftIndex < 0 ? 0 : left.fVerb].fY, right.fPts[rightIndex < 0 ? 0 : right.fVerb].fY) <= 10); #endif } if (pairUp) { if (leftIndex < 0) { fTops[leftOutIndex] = rightIndex; } else { fBottoms[leftOutIndex] = rightIndex; } if (rightIndex < 0) { fTops[rightOutIndex] = leftIndex; } else { fBottoms[rightOutIndex] = leftIndex; } ++rightPtr; } leftPtr = rightPtr; } #if DEBUG_OUT int* mismatch = fMismatches.begin(); while (mismatch != fMismatches.end()) { int leftIndex = *mismatch++; int leftOutIndex = abs(leftIndex) - 1; const OutEdge& left = fEdges[leftOutIndex]; const SkPoint& leftPt = left.fPts[leftIndex < 0 ? 0 : left.fVerb]; SkDebugf("%s left=%d %s (%1.9g,%1.9g)\n", __FUNCTION__, left.fID, leftIndex < 0 ? "top" : "bot", leftPt.fX, leftPt.fY); } SkASSERT(fMismatches.count() == 0); #endif #if DEBUG_BRIDGE for (index = 0; index < count; ++index) { const OutEdge& edge = fEdges[index]; uint8_t verb = edge.fVerb; SkDebugf("%s %d edge=%d %s (%1.9g,%1.9g) (%1.9g,%1.9g)\n", index == 0 ? __FUNCTION__ : " ", index + 1, edge.fID, kLVerbStr[verb], edge.fPts[0].fX, edge.fPts[0].fY, edge.fPts[verb].fX, edge.fPts[verb].fY); } for (index = 0; index < count; ++index) { SkDebugf(" top of % 2d connects to %s of % 2d\n", index + 1, fTops[index] < 0 ? "top " : "bottom", abs(fTops[index])); SkDebugf(" bottom of % 2d connects to %s of % 2d\n", index + 1, fBottoms[index] < 0 ? "top " : "bottom", abs(fBottoms[index])); } #endif } protected: SkTArray<OutEdge> fEdges; SkTDArray<int> fTops; SkTDArray<int> fBottoms; bool fFill; #if DEBUG_OUT SkTDArray<int> fMismatches; #endif }; // Bounds, unlike Rect, does not consider a vertical line to be empty. struct Bounds : public SkRect { static bool Intersects(const Bounds& a, const Bounds& b) { return a.fLeft <= b.fRight && b.fLeft <= a.fRight && a.fTop <= b.fBottom && b.fTop <= a.fBottom; } bool isEmpty() { return fLeft > fRight || fTop > fBottom || (fLeft == fRight && fTop == fBottom) || isnan(fLeft) || isnan(fRight) || isnan(fTop) || isnan(fBottom); } }; class Intercepts { public: Intercepts() : fTopIntercepts(0) , fBottomIntercepts(0) , fExplicit(false) { } Intercepts& operator=(const Intercepts& src) { fTs = src.fTs; fTopIntercepts = src.fTopIntercepts; fBottomIntercepts = src.fBottomIntercepts; return *this; } // OPTIMIZATION: remove this function if it's never called double t(int tIndex) const { if (tIndex == 0) { return 0; } if (tIndex > fTs.count()) { return 1; } return fTs[tIndex - 1]; } #if DEBUG_DUMP void dump(const SkPoint* pts, SkPath::Verb verb) { const char className[] = "Intercepts"; const int tab = 8; for (int i = 0; i < fTs.count(); ++i) { SkPoint out; switch (verb) { case SkPath::kLine_Verb: LineXYAtT(pts, fTs[i], &out); break; case SkPath::kQuad_Verb: QuadXYAtT(pts, fTs[i], &out); break; case SkPath::kCubic_Verb: CubicXYAtT(pts, fTs[i], &out); break; default: SkASSERT(0); } SkDebugf("%*s.fTs[%d]=%1.9g (%1.9g,%1.9g)\n", tab + sizeof(className), className, i, fTs[i], out.fX, out.fY); } SkDebugf("%*s.fTopIntercepts=%u\n", tab + sizeof(className), className, fTopIntercepts); SkDebugf("%*s.fBottomIntercepts=%u\n", tab + sizeof(className), className, fBottomIntercepts); SkDebugf("%*s.fExplicit=%d\n", tab + sizeof(className), className, fExplicit); } #endif SkTDArray<double> fTs; unsigned char fTopIntercepts; // 0=init state 1=1 edge >1=multiple edges unsigned char fBottomIntercepts; bool fExplicit; // if set, suppress 0 and 1 }; struct HorizontalEdge { bool operator<(const HorizontalEdge& rh) const { return fY == rh.fY ? fLeft == rh.fLeft ? fRight < rh.fRight : fLeft < rh.fLeft : fY < rh.fY; } #if DEBUG_DUMP void dump() { const char className[] = "HorizontalEdge"; const int tab = 4; SkDebugf("%*s.fLeft=%1.9g\n", tab + sizeof(className), className, fLeft); SkDebugf("%*s.fRight=%1.9g\n", tab + sizeof(className), className, fRight); SkDebugf("%*s.fY=%1.9g\n", tab + sizeof(className), className, fY); } #endif SkScalar fLeft; SkScalar fRight; SkScalar fY; }; struct InEdge { bool operator<(const InEdge& rh) const { return fBounds.fTop == rh.fBounds.fTop ? fBounds.fLeft < rh.fBounds.fLeft : fBounds.fTop < rh.fBounds.fTop; } // Avoid collapsing t values that are close to the same since // we walk ts to describe consecutive intersections. Since a pair of ts can // be nearly equal, any problems caused by this should be taken care // of later. int add(double* ts, size_t count, ptrdiff_t verbIndex) { // FIXME: in the pathological case where there is a ton of intercepts, binary search? bool foundIntercept = false; int insertedAt = -1; Intercepts& intercepts = fIntercepts[verbIndex]; for (size_t index = 0; index < count; ++index) { double t = ts[index]; if (t <= 0) { intercepts.fTopIntercepts <<= 1; fContainsIntercepts |= ++intercepts.fTopIntercepts > 1; continue; } if (t >= 1) { intercepts.fBottomIntercepts <<= 1; fContainsIntercepts |= ++intercepts.fBottomIntercepts > 1; continue; } fIntersected = true; foundIntercept = true; size_t tCount = intercepts.fTs.count(); double delta; for (size_t idx2 = 0; idx2 < tCount; ++idx2) { if (t <= intercepts.fTs[idx2]) { // FIXME: ? if (t < intercepts.fTs[idx2]) // failed delta = intercepts.fTs[idx2] - t; if (delta > 0) { insertedAt = idx2; *intercepts.fTs.insert(idx2) = t; } goto nextPt; } } if (tCount == 0 || (delta = t - intercepts.fTs[tCount - 1]) > 0) { insertedAt = tCount; *intercepts.fTs.append() = t; } nextPt: ; } fContainsIntercepts |= foundIntercept; return insertedAt; } void addPartial(SkTArray<InEdge>& edges, int ptStart, int ptEnd, int verbStart, int verbEnd) { InEdge* edge = edges.push_back_n(1); int verbCount = verbEnd - verbStart; edge->fIntercepts.push_back_n(verbCount); // uint8_t* verbs = &fVerbs[verbStart]; for (int ceptIdx = 0; ceptIdx < verbCount; ++ceptIdx) { edge->fIntercepts[ceptIdx] = fIntercepts[verbStart + ceptIdx]; } edge->fPts.append(ptEnd - ptStart, &fPts[ptStart]); edge->fVerbs.append(verbCount, &fVerbs[verbStart]); edge->setBounds(); edge->fWinding = fWinding; edge->fContainsIntercepts = fContainsIntercepts; // FIXME: may not be correct -- but do we need to know? } void addSplit(SkTArray<InEdge>& edges, SkPoint* pts, uint8_t verb, Intercepts& intercepts, int firstT, int lastT, bool flipped) { InEdge* edge = edges.push_back_n(1); edge->fIntercepts.push_back_n(1); if (firstT == 0) { *edge->fIntercepts[0].fTs.append() = 0; } else { *edge->fIntercepts[0].fTs.append() = intercepts.fTs[firstT - 1]; } bool add1 = lastT == intercepts.fTs.count(); edge->fIntercepts[0].fTs.append(lastT - firstT, &intercepts.fTs[firstT]); if (add1) { *edge->fIntercepts[0].fTs.append() = 1; } edge->fIntercepts[0].fExplicit = true; edge->fPts.append(verb + 1, pts); edge->fVerbs.append(1, &verb); // FIXME: bounds could be better for partial Ts edge->setSubBounds(); edge->fContainsIntercepts = fContainsIntercepts; // FIXME: may not be correct -- but do we need to know? if (flipped) { edge->flipTs(); edge->fWinding = -fWinding; } else { edge->fWinding = fWinding; } } bool cached(const InEdge* edge) { // FIXME: in the pathological case where there is a ton of edges, binary search? size_t count = fCached.count(); for (size_t index = 0; index < count; ++index) { if (edge == fCached[index]) { return true; } if (edge < fCached[index]) { *fCached.insert(index) = edge; return false; } } *fCached.append() = edge; return false; } void complete(signed char winding) { setBounds(); fIntercepts.push_back_n(fVerbs.count()); if ((fWinding = winding) < 0) { // reverse verbs, pts, if bottom to top flip(); } fContainsIntercepts = fIntersected = false; } void flip() { size_t index; size_t last = fPts.count() - 1; for (index = 0; index < last; ++index, --last) { SkTSwap<SkPoint>(fPts[index], fPts[last]); } last = fVerbs.count() - 1; for (index = 0; index < last; ++index, --last) { SkTSwap<uint8_t>(fVerbs[index], fVerbs[last]); } } void flipTs() { SkASSERT(fIntercepts.count() == 1); Intercepts& intercepts = fIntercepts[0]; SkASSERT(intercepts.fExplicit); SkTDArray<double>& ts = intercepts.fTs; size_t index; size_t last = ts.count() - 1; for (index = 0; index < last; ++index, --last) { SkTSwap<double>(ts[index], ts[last]); } } void reset() { fCached.reset(); fIntercepts.reset(); fPts.reset(); fVerbs.reset(); fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); fWinding = 0; fContainsIntercepts = false; fIntersected = false; } void setBounds() { SkPoint* ptPtr = fPts.begin(); SkPoint* ptLast = fPts.end(); if (ptPtr == ptLast) { SkDebugf("%s empty edge\n", __FUNCTION__); SkASSERT(0); // FIXME: delete empty edge? return; } fBounds.set(ptPtr->fX, ptPtr->fY, ptPtr->fX, ptPtr->fY); ++ptPtr; while (ptPtr != ptLast) { fBounds.growToInclude(ptPtr->fX, ptPtr->fY); ++ptPtr; } } // recompute bounds based on subrange of T values void setSubBounds() { SkASSERT(fIntercepts.count() == 1); Intercepts& intercepts = fIntercepts[0]; SkASSERT(intercepts.fExplicit); SkASSERT(fVerbs.count() == 1); SkTDArray<double>& ts = intercepts.fTs; if (fVerbs[0] == SkPath::kQuad_Verb) { SkASSERT(fPts.count() == 3); QuadSubBounds(fPts.begin(), ts[0], ts[ts.count() - 1], fBounds); } else { SkASSERT(fVerbs[0] == SkPath::kCubic_Verb); SkASSERT(fPts.count() == 4); CubicSubBounds(fPts.begin(), ts[0], ts[ts.count() - 1], fBounds); } } void splitInflectionPts(SkTArray<InEdge>& edges) { if (!fIntersected) { return; } uint8_t* verbs = fVerbs.begin(); SkPoint* pts = fPts.begin(); int lastVerb = 0; int lastPt = 0; uint8_t verb; bool edgeSplit = false; for (int ceptIdx = 0; ceptIdx < fIntercepts.count(); ++ceptIdx, pts += verb) { Intercepts& intercepts = fIntercepts[ceptIdx]; verb = *verbs++; if (verb <= SkPath::kLine_Verb) { continue; } size_t tCount = intercepts.fTs.count(); if (!tCount) { continue; } size_t tIndex = (size_t) -1; SkScalar y = pts[0].fY; int lastSplit = 0; int firstSplit = -1; bool curveSplit = false; while (++tIndex < tCount) { double nextT = intercepts.fTs[tIndex]; SkScalar nextY = verb == SkPath::kQuad_Verb ? QuadYAtT(pts, nextT) : CubicYAtT(pts, nextT); if (nextY < y) { edgeSplit = curveSplit = true; if (firstSplit < 0) { firstSplit = tIndex; int nextPt = pts - fPts.begin(); int nextVerb = verbs - 1 - fVerbs.begin(); if (lastVerb < nextVerb) { addPartial(edges, lastPt, nextPt, lastVerb, nextVerb); #if DEBUG_SPLIT SkDebugf("%s addPartial 1\n", __FUNCTION__); #endif } lastPt = nextPt; lastVerb = nextVerb; } } else { if (firstSplit >= 0) { if (lastSplit < firstSplit) { addSplit(edges, pts, verb, intercepts, lastSplit, firstSplit, false); #if DEBUG_SPLIT SkDebugf("%s addSplit 1 tIndex=%d,%d\n", __FUNCTION__, lastSplit, firstSplit); #endif } addSplit(edges, pts, verb, intercepts, firstSplit, tIndex, true); #if DEBUG_SPLIT SkDebugf("%s addSplit 2 tIndex=%d,%d flip\n", __FUNCTION__, firstSplit, tIndex); #endif lastSplit = tIndex; firstSplit = -1; } } y = nextY; } if (curveSplit) { if (firstSplit < 0) { firstSplit = lastSplit; } else { addSplit(edges, pts, verb, intercepts, lastSplit, firstSplit, false); #if DEBUG_SPLIT SkDebugf("%s addSplit 3 tIndex=%d,%d\n", __FUNCTION__, lastSplit, firstSplit); #endif } addSplit(edges, pts, verb, intercepts, firstSplit, tIndex, pts[verb].fY < y); #if DEBUG_SPLIT SkDebugf("%s addSplit 4 tIndex=%d,%d %s\n", __FUNCTION__, firstSplit, tIndex, pts[verb].fY < y ? "flip" : ""); #endif } } // collapse remainder -- if there's nothing left, clear it somehow? if (edgeSplit) { int nextVerb = verbs - 1 - fVerbs.begin(); if (lastVerb < nextVerb) { int nextPt = pts - fPts.begin(); addPartial(edges, lastPt, nextPt, lastVerb, nextVerb); #if DEBUG_SPLIT SkDebugf("%s addPartial 2\n", __FUNCTION__); #endif } // OPTIMIZATION: reuse the edge instead of marking it empty reset(); } } #if DEBUG_DUMP void dump() { int i; const char className[] = "InEdge"; const int tab = 4; SkDebugf("InEdge %p (edge=%d)\n", this, fID); for (i = 0; i < fCached.count(); ++i) { SkDebugf("%*s.fCached[%d]=0x%08x\n", tab + sizeof(className), className, i, fCached[i]); } uint8_t* verbs = fVerbs.begin(); SkPoint* pts = fPts.begin(); for (i = 0; i < fIntercepts.count(); ++i) { SkDebugf("%*s.fIntercepts[%d]:\n", tab + sizeof(className), className, i); fIntercepts[i].dump(pts, (SkPath::Verb) *verbs); pts += *verbs++; } for (i = 0; i < fPts.count(); ++i) { SkDebugf("%*s.fPts[%d]=(%1.9g,%1.9g)\n", tab + sizeof(className), className, i, fPts[i].fX, fPts[i].fY); } for (i = 0; i < fVerbs.count(); ++i) { SkDebugf("%*s.fVerbs[%d]=%d\n", tab + sizeof(className), className, i, fVerbs[i]); } SkDebugf("%*s.fBounds=(%1.9g, %1.9g, %1.9g, %1.9g)\n", tab + sizeof(className), className, fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); SkDebugf("%*s.fWinding=%d\n", tab + sizeof(className), className, fWinding); SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className), className, fContainsIntercepts); SkDebugf("%*s.fIntersected=%d\n", tab + sizeof(className), className, fIntersected); } #endif // FIXME: temporary data : move this to a separate struct? SkTDArray<const InEdge*> fCached; // list of edges already intercepted SkTArray<Intercepts> fIntercepts; // one per verb // persistent data SkTDArray<SkPoint> fPts; SkTDArray<uint8_t> fVerbs; Bounds fBounds; int fID; signed char fWinding; bool fContainsIntercepts; bool fIntersected; }; class InEdgeBuilder { public: InEdgeBuilder(const SkPath& path, bool ignoreHorizontal, SkTArray<InEdge>& edges, SkTDArray<HorizontalEdge>& horizontalEdges) : fPath(path) , fCurrentEdge(NULL) , fEdges(edges) , fHorizontalEdges(horizontalEdges) , fIgnoreHorizontal(ignoreHorizontal) , fContainsCurves(false) { walk(); } bool containsCurves() const { return fContainsCurves; } protected: void addEdge() { SkASSERT(fCurrentEdge); fCurrentEdge->fPts.append(fPtCount - fPtOffset, &fPts[fPtOffset]); fPtOffset = 1; *fCurrentEdge->fVerbs.append() = fVerb; } bool complete() { if (fCurrentEdge && fCurrentEdge->fVerbs.count()) { fCurrentEdge->complete(fWinding); fCurrentEdge = NULL; return true; } return false; } int direction(SkPath::Verb verb) { fPtCount = verb + 1; if (fIgnoreHorizontal && isHorizontal()) { return 0; } return fPts[0].fY == fPts[verb].fY ? fPts[0].fX == fPts[verb].fX ? 0 : fPts[0].fX < fPts[verb].fX ? 1 : -1 : fPts[0].fY < fPts[verb].fY ? 1 : -1; } bool isHorizontal() { SkScalar y = fPts[0].fY; for (int i = 1; i < fPtCount; ++i) { if (fPts[i].fY != y) { return false; } } return true; } void startEdge() { if (!fCurrentEdge) { fCurrentEdge = fEdges.push_back_n(1); } fWinding = 0; fPtOffset = 0; } void walk() { SkPath::Iter iter(fPath, true); int winding = 0; while ((fVerb = iter.next(fPts)) != SkPath::kDone_Verb) { switch (fVerb) { case SkPath::kMove_Verb: startEdge(); continue; case SkPath::kLine_Verb: winding = direction(SkPath::kLine_Verb); break; case SkPath::kQuad_Verb: fVerb = QuadReduceOrder(fPts); winding = direction(fVerb); fContainsCurves |= fVerb == SkPath::kQuad_Verb; break; case SkPath::kCubic_Verb: fVerb = CubicReduceOrder(fPts); winding = direction(fVerb); fContainsCurves |= fVerb >= SkPath::kQuad_Verb; break; case SkPath::kClose_Verb: SkASSERT(fCurrentEdge); complete(); continue; default: SkDEBUGFAIL("bad verb"); return; } if (winding == 0) { HorizontalEdge* horizontalEdge = fHorizontalEdges.append(); // FIXME: for degenerate quads and cubics, compute x extremes horizontalEdge->fLeft = fPts[0].fX; horizontalEdge->fRight = fPts[fVerb].fX; horizontalEdge->fY = fPts[0].fY; if (horizontalEdge->fLeft > horizontalEdge->fRight) { SkTSwap<SkScalar>(horizontalEdge->fLeft, horizontalEdge->fRight); } if (complete()) { startEdge(); } continue; } if (fWinding + winding == 0) { // FIXME: if prior verb or this verb is a horizontal line, reverse // it instead of starting a new edge SkASSERT(fCurrentEdge); if (complete()) { startEdge(); } } fWinding = winding; addEdge(); } if (!complete()) { if (fCurrentEdge) { fEdges.pop_back(); } } } private: const SkPath& fPath; InEdge* fCurrentEdge; SkTArray<InEdge>& fEdges; SkTDArray<HorizontalEdge>& fHorizontalEdges; SkPoint fPts[4]; SkPath::Verb fVerb; int fPtCount; int fPtOffset; int8_t fWinding; bool fIgnoreHorizontal; bool fContainsCurves; }; struct WorkEdge { SkScalar bottom() const { return fPts[verb()].fY; } void init(const InEdge* edge) { fEdge = edge; fPts = edge->fPts.begin(); fVerb = edge->fVerbs.begin(); } bool advance() { SkASSERT(fVerb < fEdge->fVerbs.end()); fPts += *fVerb++; return fVerb != fEdge->fVerbs.end(); } const SkPoint* lastPoints() const { SkASSERT(fPts >= fEdge->fPts.begin() + lastVerb()); return &fPts[-lastVerb()]; } SkPath::Verb lastVerb() const { SkASSERT(fVerb > fEdge->fVerbs.begin()); return (SkPath::Verb) fVerb[-1]; } const SkPoint* points() const { return fPts; } SkPath::Verb verb() const { return (SkPath::Verb) *fVerb; } ptrdiff_t verbIndex() const { return fVerb - fEdge->fVerbs.begin(); } int winding() const { return fEdge->fWinding; } const InEdge* fEdge; const SkPoint* fPts; const uint8_t* fVerb; }; // always constructed with SkTDArray because new edges are inserted // this may be a inappropriate optimization, suggesting that a separate array of // ActiveEdge* may be faster to insert and search // OPTIMIZATION: Brian suggests that global sorting should be unnecessary, since // as active edges are introduced, only local sorting should be required class ActiveEdge { public: // this logic must be kept in sync with tooCloseToCall // callers expect this to only read fAbove, fTangent bool operator<(const ActiveEdge& rh) const { if (fVerb == rh.fVerb) { // FIXME: don't know what to do if verb is quad, cubic return abCompare(fAbove, fBelow, rh.fAbove, rh.fBelow); } // figure out which is quad, line // if cached data says line did not intersect quad, use top/bottom if (fVerb != SkPath::kLine_Verb ? noIntersect(rh) : rh.noIntersect(*this)) { return abCompare(fAbove, fBelow, rh.fAbove, rh.fBelow); } // use whichever of top/tangent tangent/bottom overlaps more // with line top/bot // assumes quad/cubic can already be upconverted to cubic/cubic const SkPoint* line[2]; const SkPoint* curve[4]; if (fVerb != SkPath::kLine_Verb) { line[0] = &rh.fAbove; line[1] = &rh.fBelow; curve[0] = &fAbove; curve[1] = &fTangent; curve[2] = &fBelow; } else { line[0] = &fAbove; line[1] = &fBelow; curve[0] = &rh.fAbove; curve[1] = &rh.fTangent; curve[2] = &rh.fBelow; } // FIXME: code has been abandoned, incomplete.... return false; } bool abCompare(const SkPoint& a1, const SkPoint& a2, const SkPoint& b1, const SkPoint& b2) const { double topD = a1.fX - b1.fX; if (b1.fY < a1.fY) { topD = (b2.fY - b1.fY) * topD - (a1.fY - b1.fY) * (b2.fX - b1.fX); } else if (b1.fY > a1.fY) { topD = (a2.fY - a1.fY) * topD + (b1.fY - a1.fY) * (a2.fX - a1.fX); } double botD = a2.fX - b2.fX; if (b2.fY > a2.fY) { botD = (b2.fY - b1.fY) * botD - (a2.fY - b2.fY) * (b2.fX - b1.fX); } else if (b2.fY < a2.fY) { botD = (a2.fY - a1.fY) * botD + (b2.fY - a2.fY) * (a2.fX - a1.fX); } // return sign of greater absolute value return (fabs(topD) > fabs(botD) ? topD : botD) < 0; } // If a pair of edges are nearly coincident for some span, add a T in the // edge so it can be shortened to match the other edge. Note that another // approach is to trim the edge after it is added to the OutBuilder list -- // FIXME: since this has no effect if the edge is already done (i.e., // fYBottom >= y) maybe this can only be done by calling trimLine later. void addTatYBelow(SkScalar y) { if (fBelow.fY <= y || fYBottom >= y) { return; } addTatYInner(y); fFixBelow = true; } void addTatYAbove(SkScalar y) { if (fBelow.fY <= y) { return; } addTatYInner(y); } void addTatYInner(SkScalar y) { if (fWorkEdge.fPts[0].fY > y) { backup(y); } SkScalar left = fWorkEdge.fPts[0].fX; SkScalar right = fWorkEdge.fPts[1].fX; if (left > right) { SkTSwap(left, right); } double ts[2]; SkASSERT(fWorkEdge.fVerb[0] == SkPath::kLine_Verb); int pts = LineIntersect(fWorkEdge.fPts, left, right, y, ts); SkASSERT(pts == 1); // An ActiveEdge or WorkEdge has no need to modify the T values computed // in the InEdge, except in the following case. If a pair of edges are // nearly coincident, this may not be detected when the edges are // intersected. Later, when sorted, and this near-coincidence is found, // an additional t value must be added, requiring the cast below. InEdge* writable = const_cast<InEdge*>(fWorkEdge.fEdge); int insertedAt = writable->add(ts, pts, fWorkEdge.verbIndex()); #if DEBUG_ADJUST_COINCIDENT SkDebugf("%s edge=%d y=%1.9g t=%1.9g\n", __FUNCTION__, ID(), y, ts[0]); #endif if (insertedAt >= 0) { if (insertedAt + 1 < fTIndex) { SkASSERT(insertedAt + 2 == fTIndex); --fTIndex; } } } bool advanceT() { SkASSERT(fTIndex <= fTs->count() - fExplicitTs); return ++fTIndex <= fTs->count() - fExplicitTs; } bool advance() { // FIXME: flip sense of next bool result = fWorkEdge.advance(); fDone = !result; initT(); return result; } void backup(SkScalar y) { do { SkASSERT(fWorkEdge.fEdge->fVerbs.begin() < fWorkEdge.fVerb); fWorkEdge.fPts -= *--fWorkEdge.fVerb; SkASSERT(fWorkEdge.fEdge->fPts.begin() <= fWorkEdge.fPts); } while (fWorkEdge.fPts[0].fY >= y); initT(); SkASSERT(!fExplicitTs); fTIndex = fTs->count() + 1; } void calcAboveBelow(double tAbove, double tBelow) { fVerb = fWorkEdge.verb(); switch (fVerb) { case SkPath::kLine_Verb: LineXYAtT(fWorkEdge.fPts, tAbove, &fAbove); LineXYAtT(fWorkEdge.fPts, tBelow, &fTangent); fBelow = fTangent; break; case SkPath::kQuad_Verb: // FIXME: put array in struct to avoid copy? SkPoint quad[3]; QuadSubDivide(fWorkEdge.fPts, tAbove, tBelow, quad); fAbove = quad[0]; fTangent = quad[0] != quad[1] ? quad[1] : quad[2]; fBelow = quad[2]; break; case SkPath::kCubic_Verb: SkPoint cubic[3]; CubicSubDivide(fWorkEdge.fPts, tAbove, tBelow, cubic); fAbove = cubic[0]; // FIXME: can't see how quad logic for how tangent is used // extends to cubic fTangent = cubic[0] != cubic[1] ? cubic[1] : cubic[0] != cubic[2] ? cubic[2] : cubic[3]; fBelow = cubic[3]; break; default: SkASSERT(0); } } void calcLeft(SkScalar y) { // OPTIMIZE: put a kDone_Verb at the end of the verb list? if (fDone || fBelow.fY > y) { return; // nothing to do; use last } calcLeft(); if (fAbove.fY == fBelow.fY) { SkDebugf("%s edge=%d fAbove.fY != fBelow.fY %1.9g\n", __FUNCTION__, ID(), fAbove.fY); } } void calcLeft() { int add = (fTIndex <= fTs->count() - fExplicitTs) - 1; double tAbove = t(fTIndex + add); double tBelow = t(fTIndex - ~add); // OPTIMIZATION: if fAbove, fBelow have already been computed // for the fTIndex, don't do it again calcAboveBelow(tAbove, tBelow); // For identical x, this lets us know which edge is first. // If both edges have T values < 1, check x at next T (fBelow). SkASSERT(tAbove != tBelow); // FIXME: this can loop forever // need a break if we hit the end // FIXME: in unit test, figure out how explicit Ts work as well while (fAbove.fY == fBelow.fY) { if (add < 0 || fTIndex == fTs->count()) { add -= 1; SkASSERT(fTIndex + add >= 0); tAbove = t(fTIndex + add); } else { add += 1; SkASSERT(fTIndex - ~add <= fTs->count() + 1); tBelow = t(fTIndex - ~add); } calcAboveBelow(tAbove, tBelow); } fTAbove = tAbove; fTBelow = tBelow; } bool done(SkScalar bottom) const { return fDone || fYBottom >= bottom; } void fixBelow() { if (fFixBelow) { fTBelow = nextT(); calcAboveBelow(fTAbove, fTBelow); fFixBelow = false; } } void init(const InEdge* edge) { fWorkEdge.init(edge); fDone = false; initT(); fBelow.fY = SK_ScalarMin; fYBottom = SK_ScalarMin; } void initT() { const Intercepts& intercepts = fWorkEdge.fEdge->fIntercepts.front(); SkASSERT(fWorkEdge.verbIndex() <= fWorkEdge.fEdge->fIntercepts.count()); const Intercepts* interceptPtr = &intercepts + fWorkEdge.verbIndex(); fTs = &interceptPtr->fTs; fExplicitTs = interceptPtr->fExplicit; // the above is conceptually the same as // fTs = &fWorkEdge.fEdge->fIntercepts[fWorkEdge.verbIndex()].fTs; // but templated arrays don't allow returning a pointer to the end() element fTIndex = 0; if (!fDone) { fVerb = fWorkEdge.verb(); } SkASSERT(fVerb > SkPath::kMove_Verb); } // OPTIMIZATION: record if two edges are coincident when the are intersected // It's unclear how to do this -- seems more complicated than recording the // t values, since the same t values could exist intersecting non-coincident // edges. bool isCoincidentWith(const ActiveEdge* edge) const { if (fAbove != edge->fAbove || fBelow != edge->fBelow) { return false; } if (fVerb != edge->fVerb) { return false; } switch (fVerb) { case SkPath::kLine_Verb: return true; default: // FIXME: add support for quads, cubics SkASSERT(0); return false; } return false; } bool isUnordered(const ActiveEdge* edge) const { return fAbove == edge->fAbove && fBelow == edge->fBelow; } // SkPath::Verb lastVerb() const { // return fDone ? fWorkEdge.lastVerb() : fWorkEdge.verb(); // } const SkPoint* lastPoints() const { return fDone ? fWorkEdge.lastPoints() : fWorkEdge.points(); } bool noIntersect(const ActiveEdge& ) const { // incomplete return false; } // The shortest close call edge should be moved into a position where // it contributes if the winding is transitioning to or from zero. bool swapClose(const ActiveEdge* next, int prev, int wind, int mask) const { #if DEBUG_ADJUST_COINCIDENT SkDebugf("%s edge=%d (%g) next=%d (%g) prev=%d wind=%d nextWind=%d\n", __FUNCTION__, ID(), fBelow.fY, next->ID(), next->fBelow.fY, prev, wind, wind + next->fWorkEdge.winding()); #endif if ((prev & mask) == 0 || (wind & mask) == 0) { return next->fBelow.fY < fBelow.fY; } int nextWinding = wind + next->fWorkEdge.winding(); if ((nextWinding & mask) == 0) { return fBelow.fY < next->fBelow.fY; } return false; } bool swapCoincident(const ActiveEdge* edge, SkScalar bottom) const { if (fBelow.fY >= bottom || fDone || edge->fDone) { return false; } ActiveEdge thisWork = *this; ActiveEdge edgeWork = *edge; while ((thisWork.advanceT() || thisWork.advance()) && (edgeWork.advanceT() || edgeWork.advance())) { thisWork.calcLeft(); edgeWork.calcLeft(); if (thisWork < edgeWork) { return false; } if (edgeWork < thisWork) { return true; } } return false; } bool swapUnordered(const ActiveEdge* edge, SkScalar /* bottom */) const { SkASSERT(fVerb != SkPath::kLine_Verb || edge->fVerb != SkPath::kLine_Verb); if (fDone || edge->fDone) { return false; } ActiveEdge thisWork, edgeWork; extractAboveBelow(thisWork); edge->extractAboveBelow(edgeWork); return edgeWork < thisWork; } bool tooCloseToCall(const ActiveEdge* edge) const { int ulps; double t1, t2, b1, b2; // This logic must be kept in sync with operator < if (edge->fAbove.fY < fAbove.fY) { t1 = (edge->fTangent.fY - edge->fAbove.fY) * (fAbove.fX - edge->fAbove.fX); t2 = (fAbove.fY - edge->fAbove.fY) * (edge->fTangent.fX - edge->fAbove.fX); } else if (edge->fAbove.fY > fAbove.fY) { t1 = (fTangent.fY - fAbove.fY) * (fAbove.fX - edge->fAbove.fX); t2 = (fAbove.fY - edge->fAbove.fY) * (fTangent.fX - fAbove.fX); } else { t1 = fAbove.fX; t2 = edge->fAbove.fX; } if (edge->fTangent.fY > fTangent.fY) { b1 = (edge->fTangent.fY - edge->fAbove.fY) * (fTangent.fX - edge->fTangent.fX); b2 = (fTangent.fY - edge->fTangent.fY) * (edge->fTangent.fX - edge->fAbove.fX); } else if (edge->fTangent.fY < fTangent.fY) { b1 = (fTangent.fY - fAbove.fY) * (fTangent.fX - edge->fTangent.fX); b2 = (fTangent.fY - edge->fTangent.fY) * (fTangent.fX - fAbove.fX); } else { b1 = fTangent.fX; b2 = edge->fTangent.fX; } if (fabs(t1 - t2) > fabs(b1 - b2)) { ulps = UlpsDiff((float) t1, (float) t2); } else { ulps = UlpsDiff((float) b1, (float) b2); } #if DEBUG_ADJUST_COINCIDENT SkDebugf("%s this=%d edge=%d ulps=%d\n", __FUNCTION__, ID(), edge->ID(), ulps); #endif if (ulps < 0 || ulps > 32) { return false; } if (fVerb == SkPath::kLine_Verb && edge->fVerb == SkPath::kLine_Verb) { return true; } if (fVerb != SkPath::kLine_Verb && edge->fVerb != SkPath::kLine_Verb) { return false; } double ts[2]; bool isLine = true; bool curveQuad = true; if (fVerb == SkPath::kCubic_Verb) { ts[0] = (fTAbove * 2 + fTBelow) / 3; ts[1] = (fTAbove + fTBelow * 2) / 3; curveQuad = isLine = false; } else if (edge->fVerb == SkPath::kCubic_Verb) { ts[0] = (edge->fTAbove * 2 + edge->fTBelow) / 3; ts[1] = (edge->fTAbove + edge->fTBelow * 2) / 3; curveQuad = false; } else if (fVerb == SkPath::kQuad_Verb) { ts[0] = fTAbove; ts[1] = (fTAbove + fTBelow) / 2; isLine = false; } else { SkASSERT(edge->fVerb == SkPath::kQuad_Verb); ts[0] = edge->fTAbove; ts[1] = (edge->fTAbove + edge->fTBelow) / 2; } const SkPoint* curvePts = isLine ? edge->lastPoints() : lastPoints(); const ActiveEdge* lineEdge = isLine ? this : edge; SkPoint curveSample[2]; for (int index = 0; index < 2; ++index) { if (curveQuad) { QuadXYAtT(curvePts, ts[index], &curveSample[index]); } else { CubicXYAtT(curvePts, ts[index], &curveSample[index]); } } return IsCoincident(curveSample, lineEdge->fAbove, lineEdge->fBelow); } double nextT() const { SkASSERT(fTIndex <= fTs->count() - fExplicitTs); return t(fTIndex + 1); } double t() const { return t(fTIndex); } double t(int tIndex) const { if (fExplicitTs) { SkASSERT(tIndex < fTs->count()); return (*fTs)[tIndex]; } if (tIndex == 0) { return 0; } if (tIndex > fTs->count()) { return 1; } return (*fTs)[tIndex - 1]; } // FIXME: debugging only int ID() const { return fWorkEdge.fEdge->fID; } private: // utility used only by swapUnordered void extractAboveBelow(ActiveEdge& extracted) const { SkPoint curve[4]; switch (fVerb) { case SkPath::kLine_Verb: extracted.fAbove = fAbove; extracted.fTangent = fTangent; return; case SkPath::kQuad_Verb: QuadSubDivide(lastPoints(), fTAbove, fTBelow, curve); break; case SkPath::kCubic_Verb: CubicSubDivide(lastPoints(), fTAbove, fTBelow, curve); break; default: SkASSERT(0); } extracted.fAbove = curve[0]; extracted.fTangent = curve[1]; } public: WorkEdge fWorkEdge; const SkTDArray<double>* fTs; SkPoint fAbove; SkPoint fTangent; SkPoint fBelow; double fTAbove; // OPTIMIZATION: only required if edge has quads or cubics double fTBelow; SkScalar fYBottom; int fCoincident; int fTIndex; SkPath::Verb fVerb; bool fSkip; // OPTIMIZATION: use bitfields? bool fCloseCall; bool fDone; bool fFixBelow; bool fExplicitTs; }; static void addToActive(SkTDArray<ActiveEdge>& activeEdges, const InEdge* edge) { size_t count = activeEdges.count(); for (size_t index = 0; index < count; ++index) { if (edge == activeEdges[index].fWorkEdge.fEdge) { return; } } ActiveEdge* active = activeEdges.append(); active->init(edge); } // Find any intersections in the range of active edges. A pair of edges, on // either side of another edge, may change the winding contribution for part of // the edge. // Keep horizontal edges just for // the purpose of computing when edges change their winding contribution, since // this is essentially computing the horizontal intersection. static void addBottomT(InEdge** currentPtr, InEdge** lastPtr, HorizontalEdge** horizontal) { InEdge** testPtr = currentPtr - 1; HorizontalEdge* horzEdge = *horizontal; SkScalar left = horzEdge->fLeft; SkScalar bottom = horzEdge->fY; while (++testPtr != lastPtr) { InEdge* test = *testPtr; if (test->fBounds.fBottom <= bottom || test->fBounds.fRight <= left) { continue; } WorkEdge wt; wt.init(test); do { HorizontalEdge** sorted = horizontal; horzEdge = *sorted; do { double wtTs[4]; int pts; uint8_t verb = wt.verb(); switch (verb) { case SkPath::kLine_Verb: pts = LineIntersect(wt.fPts, horzEdge->fLeft, horzEdge->fRight, horzEdge->fY, wtTs); break; case SkPath::kQuad_Verb: pts = QuadIntersect(wt.fPts, horzEdge->fLeft, horzEdge->fRight, horzEdge->fY, wtTs); break; case SkPath::kCubic_Verb: pts = CubicIntersect(wt.fPts, horzEdge->fLeft, horzEdge->fRight, horzEdge->fY, wtTs); break; } if (pts) { #if DEBUG_ADD_BOTTOM_TS for (int x = 0; x < pts; ++x) { SkDebugf("%s y=%g wtTs[0]=%g (%g,%g", __FUNCTION__, horzEdge->fY, wtTs[x], wt.fPts[0].fX, wt.fPts[0].fY); for (int y = 0; y < verb; ++y) { SkDebugf(" %g,%g", wt.fPts[y + 1].fX, wt.fPts[y + 1].fY)); } SkDebugf(")\n"); } if (pts > verb) { SkASSERT(0); // FIXME ? should this work? SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]); } #endif test->add(wtTs, pts, wt.verbIndex()); } horzEdge = *++sorted; } while (horzEdge->fY == bottom && horzEdge->fLeft <= test->fBounds.fRight); } while (wt.advance()); } } #if DEBUG_ADD_INTERSECTING_TS static void debugShowLineIntersection(int pts, const WorkEdge& wt, const WorkEdge& wn, const double wtTs[2], const double wnTs[2]) { if (!pts) { return; } SkPoint wtOutPt, wnOutPt; LineXYAtT(wt.fPts, wtTs[0], &wtOutPt); LineXYAtT(wn.fPts, wnTs[0], &wnOutPt); SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n", __FUNCTION__, wtTs[0], wt.fPts[0].fX, wt.fPts[0].fY, wt.fPts[1].fX, wt.fPts[1].fY, wtOutPt.fX, wtOutPt.fY); if (pts == 2) { SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]); } SkDebugf("%s wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n", __FUNCTION__, wnTs[0], wn.fPts[0].fX, wn.fPts[0].fY, wn.fPts[1].fX, wn.fPts[1].fY, wnOutPt.fX, wnOutPt.fY); if (pts == 2) { SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]); } } #else static void debugShowLineIntersection(int , const WorkEdge& , const WorkEdge& , const double [2], const double [2]) { } #endif static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) { InEdge** testPtr = currentPtr - 1; // FIXME: lastPtr should be past the point of interest, so // test below should be lastPtr - 2 // that breaks testSimplifyTriangle22, so further investigation is needed while (++testPtr != lastPtr - 1) { InEdge* test = *testPtr; InEdge** nextPtr = testPtr; do { InEdge* next = *++nextPtr; // FIXME: this compares against the sentinel sometimes // OPTIMIZATION: this may never be needed since this gets called // in two passes now. Verify that double hits are appropriate. if (test->cached(next)) { continue; } if (!Bounds::Intersects(test->fBounds, next->fBounds)) { continue; } WorkEdge wt, wn; wt.init(test); wn.init(next); do { int pts; Intersections ts; bool swap = false; switch (wt.verb()) { case SkPath::kLine_Verb: switch (wn.verb()) { case SkPath::kLine_Verb: { pts = LineIntersect(wt.fPts, wn.fPts, ts); debugShowLineIntersection(pts, wt, wn, ts.fT[0], ts.fT[1]); break; } case SkPath::kQuad_Verb: { swap = true; pts = QuadLineIntersect(wn.fPts, wt.fPts, ts); break; } case SkPath::kCubic_Verb: { swap = true; pts = CubicLineIntersect(wn.fPts, wt.fPts, ts); break; } default: SkASSERT(0); } break; case SkPath::kQuad_Verb: switch (wn.verb()) { case SkPath::kLine_Verb: { pts = QuadLineIntersect(wt.fPts, wn.fPts, ts); break; } case SkPath::kQuad_Verb: { pts = QuadIntersect(wt.fPts, wn.fPts, ts); break; } case SkPath::kCubic_Verb: { // FIXME: promote quad to cubic pts = CubicIntersect(wt.fPts, wn.fPts, ts); break; } default: SkASSERT(0); } break; case SkPath::kCubic_Verb: switch (wn.verb()) { case SkPath::kLine_Verb: { pts = CubicLineIntersect(wt.fPts, wn.fPts, ts); break; } case SkPath::kQuad_Verb: { // FIXME: promote quad to cubic pts = CubicIntersect(wt.fPts, wn.fPts, ts); break; } case SkPath::kCubic_Verb: { pts = CubicIntersect(wt.fPts, wn.fPts, ts); break; } default: SkASSERT(0); } break; default: SkASSERT(0); } test->add(ts.fT[swap], pts, wt.verbIndex()); next->add(ts.fT[!swap], pts, wn.verbIndex()); } while (wt.bottom() <= wn.bottom() ? wt.advance() : wn.advance()); } while (nextPtr != lastPtr); } } static InEdge** advanceEdges(SkTDArray<ActiveEdge>* activeEdges, InEdge** currentPtr, InEdge** lastPtr, SkScalar y) { InEdge** testPtr = currentPtr - 1; while (++testPtr != lastPtr) { if ((*testPtr)->fBounds.fBottom > y) { continue; } if (activeEdges) { InEdge* test = *testPtr; ActiveEdge* activePtr = activeEdges->begin() - 1; ActiveEdge* lastActive = activeEdges->end(); while (++activePtr != lastActive) { if (activePtr->fWorkEdge.fEdge == test) { activeEdges->remove(activePtr - activeEdges->begin()); break; } } } if (testPtr == currentPtr) { ++currentPtr; } } return currentPtr; } // OPTIMIZE: inline? static HorizontalEdge** advanceHorizontal(HorizontalEdge** edge, SkScalar y) { while ((*edge)->fY < y) { ++edge; } return edge; } // compute bottom taking into account any intersected edges static SkScalar computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges, SkScalar y, SkScalar bottom) { ActiveEdge* activePtr = activeEdges.begin() - 1; ActiveEdge* lastActive = activeEdges.end(); while (++activePtr != lastActive) { const InEdge* test = activePtr->fWorkEdge.fEdge; if (!test->fContainsIntercepts) { continue; } WorkEdge wt; wt.init(test); do { const Intercepts& intercepts = test->fIntercepts[wt.verbIndex()]; if (intercepts.fTopIntercepts > 1) { SkScalar yTop = wt.fPts[0].fY; if (yTop > y && bottom > yTop) { bottom = yTop; } } if (intercepts.fBottomIntercepts > 1) { SkScalar yBottom = wt.fPts[wt.verb()].fY; if (yBottom > y && bottom > yBottom) { bottom = yBottom; } } const SkTDArray<double>& fTs = intercepts.fTs; size_t count = fTs.count(); for (size_t index = 0; index < count; ++index) { SkScalar yIntercept; switch (wt.verb()) { case SkPath::kLine_Verb: { yIntercept = LineYAtT(wt.fPts, fTs[index]); break; } case SkPath::kQuad_Verb: { yIntercept = QuadYAtT(wt.fPts, fTs[index]); break; } case SkPath::kCubic_Verb: { yIntercept = CubicYAtT(wt.fPts, fTs[index]); break; } default: SkASSERT(0); // should never get here } if (yIntercept > y && bottom > yIntercept) { bottom = yIntercept; } } } while (wt.advance()); } #if DEBUG_BOTTOM SkDebugf("%s bottom=%1.9g\n", __FUNCTION__, bottom); #endif return bottom; } static SkScalar findBottom(InEdge** currentPtr, InEdge** edgeListEnd, SkTDArray<ActiveEdge>* activeEdges, SkScalar y, bool /*asFill*/, InEdge**& testPtr) { InEdge* current = *currentPtr; SkScalar bottom = current->fBounds.fBottom; // find the list of edges that cross y InEdge* test = *testPtr; while (testPtr != edgeListEnd) { SkScalar testTop = test->fBounds.fTop; if (bottom <= testTop) { break; } SkScalar testBottom = test->fBounds.fBottom; // OPTIMIZATION: Shortening the bottom is only interesting when filling // and when the edge is to the left of a longer edge. If it's a framing // edge, or part of the right, it won't effect the longer edges. if (testTop > y) { bottom = testTop; break; } if (y < testBottom) { if (bottom > testBottom) { bottom = testBottom; } if (activeEdges) { addToActive(*activeEdges, test); } } test = *++testPtr; } #if DEBUG_BOTTOM SkDebugf("%s %d bottom=%1.9g\n", __FUNCTION__, activeEdges ? 2 : 1, bottom); #endif return bottom; } static void makeEdgeList(SkTArray<InEdge>& edges, InEdge& edgeSentinel, SkTDArray<InEdge*>& edgeList) { size_t edgeCount = edges.count(); if (edgeCount == 0) { return; } int id = 0; for (size_t index = 0; index < edgeCount; ++index) { InEdge& edge = edges[index]; if (!edge.fWinding) { continue; } edge.fID = ++id; *edgeList.append() = &edge; } *edgeList.append() = &edgeSentinel; QSort<InEdge>(edgeList.begin(), edgeList.end() - 1); } static void makeHorizontalList(SkTDArray<HorizontalEdge>& edges, HorizontalEdge& edgeSentinel, SkTDArray<HorizontalEdge*>& edgeList) { size_t edgeCount = edges.count(); if (edgeCount == 0) { return; } for (size_t index = 0; index < edgeCount; ++index) { *edgeList.append() = &edges[index]; } edgeSentinel.fLeft = edgeSentinel.fRight = edgeSentinel.fY = SK_ScalarMax; *edgeList.append() = &edgeSentinel; QSort<HorizontalEdge>(edgeList.begin(), edgeList.end() - 1); } static void skipCoincidence(int lastWinding, int winding, int windingMask, ActiveEdge* activePtr, ActiveEdge* firstCoincident) { if (((lastWinding & windingMask) == 0) ^ ((winding & windingMask) != 0)) { return; } // FIXME: ? shouldn't this be if (lastWinding & windingMask) ? if (lastWinding) { #if DEBUG_ADJUST_COINCIDENT SkDebugf("%s edge=%d 1 set skip=false\n", __FUNCTION__, activePtr->ID()); #endif activePtr->fSkip = false; } else { #if DEBUG_ADJUST_COINCIDENT SkDebugf("%s edge=%d 2 set skip=false\n", __FUNCTION__, firstCoincident->ID()); #endif firstCoincident->fSkip = false; } } static void sortHorizontal(SkTDArray<ActiveEdge>& activeEdges, SkTDArray<ActiveEdge*>& edgeList, SkScalar y) { size_t edgeCount = activeEdges.count(); if (edgeCount == 0) { return; } #if DEBUG_SORT_HORIZONTAL const int tab = 3; // FIXME: debugging only SkDebugf("%s y=%1.9g\n", __FUNCTION__, y); #endif size_t index; for (index = 0; index < edgeCount; ++index) { ActiveEdge& activeEdge = activeEdges[index]; do { activeEdge.calcLeft(y); // skip segments that don't span y if (activeEdge.fAbove != activeEdge.fBelow) { break; } if (activeEdge.fDone) { #if DEBUG_SORT_HORIZONTAL SkDebugf("%*s edge=%d done\n", tab, "", activeEdge.ID()); #endif goto nextEdge; } #if DEBUG_SORT_HORIZONTAL SkDebugf("%*s edge=%d above==below\n", tab, "", activeEdge.ID()); #endif } while (activeEdge.advanceT() || activeEdge.advance()); #if DEBUG_SORT_HORIZONTAL SkDebugf("%*s edge=%d above=(%1.9g,%1.9g) (%1.9g) below=(%1.9g,%1.9g)" " (%1.9g)\n", tab, "", activeEdge.ID(), activeEdge.fAbove.fX, activeEdge.fAbove.fY, activeEdge.fTAbove, activeEdge.fBelow.fX, activeEdge.fBelow.fY, activeEdge.fTBelow); #endif activeEdge.fSkip = activeEdge.fCloseCall = activeEdge.fFixBelow = false; *edgeList.append() = &activeEdge; nextEdge: ; } QSort<ActiveEdge>(edgeList.begin(), edgeList.end() - 1); } // remove coincident edges // OPTIMIZE: remove edges? This is tricky because the current logic expects // the winding count to be maintained while skipping coincident edges. In // addition to removing the coincident edges, the remaining edges would need // to have a different winding value, possibly different per intercept span. static SkScalar adjustCoincident(SkTDArray<ActiveEdge*>& edgeList, int windingMask, SkScalar y, SkScalar bottom, OutEdgeBuilder& outBuilder) { #if DEBUG_ADJUST_COINCIDENT SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom); #endif size_t edgeCount = edgeList.count(); if (edgeCount == 0) { return bottom; } ActiveEdge* activePtr, * nextPtr = edgeList[0]; size_t index; bool foundCoincident = false; size_t firstIndex = 0; for (index = 1; index < edgeCount; ++index) { activePtr = nextPtr; nextPtr = edgeList[index]; if (firstIndex != index - 1 && activePtr->fVerb > SkPath::kLine_Verb && nextPtr->fVerb == SkPath::kLine_Verb && activePtr->isUnordered(nextPtr)) { // swap the line with the curve // back up to the previous edge and retest SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]); SkASSERT(index > 1); index -= 2; nextPtr = edgeList[index]; continue; } bool closeCall = false; activePtr->fCoincident = firstIndex; if (activePtr->isCoincidentWith(nextPtr) || (closeCall = activePtr->tooCloseToCall(nextPtr))) { activePtr->fSkip = nextPtr->fSkip = foundCoincident = true; activePtr->fCloseCall = nextPtr->fCloseCall = closeCall; } else if (activePtr->isUnordered(nextPtr)) { foundCoincident = true; } else { firstIndex = index; } } nextPtr->fCoincident = firstIndex; if (!foundCoincident) { return bottom; } int winding = 0; nextPtr = edgeList[0]; for (index = 1; index < edgeCount; ++index) { int priorWinding = winding; winding += activePtr->fWorkEdge.winding(); activePtr = nextPtr; nextPtr = edgeList[index]; SkASSERT(activePtr == edgeList[index - 1]); SkASSERT(nextPtr == edgeList[index]); if (activePtr->fCoincident != nextPtr->fCoincident) { continue; } // the coincident edges may not have been sorted above -- advance // the edges and resort if needed // OPTIMIZE: if sorting is done incrementally as new edges are added // and not all at once as is done here, fold this test into the // current less than test. while ((!activePtr->fSkip || !nextPtr->fSkip) && activePtr->fCoincident == nextPtr->fCoincident) { if (activePtr->swapUnordered(nextPtr, bottom)) { winding -= activePtr->fWorkEdge.winding(); SkASSERT(activePtr == edgeList[index - 1]); SkASSERT(nextPtr == edgeList[index]); SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]); if (--index == 0) { winding += activePtr->fWorkEdge.winding(); break; } // back up one activePtr = edgeList[index - 1]; continue; } SkASSERT(activePtr == edgeList[index - 1]); SkASSERT(nextPtr == edgeList[index]); break; } if (activePtr->fSkip && nextPtr->fSkip) { if (activePtr->fCloseCall ? activePtr->swapClose(nextPtr, priorWinding, winding, windingMask) : activePtr->swapCoincident(nextPtr, bottom)) { winding -= activePtr->fWorkEdge.winding(); SkASSERT(activePtr == edgeList[index - 1]); SkASSERT(nextPtr == edgeList[index]); SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]); SkTSwap<ActiveEdge*>(activePtr, nextPtr); winding += activePtr->fWorkEdge.winding(); SkASSERT(activePtr == edgeList[index - 1]); SkASSERT(nextPtr == edgeList[index]); } } } int firstCoincidentWinding = 0; ActiveEdge* firstCoincident = NULL; winding = 0; activePtr = edgeList[0]; for (index = 1; index < edgeCount; ++index) { int priorWinding = winding; winding += activePtr->fWorkEdge.winding(); nextPtr = edgeList[index]; if (activePtr->fSkip && nextPtr->fSkip && activePtr->fCoincident == nextPtr->fCoincident) { if (!firstCoincident) { firstCoincident = activePtr; firstCoincidentWinding = priorWinding; } if (activePtr->fCloseCall) { // If one of the edges has already been added to out as a non // coincident edge, trim it back to the top of this span if (outBuilder.trimLine(y, activePtr->ID())) { activePtr->addTatYAbove(y); #if DEBUG_ADJUST_COINCIDENT SkDebugf("%s 1 edge=%d y=%1.9g (was fYBottom=%1.9g)\n", __FUNCTION__, activePtr->ID(), y, activePtr->fYBottom); #endif activePtr->fYBottom = y; } if (outBuilder.trimLine(y, nextPtr->ID())) { nextPtr->addTatYAbove(y); #if DEBUG_ADJUST_COINCIDENT SkDebugf("%s 2 edge=%d y=%1.9g (was fYBottom=%1.9g)\n", __FUNCTION__, nextPtr->ID(), y, nextPtr->fYBottom); #endif nextPtr->fYBottom = y; } // add missing t values so edges can be the same length SkScalar testY = activePtr->fBelow.fY; nextPtr->addTatYBelow(testY); if (bottom > testY && testY > y) { #if DEBUG_ADJUST_COINCIDENT SkDebugf("%s 3 edge=%d bottom=%1.9g (was bottom=%1.9g)\n", __FUNCTION__, activePtr->ID(), testY, bottom); #endif bottom = testY; } testY = nextPtr->fBelow.fY; activePtr->addTatYBelow(testY); if (bottom > testY && testY > y) { #if DEBUG_ADJUST_COINCIDENT SkDebugf("%s 4 edge=%d bottom=%1.9g (was bottom=%1.9g)\n", __FUNCTION__, nextPtr->ID(), testY, bottom); #endif bottom = testY; } } } else if (firstCoincident) { skipCoincidence(firstCoincidentWinding, winding, windingMask, activePtr, firstCoincident); firstCoincident = NULL; } activePtr = nextPtr; } if (firstCoincident) { winding += activePtr->fWorkEdge.winding(); skipCoincidence(firstCoincidentWinding, winding, windingMask, activePtr, firstCoincident); } // fix up the bottom for close call edges. OPTIMIZATION: maybe this could // be in the loop above, but moved here since loop above reads fBelow and // it felt unsafe to write it in that loop for (index = 0; index < edgeCount; ++index) { (edgeList[index])->fixBelow(); } return bottom; } // stitch edge and t range that satisfies operation static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar #if DEBUG_STITCH_EDGE y #endif , SkScalar bottom, int windingMask, bool fill, OutEdgeBuilder& outBuilder) { int winding = 0; ActiveEdge** activeHandle = edgeList.begin() - 1; ActiveEdge** lastActive = edgeList.end(); #if DEBUG_STITCH_EDGE const int tab = 7; // FIXME: debugging only SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom); #endif while (++activeHandle != lastActive) { ActiveEdge* activePtr = *activeHandle; const WorkEdge& wt = activePtr->fWorkEdge; int lastWinding = winding; winding += wt.winding(); #if DEBUG_STITCH_EDGE SkDebugf("%*s edge=%d lastWinding=%d winding=%d skip=%d close=%d" " above=%1.9g below=%1.9g\n", tab-4, "", activePtr->ID(), lastWinding, winding, activePtr->fSkip, activePtr->fCloseCall, activePtr->fTAbove, activePtr->fTBelow); #endif if (activePtr->done(bottom)) { #if DEBUG_STITCH_EDGE SkDebugf("%*s fDone=%d || fYBottom=%1.9g >= bottom\n", tab, "", activePtr->fDone, activePtr->fYBottom); #endif continue; } int opener = (lastWinding & windingMask) == 0; bool closer = (winding & windingMask) == 0; SkASSERT(!opener | !closer); bool inWinding = opener | closer; SkPoint clippedPts[4]; const SkPoint* clipped = NULL; bool moreToDo, aboveBottom; do { double currentT = activePtr->t(); const SkPoint* points = wt.fPts; double nextT; SkPath::Verb verb = activePtr->fVerb; do { nextT = activePtr->nextT(); // FIXME: obtuse: want efficient way to say // !currentT && currentT != 1 || !nextT && nextT != 1 if (currentT * nextT != 0 || currentT + nextT != 1) { // OPTIMIZATION: if !inWinding, we only need // clipped[1].fY switch (verb) { case SkPath::kLine_Verb: LineSubDivide(points, currentT, nextT, clippedPts); break; case SkPath::kQuad_Verb: QuadSubDivide(points, currentT, nextT, clippedPts); break; case SkPath::kCubic_Verb: CubicSubDivide(points, currentT, nextT, clippedPts); break; default: SkASSERT(0); break; } clipped = clippedPts; } else { clipped = points; } if (inWinding && !activePtr->fSkip && (fill ? clipped[0].fY != clipped[verb].fY : clipped[0] != clipped[verb])) { #if DEBUG_STITCH_EDGE SkDebugf("%*s add%s %1.9g,%1.9g %1.9g,%1.9g edge=%d" " v=%d t=(%1.9g,%1.9g)\n", tab, "", kUVerbStr[verb], clipped[0].fX, clipped[0].fY, clipped[verb].fX, clipped[verb].fY, activePtr->ID(), activePtr->fWorkEdge.fVerb - activePtr->fWorkEdge.fEdge->fVerbs.begin(), currentT, nextT); #endif outBuilder.addCurve(clipped, (SkPath::Verb) verb, activePtr->fWorkEdge.fEdge->fID, activePtr->fCloseCall); } else { #if DEBUG_STITCH_EDGE SkDebugf("%*s skip%s %1.9g,%1.9g %1.9g,%1.9g" " edge=%d v=%d t=(%1.9g,%1.9g)\n", tab, "", kUVerbStr[verb], clipped[0].fX, clipped[0].fY, clipped[verb].fX, clipped[verb].fY, activePtr->ID(), activePtr->fWorkEdge.fVerb - activePtr->fWorkEdge.fEdge->fVerbs.begin(), currentT, nextT); #endif } // by advancing fAbove/fBelow, the next call to sortHorizontal // will use these values if they're still valid instead of // recomputing if (clipped[verb].fY > activePtr->fBelow.fY && bottom >= activePtr->fBelow.fY && verb == SkPath::kLine_Verb) { activePtr->fAbove = activePtr->fBelow; activePtr->fBelow = activePtr->fTangent = clipped[verb]; activePtr->fTAbove = activePtr->fTBelow < 1 ? activePtr->fTBelow : 0; activePtr->fTBelow = nextT; } currentT = nextT; moreToDo = activePtr->advanceT(); activePtr->fYBottom = clipped[verb].fY; // was activePtr->fCloseCall ? bottom : // clearing the fSkip/fCloseCall bit here means that trailing edges // fall out of sync, if one edge is long and another is a series of short pieces // if fSkip/fCloseCall is set, need to recompute coincidence/too-close-to-call // after advancing // another approach would be to restrict bottom to smaller part of close call // maybe this is already happening with coincidence when intersection is computed, // and needs to be added to the close call computation as well // this is hard to do because that the bottom is important is not known when // the lines are intersected; only when the computation for edge sorting is done // does the need for new bottoms become apparent. // maybe this is good incentive to scrap the current sort and do an insertion // sort that can take this into consideration when the x value is computed // FIXME: initialized in sortHorizontal, cleared here as well so // that next edge is not skipped -- but should skipped edges ever // continue? (probably not) aboveBottom = clipped[verb].fY < bottom; if (clipped[0].fY != clipped[verb].fY) { activePtr->fSkip = false; activePtr->fCloseCall = false; aboveBottom &= !activePtr->fCloseCall; } #if DEBUG_STITCH_EDGE else { if (activePtr->fSkip || activePtr->fCloseCall) { SkDebugf("%s skip or close == %1.9g\n", __FUNCTION__, clippedPts[0].fY); } } #endif } while (moreToDo & aboveBottom); } while ((moreToDo || activePtr->advance()) & aboveBottom); } } #if DEBUG_DUMP static void dumpEdgeList(const SkTDArray<InEdge*>& edgeList, const InEdge& edgeSentinel) { InEdge** debugPtr = edgeList.begin(); do { (*debugPtr++)->dump(); } while (*debugPtr != &edgeSentinel); } #else static void dumpEdgeList(const SkTDArray<InEdge*>& , const InEdge& ) { } #endif void simplify(const SkPath& path, bool asFill, SkPath& simple) { // returns 1 for evenodd, -1 for winding, regardless of inverse-ness int windingMask = (path.getFillType() & 1) ? 1 : -1; simple.reset(); simple.setFillType(SkPath::kEvenOdd_FillType); // turn path into list of edges increasing in y // if an edge is a quad or a cubic with a y extrema, note it, but leave it // unbroken. Once we have a list, sort it, then walk the list (walk edges // twice that have y extrema's on top) and detect crossings -- look for raw // bounds that cross over, then tight bounds that cross SkTArray<InEdge> edges; SkTDArray<HorizontalEdge> horizontalEdges; InEdgeBuilder builder(path, asFill, edges, horizontalEdges); SkTDArray<InEdge*> edgeList; InEdge edgeSentinel; edgeSentinel.reset(); makeEdgeList(edges, edgeSentinel, edgeList); SkTDArray<HorizontalEdge*> horizontalList; HorizontalEdge horizontalSentinel; makeHorizontalList(horizontalEdges, horizontalSentinel, horizontalList); InEdge** currentPtr = edgeList.begin(); if (!currentPtr) { return; } // find all intersections between edges // beyond looking for horizontal intercepts, we need to know if any active edges // intersect edges below 'bottom', but above the active edge segment. // maybe it makes more sense to compute all intercepts before doing anything // else, since the intercept list is long-lived, at least in the current design. SkScalar y = (*currentPtr)->fBounds.fTop; HorizontalEdge** currentHorizontal = horizontalList.begin(); do { InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set SkScalar bottom = findBottom(currentPtr, edgeList.end(), NULL, y, asFill, lastPtr); if (lastPtr > currentPtr) { if (currentHorizontal) { if ((*currentHorizontal)->fY < SK_ScalarMax) { addBottomT(currentPtr, lastPtr, currentHorizontal); } currentHorizontal = advanceHorizontal(currentHorizontal, bottom); } addIntersectingTs(currentPtr, lastPtr); } y = bottom; currentPtr = advanceEdges(NULL, currentPtr, lastPtr, y); } while (*currentPtr != &edgeSentinel); // if a quadratic or cubic now has an intermediate T value, see if the Ts // on either side cause the Y values to monotonically increase. If not, split // the curve at the new T. // try an alternate approach which does not split curves or stitch edges // (may still need adjustCoincident, though) // the idea is to output non-intersecting contours, then figure out their // respective winding contribution // each contour will need to know whether it is CW or CCW, and then whether // a ray from that contour hits any a contour that contains it. The ray can // move to the left and then arbitrarily move up or down (as long as it never // moves to the right) to find a reference sibling contour or containing // contour. If the contour is part of an intersection, the companion contour // that is part of the intersection can determine the containership. if (builder.containsCurves()) { currentPtr = edgeList.begin(); SkTArray<InEdge> splits; do { (*currentPtr)->splitInflectionPts(splits); } while (*++currentPtr != &edgeSentinel); if (splits.count()) { for (int index = 0; index < splits.count(); ++index) { edges.push_back(splits[index]); } edgeList.reset(); makeEdgeList(edges, edgeSentinel, edgeList); } } dumpEdgeList(edgeList, edgeSentinel); // walk the sorted edges from top to bottom, computing accumulated winding SkTDArray<ActiveEdge> activeEdges; OutEdgeBuilder outBuilder(asFill); currentPtr = edgeList.begin(); y = (*currentPtr)->fBounds.fTop; do { InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set SkScalar bottom = findBottom(currentPtr, edgeList.end(), &activeEdges, y, asFill, lastPtr); if (lastPtr > currentPtr) { bottom = computeInterceptBottom(activeEdges, y, bottom); SkTDArray<ActiveEdge*> activeEdgeList; sortHorizontal(activeEdges, activeEdgeList, y); bottom = adjustCoincident(activeEdgeList, windingMask, y, bottom, outBuilder); stitchEdge(activeEdgeList, y, bottom, windingMask, asFill, outBuilder); } y = bottom; // OPTIMIZATION: as edges expire, InEdge allocations could be released currentPtr = advanceEdges(&activeEdges, currentPtr, lastPtr, y); } while (*currentPtr != &edgeSentinel); // assemble output path from string of pts, verbs outBuilder.bridge(); outBuilder.assemble(simple); }