/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "Intersections.h" #include "IntersectionUtilities.h" #include "LineIntersection.h" #include "LineUtilities.h" #include "QuadraticLineSegments.h" #include "QuadraticUtilities.h" #include <algorithm> // for swap static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections class QuadraticIntersections { public: QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i) : quad1(q1) , quad2(q2) , intersections(i) , depth(0) , splits(0) , coinMinT1(-1) { } bool intersect() { double minT1, minT2, maxT1, maxT2; if (!bezier_clip(quad2, quad1, minT1, maxT1)) { return false; } if (!bezier_clip(quad1, quad2, minT2, maxT2)) { return false; } quad1Divisions = 1 / subDivisions(quad1); quad2Divisions = 1 / subDivisions(quad2); int split; if (maxT1 - minT1 < maxT2 - minT2) { intersections.swap(); minT2 = 0; maxT2 = 1; split = maxT1 - minT1 > tClipLimit; } else { minT1 = 0; maxT1 = 1; split = (maxT2 - minT2 > tClipLimit) << 1; } return chop(minT1, maxT1, minT2, maxT2, split); } protected: bool intersect(double minT1, double maxT1, double minT2, double maxT2) { bool t1IsLine = maxT1 - minT1 <= quad1Divisions; bool t2IsLine = maxT2 - minT2 <= quad2Divisions; if (t1IsLine | t2IsLine) { return intersectAsLine(minT1, maxT1, minT2, maxT2, t1IsLine, t2IsLine); } Quadratic smaller, larger; // FIXME: carry last subdivide and reduceOrder result with quad sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller); sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger); double minT, maxT; if (!bezier_clip(smaller, larger, minT, maxT)) { if (approximately_equal(minT, maxT)) { double smallT, largeT; _Point q2pt, q1pt; if (intersections.swapped()) { largeT = interp(minT2, maxT2, minT); xy_at_t(quad2, largeT, q2pt.x, q2pt.y); xy_at_t(quad1, minT1, q1pt.x, q1pt.y); if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) { smallT = minT1; } else { xy_at_t(quad1, maxT1, q1pt.x, q1pt.y); // FIXME: debug code SkASSERT(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)); smallT = maxT1; } } else { smallT = interp(minT1, maxT1, minT); xy_at_t(quad1, smallT, q1pt.x, q1pt.y); xy_at_t(quad2, minT2, q2pt.x, q2pt.y); if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) { largeT = minT2; } else { xy_at_t(quad2, maxT2, q2pt.x, q2pt.y); // FIXME: debug code SkASSERT(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)); largeT = maxT2; } } intersections.add(smallT, largeT); return true; } return false; } int split; if (intersections.swapped()) { double newMinT1 = interp(minT1, maxT1, minT); double newMaxT1 = interp(minT1, maxT1, maxT); split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1; #define VERBOSE 0 #if VERBOSE printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth, splits, newMinT1, newMaxT1, minT1, maxT1, split); #endif minT1 = newMinT1; maxT1 = newMaxT1; } else { double newMinT2 = interp(minT2, maxT2, minT); double newMaxT2 = interp(minT2, maxT2, maxT); split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit; #if VERBOSE printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth, splits, newMinT2, newMaxT2, minT2, maxT2, split); #endif minT2 = newMinT2; maxT2 = newMaxT2; } return chop(minT1, maxT1, minT2, maxT2, split); } bool intersectAsLine(double minT1, double maxT1, double minT2, double maxT2, bool treat1AsLine, bool treat2AsLine) { _Line line1, line2; if (intersections.swapped()) { SkTSwap(treat1AsLine, treat2AsLine); SkTSwap(minT1, minT2); SkTSwap(maxT1, maxT2); } if (coinMinT1 >= 0) { bool earlyExit; if ((earlyExit = coinMaxT1 == minT1)) { coinMaxT1 = maxT1; } if (coinMaxT2 == minT2) { coinMaxT2 = maxT2; return true; } if (earlyExit) { return true; } coinMinT1 = -1; } // do line/quadratic or even line/line intersection instead if (treat1AsLine) { xy_at_t(quad1, minT1, line1[0].x, line1[0].y); xy_at_t(quad1, maxT1, line1[1].x, line1[1].y); } if (treat2AsLine) { xy_at_t(quad2, minT2, line2[0].x, line2[0].y); xy_at_t(quad2, maxT2, line2[1].x, line2[1].y); } int pts; double smallT1, largeT1, smallT2, largeT2; if (treat1AsLine & treat2AsLine) { double t1[2], t2[2]; pts = ::intersect(line1, line2, t1, t2); if (pts == 2) { smallT1 = interp(minT1, maxT1, t1[0]); largeT1 = interp(minT2, maxT2, t2[0]); smallT2 = interp(minT1, maxT1, t1[1]); largeT2 = interp(minT2, maxT2, t2[1]); intersections.addCoincident(smallT1, smallT2, largeT1, largeT2); } else { smallT1 = interp(minT1, maxT1, t1[0]); largeT1 = interp(minT2, maxT2, t2[0]); intersections.add(smallT1, largeT1); } } else { Intersections lq; pts = ::intersect(treat1AsLine ? quad2 : quad1, treat1AsLine ? line1 : line2, lq); if (pts == 2) { // if the line and edge are coincident treat differently _Point midQuad, midLine; double midQuadT = (lq.fT[0][0] + lq.fT[0][1]) / 2; xy_at_t(treat1AsLine ? quad2 : quad1, midQuadT, midQuad.x, midQuad.y); double lineT = t_at(treat1AsLine ? line1 : line2, midQuad); xy_at_t(treat1AsLine ? line1 : line2, lineT, midLine.x, midLine.y); if (AlmostEqualUlps(midQuad.x, midLine.x) && AlmostEqualUlps(midQuad.y, midLine.y)) { smallT1 = lq.fT[0][0]; largeT1 = lq.fT[1][0]; smallT2 = lq.fT[0][1]; largeT2 = lq.fT[1][1]; if (treat2AsLine) { smallT1 = interp(minT1, maxT1, smallT1); smallT2 = interp(minT1, maxT1, smallT2); } else { largeT1 = interp(minT2, maxT2, largeT1); largeT2 = interp(minT2, maxT2, largeT2); } intersections.addCoincident(smallT1, smallT2, largeT1, largeT2); goto setCoinMinMax; } } for (int index = 0; index < pts; ++index) { smallT1 = lq.fT[0][index]; largeT1 = lq.fT[1][index]; if (treat2AsLine) { smallT1 = interp(minT1, maxT1, smallT1); } else { largeT1 = interp(minT2, maxT2, largeT1); } intersections.add(smallT1, largeT1); } } if (pts > 0) { setCoinMinMax: coinMinT1 = minT1; coinMaxT1 = maxT1; coinMinT2 = minT2; coinMaxT2 = maxT2; } return pts > 0; } bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) { ++depth; intersections.swap(); if (split) { ++splits; if (split & 2) { double middle1 = (maxT1 + minT1) / 2; intersect(minT1, middle1, minT2, maxT2); intersect(middle1, maxT1, minT2, maxT2); } else { double middle2 = (maxT2 + minT2) / 2; intersect(minT1, maxT1, minT2, middle2); intersect(minT1, maxT1, middle2, maxT2); } --splits; intersections.swap(); --depth; return intersections.intersected(); } bool result = intersect(minT1, maxT1, minT2, maxT2); intersections.swap(); --depth; return result; } private: const Quadratic& quad1; const Quadratic& quad2; Intersections& intersections; int depth; int splits; double quad1Divisions; // line segments to approximate original within error double quad2Divisions; double coinMinT1; // range of Ts where approximate line intersected curve double coinMaxT1; double coinMinT2; double coinMaxT2; }; #include "LineParameters.h" static void hackToFixPartialCoincidence(const Quadratic& q1, const Quadratic& q2, Intersections& i) { // look to see if non-coincident data basically has unsortable tangents // look to see if a point between non-coincident data is on the curve int cIndex; for (int uIndex = 0; uIndex < i.fUsed; ) { double bestDist1 = 1; double bestDist2 = 1; int closest1 = -1; int closest2 = -1; for (cIndex = 0; cIndex < i.fCoincidentUsed; ++cIndex) { double dist = fabs(i.fT[0][uIndex] - i.fCoincidentT[0][cIndex]); if (bestDist1 > dist) { bestDist1 = dist; closest1 = cIndex; } dist = fabs(i.fT[1][uIndex] - i.fCoincidentT[1][cIndex]); if (bestDist2 > dist) { bestDist2 = dist; closest2 = cIndex; } } _Line ends; _Point mid; double t1 = i.fT[0][uIndex]; xy_at_t(q1, t1, ends[0].x, ends[0].y); xy_at_t(q1, i.fCoincidentT[0][closest1], ends[1].x, ends[1].y); double midT = (t1 + i.fCoincidentT[0][closest1]) / 2; xy_at_t(q1, midT, mid.x, mid.y); LineParameters params; params.lineEndPoints(ends); double midDist = params.pointDistance(mid); // Note that we prefer to always measure t error, which does not scale, // instead of point error, which is scale dependent. FIXME if (!approximately_zero(midDist)) { ++uIndex; continue; } double t2 = i.fT[1][uIndex]; xy_at_t(q2, t2, ends[0].x, ends[0].y); xy_at_t(q2, i.fCoincidentT[1][closest2], ends[1].x, ends[1].y); midT = (t2 + i.fCoincidentT[1][closest2]) / 2; xy_at_t(q2, midT, mid.x, mid.y); params.lineEndPoints(ends); midDist = params.pointDistance(mid); if (!approximately_zero(midDist)) { ++uIndex; continue; } // if both midpoints are close to the line, lengthen coincident span int cEnd = closest1 ^ 1; // assume coincidence always travels in pairs if (!between(i.fCoincidentT[0][cEnd], t1, i.fCoincidentT[0][closest1])) { i.fCoincidentT[0][closest1] = t1; } cEnd = closest2 ^ 1; if (!between(i.fCoincidentT[0][cEnd], t2, i.fCoincidentT[0][closest2])) { i.fCoincidentT[0][closest2] = t2; } int remaining = --i.fUsed - uIndex; if (remaining > 0) { memmove(&i.fT[0][uIndex], &i.fT[0][uIndex + 1], sizeof(i.fT[0][0]) * remaining); memmove(&i.fT[1][uIndex], &i.fT[1][uIndex + 1], sizeof(i.fT[1][0]) * remaining); } } // if coincident data is subjectively a tiny span, replace it with a single point for (cIndex = 0; cIndex < i.fCoincidentUsed; ) { double start1 = i.fCoincidentT[0][cIndex]; double end1 = i.fCoincidentT[0][cIndex + 1]; _Line ends1; xy_at_t(q1, start1, ends1[0].x, ends1[0].y); xy_at_t(q1, end1, ends1[1].x, ends1[1].y); if (!AlmostEqualUlps(ends1[0].x, ends1[1].x) || AlmostEqualUlps(ends1[0].y, ends1[1].y)) { cIndex += 2; continue; } double start2 = i.fCoincidentT[1][cIndex]; double end2 = i.fCoincidentT[1][cIndex + 1]; _Line ends2; xy_at_t(q2, start2, ends2[0].x, ends2[0].y); xy_at_t(q2, end2, ends2[1].x, ends2[1].y); // again, approximately should be used with T values, not points FIXME if (!AlmostEqualUlps(ends2[0].x, ends2[1].x) || AlmostEqualUlps(ends2[0].y, ends2[1].y)) { cIndex += 2; continue; } if (approximately_less_than_zero(start1) || approximately_less_than_zero(end1)) { start1 = 0; } else if (approximately_greater_than_one(start1) || approximately_greater_than_one(end1)) { start1 = 1; } else { start1 = (start1 + end1) / 2; } if (approximately_less_than_zero(start2) || approximately_less_than_zero(end2)) { start2 = 0; } else if (approximately_greater_than_one(start2) || approximately_greater_than_one(end2)) { start2 = 1; } else { start2 = (start2 + end2) / 2; } i.insert(start1, start2); i.fCoincidentUsed -= 2; int remaining = i.fCoincidentUsed - cIndex; if (remaining > 0) { memmove(&i.fCoincidentT[0][cIndex], &i.fCoincidentT[0][cIndex + 2], sizeof(i.fCoincidentT[0][0]) * remaining); memmove(&i.fCoincidentT[1][cIndex], &i.fCoincidentT[1][cIndex + 2], sizeof(i.fCoincidentT[1][0]) * remaining); } } } bool intersect(const Quadratic& q1, const Quadratic& q2, Intersections& i) { if (implicit_matches(q1, q2)) { // FIXME: compute T values // compute the intersections of the ends to find the coincident span bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y); double t; if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) { i.addCoincident(t, 0); } if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) { i.addCoincident(t, 1); } useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y); if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) { i.addCoincident(0, t); } if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) { i.addCoincident(1, t); } SkASSERT(i.fCoincidentUsed <= 2); return i.fCoincidentUsed > 0; } QuadraticIntersections q(q1, q2, i); bool result = q.intersect(); // FIXME: partial coincidence detection is currently poor. For now, try // to fix up the data after the fact. In the future, revisit the error // term to try to avoid this kind of result in the first place. if (i.fUsed && i.fCoincidentUsed) { hackToFixPartialCoincidence(q1, q2, i); } return result; }