// Copyright 2013, ARM Limited // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "utils-vixl.h" #include "a64/cpu-a64.h" namespace vixl { // Initialise to smallest possible cache size. unsigned CPU::dcache_line_size_ = 1; unsigned CPU::icache_line_size_ = 1; // Currently computes I and D cache line size. void CPU::SetUp() { uint32_t cache_type_register = GetCacheType(); // The cache type register holds information about the caches, including I // D caches line size. static const int kDCacheLineSizeShift = 16; static const int kICacheLineSizeShift = 0; static const uint32_t kDCacheLineSizeMask = 0xf << kDCacheLineSizeShift; static const uint32_t kICacheLineSizeMask = 0xf << kICacheLineSizeShift; // The cache type register holds the size of the I and D caches as a power of // two. uint32_t dcache_line_size_power_of_two = (cache_type_register & kDCacheLineSizeMask) >> kDCacheLineSizeShift; uint32_t icache_line_size_power_of_two = (cache_type_register & kICacheLineSizeMask) >> kICacheLineSizeShift; dcache_line_size_ = 1 << dcache_line_size_power_of_two; icache_line_size_ = 1 << icache_line_size_power_of_two; } uint32_t CPU::GetCacheType() { #ifdef USE_SIMULATOR // This will lead to a cache with 1 byte long lines, which is fine since the // simulator will not need this information. return 0; #else uint32_t cache_type_register; // Copy the content of the cache type register to a core register. __asm__ __volatile__ ("mrs %[ctr], ctr_el0" // NOLINT : [ctr] "=r" (cache_type_register)); return cache_type_register; #endif } void CPU::EnsureIAndDCacheCoherency(void *address, size_t length) { #ifdef USE_SIMULATOR USE(address); USE(length); // TODO: consider adding cache simulation to ensure every address run has been // synchronised. #else // The code below assumes user space cache operations are allowed. uintptr_t start = reinterpret_cast<uintptr_t>(address); // Sizes will be used to generate a mask big enough to cover a pointer. uintptr_t dsize = static_cast<uintptr_t>(dcache_line_size_); uintptr_t isize = static_cast<uintptr_t>(icache_line_size_); // Cache line sizes are always a power of 2. VIXL_ASSERT(CountSetBits(dsize, 64) == 1); VIXL_ASSERT(CountSetBits(isize, 64) == 1); uintptr_t dstart = start & ~(dsize - 1); uintptr_t istart = start & ~(isize - 1); uintptr_t end = start + length; __asm__ __volatile__ ( // NOLINT // Clean every line of the D cache containing the target data. "0: \n\t" // dc : Data Cache maintenance // c : Clean // va : by (Virtual) Address // u : to the point of Unification // The point of unification for a processor is the point by which the // instruction and data caches are guaranteed to see the same copy of a // memory location. See ARM DDI 0406B page B2-12 for more information. "dc cvau, %[dline] \n\t" "add %[dline], %[dline], %[dsize] \n\t" "cmp %[dline], %[end] \n\t" "b.lt 0b \n\t" // Barrier to make sure the effect of the code above is visible to the rest // of the world. // dsb : Data Synchronisation Barrier // ish : Inner SHareable domain // The point of unification for an Inner Shareable shareability domain is // the point by which the instruction and data caches of all the processors // in that Inner Shareable shareability domain are guaranteed to see the // same copy of a memory location. See ARM DDI 0406B page B2-12 for more // information. "dsb ish \n\t" // Invalidate every line of the I cache containing the target data. "1: \n\t" // ic : instruction cache maintenance // i : invalidate // va : by address // u : to the point of unification "ic ivau, %[iline] \n\t" "add %[iline], %[iline], %[isize] \n\t" "cmp %[iline], %[end] \n\t" "b.lt 1b \n\t" // Barrier to make sure the effect of the code above is visible to the rest // of the world. "dsb ish \n\t" // Barrier to ensure any prefetching which happened before this code is // discarded. // isb : Instruction Synchronisation Barrier "isb \n\t" : [dline] "+r" (dstart), [iline] "+r" (istart) : [dsize] "r" (dsize), [isize] "r" (isize), [end] "r" (end) // This code does not write to memory but without the dependency gcc might // move this code before the code is generated. : "cc", "memory" ); // NOLINT #endif } } // namespace vixl