// Copyright 2013, ARM Limited // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef VIXL_A64_INSTRUCTIONS_A64_H_ #define VIXL_A64_INSTRUCTIONS_A64_H_ #include "globals-vixl.h" #include "utils-vixl.h" #include "a64/constants-a64.h" namespace vixl { // ISA constants. -------------------------------------------------------------- typedef uint32_t Instr; const unsigned kInstructionSize = 4; const unsigned kInstructionSizeLog2 = 2; const unsigned kLiteralEntrySize = 4; const unsigned kLiteralEntrySizeLog2 = 2; const unsigned kMaxLoadLiteralRange = 1 * MBytes; const unsigned kWRegSize = 32; const unsigned kWRegSizeLog2 = 5; const unsigned kWRegSizeInBytes = kWRegSize / 8; const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3; const unsigned kXRegSize = 64; const unsigned kXRegSizeLog2 = 6; const unsigned kXRegSizeInBytes = kXRegSize / 8; const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3; const unsigned kSRegSize = 32; const unsigned kSRegSizeLog2 = 5; const unsigned kSRegSizeInBytes = kSRegSize / 8; const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3; const unsigned kDRegSize = 64; const unsigned kDRegSizeLog2 = 6; const unsigned kDRegSizeInBytes = kDRegSize / 8; const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3; const uint64_t kWRegMask = UINT64_C(0xffffffff); const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff); const uint64_t kSRegMask = UINT64_C(0xffffffff); const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff); const uint64_t kSSignMask = UINT64_C(0x80000000); const uint64_t kDSignMask = UINT64_C(0x8000000000000000); const uint64_t kWSignMask = UINT64_C(0x80000000); const uint64_t kXSignMask = UINT64_C(0x8000000000000000); const uint64_t kByteMask = UINT64_C(0xff); const uint64_t kHalfWordMask = UINT64_C(0xffff); const uint64_t kWordMask = UINT64_C(0xffffffff); const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff); const uint64_t kWMaxUInt = UINT64_C(0xffffffff); const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff); const int64_t kXMinInt = INT64_C(0x8000000000000000); const int32_t kWMaxInt = INT32_C(0x7fffffff); const int32_t kWMinInt = INT32_C(0x80000000); const unsigned kLinkRegCode = 30; const unsigned kZeroRegCode = 31; const unsigned kSPRegInternalCode = 63; const unsigned kRegCodeMask = 0x1f; // AArch64 floating-point specifics. These match IEEE-754. const unsigned kDoubleMantissaBits = 52; const unsigned kDoubleExponentBits = 11; const unsigned kFloatMantissaBits = 23; const unsigned kFloatExponentBits = 8; const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000); const float kFP32NegativeInfinity = rawbits_to_float(0xff800000); const double kFP64PositiveInfinity = rawbits_to_double(UINT64_C(0x7ff0000000000000)); const double kFP64NegativeInfinity = rawbits_to_double(UINT64_C(0xfff0000000000000)); // This value is a signalling NaN as both a double and as a float (taking the // least-significant word). static const double kFP64SignallingNaN = rawbits_to_double(UINT64_C(0x7ff000007f800001)); static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001); // A similar value, but as a quiet NaN. static const double kFP64QuietNaN = rawbits_to_double(UINT64_C(0x7ff800007fc00001)); static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001); // The default NaN values (for FPCR.DN=1). static const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000)); static const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000); enum LSDataSize { LSByte = 0, LSHalfword = 1, LSWord = 2, LSDoubleWord = 3 }; LSDataSize CalcLSPairDataSize(LoadStorePairOp op); enum ImmBranchType { UnknownBranchType = 0, CondBranchType = 1, UncondBranchType = 2, CompareBranchType = 3, TestBranchType = 4 }; enum AddrMode { Offset, PreIndex, PostIndex }; enum FPRounding { // The first four values are encodable directly by FPCR<RMode>. FPTieEven = 0x0, FPPositiveInfinity = 0x1, FPNegativeInfinity = 0x2, FPZero = 0x3, // The final rounding mode is only available when explicitly specified by the // instruction (such as with fcvta). It cannot be set in FPCR. FPTieAway }; enum Reg31Mode { Reg31IsStackPointer, Reg31IsZeroRegister }; // Instructions. --------------------------------------------------------------- class Instruction { public: inline Instr InstructionBits() const { return *(reinterpret_cast<const Instr*>(this)); } inline void SetInstructionBits(Instr new_instr) { *(reinterpret_cast<Instr*>(this)) = new_instr; } inline int Bit(int pos) const { return (InstructionBits() >> pos) & 1; } inline uint32_t Bits(int msb, int lsb) const { return unsigned_bitextract_32(msb, lsb, InstructionBits()); } inline int32_t SignedBits(int msb, int lsb) const { int32_t bits = *(reinterpret_cast<const int32_t*>(this)); return signed_bitextract_32(msb, lsb, bits); } inline Instr Mask(uint32_t mask) const { return InstructionBits() & mask; } #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \ inline int64_t Name() const { return Func(HighBit, LowBit); } INSTRUCTION_FIELDS_LIST(DEFINE_GETTER) #undef DEFINE_GETTER // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST), // formed from ImmPCRelLo and ImmPCRelHi. int ImmPCRel() const { int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo()); int const width = ImmPCRelLo_width + ImmPCRelHi_width; return signed_bitextract_32(width-1, 0, offset); } uint64_t ImmLogical(); float ImmFP32(); double ImmFP64(); inline LSDataSize SizeLSPair() const { return CalcLSPairDataSize( static_cast<LoadStorePairOp>(Mask(LoadStorePairMask))); } // Helpers. inline bool IsCondBranchImm() const { return Mask(ConditionalBranchFMask) == ConditionalBranchFixed; } inline bool IsUncondBranchImm() const { return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed; } inline bool IsCompareBranch() const { return Mask(CompareBranchFMask) == CompareBranchFixed; } inline bool IsTestBranch() const { return Mask(TestBranchFMask) == TestBranchFixed; } inline bool IsPCRelAddressing() const { return Mask(PCRelAddressingFMask) == PCRelAddressingFixed; } inline bool IsLogicalImmediate() const { return Mask(LogicalImmediateFMask) == LogicalImmediateFixed; } inline bool IsAddSubImmediate() const { return Mask(AddSubImmediateFMask) == AddSubImmediateFixed; } inline bool IsAddSubExtended() const { return Mask(AddSubExtendedFMask) == AddSubExtendedFixed; } inline bool IsLoadOrStore() const { return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed; } inline bool IsMovn() const { return (Mask(MoveWideImmediateMask) == MOVN_x) || (Mask(MoveWideImmediateMask) == MOVN_w); } // Indicate whether Rd can be the stack pointer or the zero register. This // does not check that the instruction actually has an Rd field. inline Reg31Mode RdMode() const { // The following instructions use sp or wsp as Rd: // Add/sub (immediate) when not setting the flags. // Add/sub (extended) when not setting the flags. // Logical (immediate) when not setting the flags. // Otherwise, r31 is the zero register. if (IsAddSubImmediate() || IsAddSubExtended()) { if (Mask(AddSubSetFlagsBit)) { return Reg31IsZeroRegister; } else { return Reg31IsStackPointer; } } if (IsLogicalImmediate()) { // Of the logical (immediate) instructions, only ANDS (and its aliases) // can set the flags. The others can all write into sp. // Note that some logical operations are not available to // immediate-operand instructions, so we have to combine two masks here. if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) { return Reg31IsZeroRegister; } else { return Reg31IsStackPointer; } } return Reg31IsZeroRegister; } // Indicate whether Rn can be the stack pointer or the zero register. This // does not check that the instruction actually has an Rn field. inline Reg31Mode RnMode() const { // The following instructions use sp or wsp as Rn: // All loads and stores. // Add/sub (immediate). // Add/sub (extended). // Otherwise, r31 is the zero register. if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) { return Reg31IsStackPointer; } return Reg31IsZeroRegister; } inline ImmBranchType BranchType() const { if (IsCondBranchImm()) { return CondBranchType; } else if (IsUncondBranchImm()) { return UncondBranchType; } else if (IsCompareBranch()) { return CompareBranchType; } else if (IsTestBranch()) { return TestBranchType; } else { return UnknownBranchType; } } // Find the target of this instruction. 'this' may be a branch or a // PC-relative addressing instruction. Instruction* ImmPCOffsetTarget(); // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or // a PC-relative addressing instruction. void SetImmPCOffsetTarget(Instruction* target); // Patch a literal load instruction to load from 'source'. void SetImmLLiteral(Instruction* source); inline uint8_t* LiteralAddress() { int offset = ImmLLiteral() << kLiteralEntrySizeLog2; return reinterpret_cast<uint8_t*>(this) + offset; } inline uint32_t Literal32() { uint32_t literal; memcpy(&literal, LiteralAddress(), sizeof(literal)); return literal; } inline uint64_t Literal64() { uint64_t literal; memcpy(&literal, LiteralAddress(), sizeof(literal)); return literal; } inline float LiteralFP32() { return rawbits_to_float(Literal32()); } inline double LiteralFP64() { return rawbits_to_double(Literal64()); } inline Instruction* NextInstruction() { return this + kInstructionSize; } inline Instruction* InstructionAtOffset(int64_t offset) { VIXL_ASSERT(IsWordAligned(this + offset)); return this + offset; } template<typename T> static inline Instruction* Cast(T src) { return reinterpret_cast<Instruction*>(src); } private: inline int ImmBranch() const; void SetPCRelImmTarget(Instruction* target); void SetBranchImmTarget(Instruction* target); }; } // namespace vixl #endif // VIXL_A64_INSTRUCTIONS_A64_H_