// Copyright 2013, ARM Limited // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifdef USE_SIMULATOR #include <string.h> #include <cmath> #include "a64/simulator-a64.h" namespace vixl { const Instruction* Simulator::kEndOfSimAddress = NULL; void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) { int width = msb - lsb + 1; VIXL_ASSERT(is_uintn(width, bits) || is_intn(width, bits)); bits <<= lsb; uint32_t mask = ((1 << width) - 1) << lsb; VIXL_ASSERT((mask & write_ignore_mask_) == 0); value_ = (value_ & ~mask) | (bits & mask); } SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) { switch (id) { case NZCV: return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask); case FPCR: return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask); default: VIXL_UNREACHABLE(); return SimSystemRegister(); } } Simulator::Simulator(Decoder* decoder, FILE* stream) { // Ensure that shift operations act as the simulator expects. VIXL_ASSERT((static_cast<int32_t>(-1) >> 1) == -1); VIXL_ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7FFFFFFF); // Set up the decoder. decoder_ = decoder; decoder_->AppendVisitor(this); ResetState(); // Allocate and set up the simulator stack. stack_ = new byte[stack_size_]; stack_limit_ = stack_ + stack_protection_size_; // Configure the starting stack pointer. // - Find the top of the stack. byte * tos = stack_ + stack_size_; // - There's a protection region at both ends of the stack. tos -= stack_protection_size_; // - The stack pointer must be 16-byte aligned. tos = AlignDown(tos, 16); set_sp(tos); stream_ = stream; print_disasm_ = new PrintDisassembler(stream_); set_coloured_trace(false); disasm_trace_ = false; // Set the sample period to 10, as the VIXL examples and tests are short. instrumentation_ = new Instrument("vixl_stats.csv", 10); } void Simulator::ResetState() { // Reset the system registers. nzcv_ = SimSystemRegister::DefaultValueFor(NZCV); fpcr_ = SimSystemRegister::DefaultValueFor(FPCR); // Reset registers to 0. pc_ = NULL; pc_modified_ = false; for (unsigned i = 0; i < kNumberOfRegisters; i++) { set_xreg(i, 0xbadbeef); } for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { // Set FP registers to a value that is NaN in both 32-bit and 64-bit FP. set_dreg(i, kFP64SignallingNaN); } // Returning to address 0 exits the Simulator. set_lr(kEndOfSimAddress); } Simulator::~Simulator() { delete [] stack_; // The decoder may outlive the simulator. decoder_->RemoveVisitor(print_disasm_); delete print_disasm_; decoder_->RemoveVisitor(instrumentation_); delete instrumentation_; } void Simulator::Run() { pc_modified_ = false; while (pc_ != kEndOfSimAddress) { ExecuteInstruction(); } } void Simulator::RunFrom(Instruction* first) { set_pc(first); Run(); } const char* Simulator::xreg_names[] = { "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "x29", "lr", "xzr", "sp"}; const char* Simulator::wreg_names[] = { "w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7", "w8", "w9", "w10", "w11", "w12", "w13", "w14", "w15", "w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23", "w24", "w25", "w26", "w27", "w28", "w29", "w30", "wzr", "wsp"}; const char* Simulator::sreg_names[] = { "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"}; const char* Simulator::dreg_names[] = { "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"}; const char* Simulator::vreg_names[] = { "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"}; const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) { VIXL_ASSERT(code < kNumberOfRegisters); // If the code represents the stack pointer, index the name after zr. if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) { code = kZeroRegCode + 1; } return wreg_names[code]; } const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) { VIXL_ASSERT(code < kNumberOfRegisters); // If the code represents the stack pointer, index the name after zr. if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) { code = kZeroRegCode + 1; } return xreg_names[code]; } const char* Simulator::SRegNameForCode(unsigned code) { VIXL_ASSERT(code < kNumberOfFPRegisters); return sreg_names[code]; } const char* Simulator::DRegNameForCode(unsigned code) { VIXL_ASSERT(code < kNumberOfFPRegisters); return dreg_names[code]; } const char* Simulator::VRegNameForCode(unsigned code) { VIXL_ASSERT(code < kNumberOfFPRegisters); return vreg_names[code]; } #define COLOUR(colour_code) "\033[" colour_code "m" #define BOLD(colour_code) "1;" colour_code #define NORMAL "" #define GREY "30" #define GREEN "32" #define ORANGE "33" #define BLUE "34" #define PURPLE "35" #define INDIGO "36" #define WHITE "37" void Simulator::set_coloured_trace(bool value) { coloured_trace_ = value; clr_normal = value ? COLOUR(NORMAL) : ""; clr_flag_name = value ? COLOUR(BOLD(GREY)) : ""; clr_flag_value = value ? COLOUR(BOLD(WHITE)) : ""; clr_reg_name = value ? COLOUR(BOLD(BLUE)) : ""; clr_reg_value = value ? COLOUR(BOLD(INDIGO)) : ""; clr_fpreg_name = value ? COLOUR(BOLD(ORANGE)) : ""; clr_fpreg_value = value ? COLOUR(BOLD(PURPLE)) : ""; clr_memory_value = value ? COLOUR(BOLD(GREEN)) : ""; clr_memory_address = value ? COLOUR(GREEN) : ""; clr_debug_number = value ? COLOUR(BOLD(ORANGE)) : ""; clr_debug_message = value ? COLOUR(ORANGE) : ""; clr_printf = value ? COLOUR(GREEN) : ""; } // Helpers --------------------------------------------------------------------- int64_t Simulator::AddWithCarry(unsigned reg_size, bool set_flags, int64_t src1, int64_t src2, int64_t carry_in) { VIXL_ASSERT((carry_in == 0) || (carry_in == 1)); VIXL_ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize)); uint64_t u1, u2; int64_t result; int64_t signed_sum = src1 + src2 + carry_in; uint32_t N, Z, C, V; if (reg_size == kWRegSize) { u1 = static_cast<uint64_t>(src1) & kWRegMask; u2 = static_cast<uint64_t>(src2) & kWRegMask; result = signed_sum & kWRegMask; // Compute the C flag by comparing the sum to the max unsigned integer. C = ((kWMaxUInt - u1) < (u2 + carry_in)) || ((kWMaxUInt - u1 - carry_in) < u2); // Overflow iff the sign bit is the same for the two inputs and different // for the result. int64_t s_src1 = src1 << (kXRegSize - kWRegSize); int64_t s_src2 = src2 << (kXRegSize - kWRegSize); int64_t s_result = result << (kXRegSize - kWRegSize); V = ((s_src1 ^ s_src2) >= 0) && ((s_src1 ^ s_result) < 0); } else { u1 = static_cast<uint64_t>(src1); u2 = static_cast<uint64_t>(src2); result = signed_sum; // Compute the C flag by comparing the sum to the max unsigned integer. C = ((kXMaxUInt - u1) < (u2 + carry_in)) || ((kXMaxUInt - u1 - carry_in) < u2); // Overflow iff the sign bit is the same for the two inputs and different // for the result. V = ((src1 ^ src2) >= 0) && ((src1 ^ result) < 0); } N = CalcNFlag(result, reg_size); Z = CalcZFlag(result); if (set_flags) { nzcv().SetN(N); nzcv().SetZ(Z); nzcv().SetC(C); nzcv().SetV(V); } return result; } int64_t Simulator::ShiftOperand(unsigned reg_size, int64_t value, Shift shift_type, unsigned amount) { if (amount == 0) { return value; } int64_t mask = reg_size == kXRegSize ? kXRegMask : kWRegMask; switch (shift_type) { case LSL: return (value << amount) & mask; case LSR: return static_cast<uint64_t>(value) >> amount; case ASR: { // Shift used to restore the sign. unsigned s_shift = kXRegSize - reg_size; // Value with its sign restored. int64_t s_value = (value << s_shift) >> s_shift; return (s_value >> amount) & mask; } case ROR: { if (reg_size == kWRegSize) { value &= kWRegMask; } return (static_cast<uint64_t>(value) >> amount) | ((value & ((INT64_C(1) << amount) - 1)) << (reg_size - amount)); } default: VIXL_UNIMPLEMENTED(); return 0; } } int64_t Simulator::ExtendValue(unsigned reg_size, int64_t value, Extend extend_type, unsigned left_shift) { switch (extend_type) { case UXTB: value &= kByteMask; break; case UXTH: value &= kHalfWordMask; break; case UXTW: value &= kWordMask; break; case SXTB: value = (value << 56) >> 56; break; case SXTH: value = (value << 48) >> 48; break; case SXTW: value = (value << 32) >> 32; break; case UXTX: case SXTX: break; default: VIXL_UNREACHABLE(); } int64_t mask = (reg_size == kXRegSize) ? kXRegMask : kWRegMask; return (value << left_shift) & mask; } template<> double Simulator::FPDefaultNaN<double>() const { return kFP64DefaultNaN; } template<> float Simulator::FPDefaultNaN<float>() const { return kFP32DefaultNaN; } void Simulator::FPCompare(double val0, double val1) { AssertSupportedFPCR(); // TODO: This assumes that the C++ implementation handles comparisons in the // way that we expect (as per AssertSupportedFPCR()). if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) { nzcv().SetRawValue(FPUnorderedFlag); } else if (val0 < val1) { nzcv().SetRawValue(FPLessThanFlag); } else if (val0 > val1) { nzcv().SetRawValue(FPGreaterThanFlag); } else if (val0 == val1) { nzcv().SetRawValue(FPEqualFlag); } else { VIXL_UNREACHABLE(); } } void Simulator::PrintSystemRegisters(bool print_all) { static bool first_run = true; static SimSystemRegister last_nzcv; if (print_all || first_run || (last_nzcv.RawValue() != nzcv().RawValue())) { fprintf(stream_, "# %sFLAGS: %sN:%d Z:%d C:%d V:%d%s\n", clr_flag_name, clr_flag_value, N(), Z(), C(), V(), clr_normal); } last_nzcv = nzcv(); static SimSystemRegister last_fpcr; if (print_all || first_run || (last_fpcr.RawValue() != fpcr().RawValue())) { static const char * rmode[] = { "0b00 (Round to Nearest)", "0b01 (Round towards Plus Infinity)", "0b10 (Round towards Minus Infinity)", "0b11 (Round towards Zero)" }; VIXL_ASSERT(fpcr().RMode() <= (sizeof(rmode) / sizeof(rmode[0]))); fprintf(stream_, "# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n", clr_flag_name, clr_flag_value, fpcr().AHP(), fpcr().DN(), fpcr().FZ(), rmode[fpcr().RMode()], clr_normal); } last_fpcr = fpcr(); first_run = false; } void Simulator::PrintRegisters(bool print_all_regs) { static bool first_run = true; static int64_t last_regs[kNumberOfRegisters]; for (unsigned i = 0; i < kNumberOfRegisters; i++) { if (print_all_regs || first_run || (last_regs[i] != xreg(i, Reg31IsStackPointer))) { fprintf(stream_, "# %s%4s:%s 0x%016" PRIx64 "%s\n", clr_reg_name, XRegNameForCode(i, Reg31IsStackPointer), clr_reg_value, xreg(i, Reg31IsStackPointer), clr_normal); } // Cache the new register value so the next run can detect any changes. last_regs[i] = xreg(i, Reg31IsStackPointer); } first_run = false; } void Simulator::PrintFPRegisters(bool print_all_regs) { static bool first_run = true; static uint64_t last_regs[kNumberOfFPRegisters]; // Print as many rows of registers as necessary, keeping each individual // register in the same column each time (to make it easy to visually scan // for changes). for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { if (print_all_regs || first_run || (last_regs[i] != dreg_bits(i))) { fprintf(stream_, "# %s%4s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n", clr_fpreg_name, VRegNameForCode(i), clr_fpreg_value, dreg_bits(i), clr_normal, clr_fpreg_name, DRegNameForCode(i), clr_fpreg_value, dreg(i), clr_fpreg_name, SRegNameForCode(i), clr_fpreg_value, sreg(i), clr_normal); } // Cache the new register value so the next run can detect any changes. last_regs[i] = dreg_bits(i); } first_run = false; } void Simulator::PrintProcessorState() { PrintSystemRegisters(); PrintRegisters(); PrintFPRegisters(); } // Visitors--------------------------------------------------------------------- void Simulator::VisitUnimplemented(Instruction* instr) { printf("Unimplemented instruction at 0x%p: 0x%08" PRIx32 "\n", reinterpret_cast<void*>(instr), instr->InstructionBits()); VIXL_UNIMPLEMENTED(); } void Simulator::VisitUnallocated(Instruction* instr) { printf("Unallocated instruction at 0x%p: 0x%08" PRIx32 "\n", reinterpret_cast<void*>(instr), instr->InstructionBits()); VIXL_UNIMPLEMENTED(); } void Simulator::VisitPCRelAddressing(Instruction* instr) { switch (instr->Mask(PCRelAddressingMask)) { case ADR: set_reg(kXRegSize, instr->Rd(), reinterpret_cast<int64_t>(instr->ImmPCOffsetTarget())); break; case ADRP: // Not implemented in the assembler. VIXL_UNIMPLEMENTED(); break; default: VIXL_UNREACHABLE(); } } void Simulator::VisitUnconditionalBranch(Instruction* instr) { switch (instr->Mask(UnconditionalBranchMask)) { case BL: set_lr(instr->NextInstruction()); // Fall through. case B: set_pc(instr->ImmPCOffsetTarget()); break; default: VIXL_UNREACHABLE(); } } void Simulator::VisitConditionalBranch(Instruction* instr) { VIXL_ASSERT(instr->Mask(ConditionalBranchMask) == B_cond); if (ConditionPassed(static_cast<Condition>(instr->ConditionBranch()))) { set_pc(instr->ImmPCOffsetTarget()); } } void Simulator::VisitUnconditionalBranchToRegister(Instruction* instr) { Instruction* target = Instruction::Cast(xreg(instr->Rn())); switch (instr->Mask(UnconditionalBranchToRegisterMask)) { case BLR: set_lr(instr->NextInstruction()); // Fall through. case BR: case RET: set_pc(target); break; default: VIXL_UNREACHABLE(); } } void Simulator::VisitTestBranch(Instruction* instr) { unsigned bit_pos = (instr->ImmTestBranchBit5() << 5) | instr->ImmTestBranchBit40(); bool bit_zero = ((xreg(instr->Rt()) >> bit_pos) & 1) == 0; bool take_branch = false; switch (instr->Mask(TestBranchMask)) { case TBZ: take_branch = bit_zero; break; case TBNZ: take_branch = !bit_zero; break; default: VIXL_UNIMPLEMENTED(); } if (take_branch) { set_pc(instr->ImmPCOffsetTarget()); } } void Simulator::VisitCompareBranch(Instruction* instr) { unsigned rt = instr->Rt(); bool take_branch = false; switch (instr->Mask(CompareBranchMask)) { case CBZ_w: take_branch = (wreg(rt) == 0); break; case CBZ_x: take_branch = (xreg(rt) == 0); break; case CBNZ_w: take_branch = (wreg(rt) != 0); break; case CBNZ_x: take_branch = (xreg(rt) != 0); break; default: VIXL_UNIMPLEMENTED(); } if (take_branch) { set_pc(instr->ImmPCOffsetTarget()); } } void Simulator::AddSubHelper(Instruction* instr, int64_t op2) { unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; bool set_flags = instr->FlagsUpdate(); int64_t new_val = 0; Instr operation = instr->Mask(AddSubOpMask); switch (operation) { case ADD: case ADDS: { new_val = AddWithCarry(reg_size, set_flags, reg(reg_size, instr->Rn(), instr->RnMode()), op2); break; } case SUB: case SUBS: { new_val = AddWithCarry(reg_size, set_flags, reg(reg_size, instr->Rn(), instr->RnMode()), ~op2, 1); break; } default: VIXL_UNREACHABLE(); } set_reg(reg_size, instr->Rd(), new_val, instr->RdMode()); } void Simulator::VisitAddSubShifted(Instruction* instr) { unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; int64_t op2 = ShiftOperand(reg_size, reg(reg_size, instr->Rm()), static_cast<Shift>(instr->ShiftDP()), instr->ImmDPShift()); AddSubHelper(instr, op2); } void Simulator::VisitAddSubImmediate(Instruction* instr) { int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0); AddSubHelper(instr, op2); } void Simulator::VisitAddSubExtended(Instruction* instr) { unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; int64_t op2 = ExtendValue(reg_size, reg(reg_size, instr->Rm()), static_cast<Extend>(instr->ExtendMode()), instr->ImmExtendShift()); AddSubHelper(instr, op2); } void Simulator::VisitAddSubWithCarry(Instruction* instr) { unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; int64_t op2 = reg(reg_size, instr->Rm()); int64_t new_val; if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) { op2 = ~op2; } new_val = AddWithCarry(reg_size, instr->FlagsUpdate(), reg(reg_size, instr->Rn()), op2, C()); set_reg(reg_size, instr->Rd(), new_val); } void Simulator::VisitLogicalShifted(Instruction* instr) { unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; Shift shift_type = static_cast<Shift>(instr->ShiftDP()); unsigned shift_amount = instr->ImmDPShift(); int64_t op2 = ShiftOperand(reg_size, reg(reg_size, instr->Rm()), shift_type, shift_amount); if (instr->Mask(NOT) == NOT) { op2 = ~op2; } LogicalHelper(instr, op2); } void Simulator::VisitLogicalImmediate(Instruction* instr) { LogicalHelper(instr, instr->ImmLogical()); } void Simulator::LogicalHelper(Instruction* instr, int64_t op2) { unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; int64_t op1 = reg(reg_size, instr->Rn()); int64_t result = 0; bool update_flags = false; // Switch on the logical operation, stripping out the NOT bit, as it has a // different meaning for logical immediate instructions. switch (instr->Mask(LogicalOpMask & ~NOT)) { case ANDS: update_flags = true; // Fall through. case AND: result = op1 & op2; break; case ORR: result = op1 | op2; break; case EOR: result = op1 ^ op2; break; default: VIXL_UNIMPLEMENTED(); } if (update_flags) { nzcv().SetN(CalcNFlag(result, reg_size)); nzcv().SetZ(CalcZFlag(result)); nzcv().SetC(0); nzcv().SetV(0); } set_reg(reg_size, instr->Rd(), result, instr->RdMode()); } void Simulator::VisitConditionalCompareRegister(Instruction* instr) { unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; ConditionalCompareHelper(instr, reg(reg_size, instr->Rm())); } void Simulator::VisitConditionalCompareImmediate(Instruction* instr) { ConditionalCompareHelper(instr, instr->ImmCondCmp()); } void Simulator::ConditionalCompareHelper(Instruction* instr, int64_t op2) { unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; int64_t op1 = reg(reg_size, instr->Rn()); if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { // If the condition passes, set the status flags to the result of comparing // the operands. if (instr->Mask(ConditionalCompareMask) == CCMP) { AddWithCarry(reg_size, true, op1, ~op2, 1); } else { VIXL_ASSERT(instr->Mask(ConditionalCompareMask) == CCMN); AddWithCarry(reg_size, true, op1, op2, 0); } } else { // If the condition fails, set the status flags to the nzcv immediate. nzcv().SetFlags(instr->Nzcv()); } } void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) { int offset = instr->ImmLSUnsigned() << instr->SizeLS(); LoadStoreHelper(instr, offset, Offset); } void Simulator::VisitLoadStoreUnscaledOffset(Instruction* instr) { LoadStoreHelper(instr, instr->ImmLS(), Offset); } void Simulator::VisitLoadStorePreIndex(Instruction* instr) { LoadStoreHelper(instr, instr->ImmLS(), PreIndex); } void Simulator::VisitLoadStorePostIndex(Instruction* instr) { LoadStoreHelper(instr, instr->ImmLS(), PostIndex); } void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) { Extend ext = static_cast<Extend>(instr->ExtendMode()); VIXL_ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX)); unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS(); int64_t offset = ExtendValue(kXRegSize, xreg(instr->Rm()), ext, shift_amount); LoadStoreHelper(instr, offset, Offset); } void Simulator::LoadStoreHelper(Instruction* instr, int64_t offset, AddrMode addrmode) { unsigned srcdst = instr->Rt(); uint8_t* address = AddressModeHelper(instr->Rn(), offset, addrmode); int num_bytes = 1 << instr->SizeLS(); LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreOpMask)); switch (op) { case LDRB_w: case LDRH_w: case LDR_w: case LDR_x: set_xreg(srcdst, MemoryRead(address, num_bytes)); break; case STRB_w: case STRH_w: case STR_w: case STR_x: MemoryWrite(address, xreg(srcdst), num_bytes); break; case LDRSB_w: { set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead8(address), SXTB)); break; } case LDRSB_x: { set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead8(address), SXTB)); break; } case LDRSH_w: { set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead16(address), SXTH)); break; } case LDRSH_x: { set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead16(address), SXTH)); break; } case LDRSW_x: { set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead32(address), SXTW)); break; } case LDR_s: set_sreg(srcdst, MemoryReadFP32(address)); break; case LDR_d: set_dreg(srcdst, MemoryReadFP64(address)); break; case STR_s: MemoryWriteFP32(address, sreg(srcdst)); break; case STR_d: MemoryWriteFP64(address, dreg(srcdst)); break; default: VIXL_UNIMPLEMENTED(); } } void Simulator::VisitLoadStorePairOffset(Instruction* instr) { LoadStorePairHelper(instr, Offset); } void Simulator::VisitLoadStorePairPreIndex(Instruction* instr) { LoadStorePairHelper(instr, PreIndex); } void Simulator::VisitLoadStorePairPostIndex(Instruction* instr) { LoadStorePairHelper(instr, PostIndex); } void Simulator::VisitLoadStorePairNonTemporal(Instruction* instr) { LoadStorePairHelper(instr, Offset); } void Simulator::LoadStorePairHelper(Instruction* instr, AddrMode addrmode) { unsigned rt = instr->Rt(); unsigned rt2 = instr->Rt2(); int offset = instr->ImmLSPair() << instr->SizeLSPair(); uint8_t* address = AddressModeHelper(instr->Rn(), offset, addrmode); LoadStorePairOp op = static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask)); // 'rt' and 'rt2' can only be aliased for stores. VIXL_ASSERT(((op & LoadStorePairLBit) == 0) || (rt != rt2)); switch (op) { case LDP_w: { set_wreg(rt, MemoryRead32(address)); set_wreg(rt2, MemoryRead32(address + kWRegSizeInBytes)); break; } case LDP_s: { set_sreg(rt, MemoryReadFP32(address)); set_sreg(rt2, MemoryReadFP32(address + kSRegSizeInBytes)); break; } case LDP_x: { set_xreg(rt, MemoryRead64(address)); set_xreg(rt2, MemoryRead64(address + kXRegSizeInBytes)); break; } case LDP_d: { set_dreg(rt, MemoryReadFP64(address)); set_dreg(rt2, MemoryReadFP64(address + kDRegSizeInBytes)); break; } case LDPSW_x: { set_xreg(rt, ExtendValue(kXRegSize, MemoryRead32(address), SXTW)); set_xreg(rt2, ExtendValue(kXRegSize, MemoryRead32(address + kWRegSizeInBytes), SXTW)); break; } case STP_w: { MemoryWrite32(address, wreg(rt)); MemoryWrite32(address + kWRegSizeInBytes, wreg(rt2)); break; } case STP_s: { MemoryWriteFP32(address, sreg(rt)); MemoryWriteFP32(address + kSRegSizeInBytes, sreg(rt2)); break; } case STP_x: { MemoryWrite64(address, xreg(rt)); MemoryWrite64(address + kXRegSizeInBytes, xreg(rt2)); break; } case STP_d: { MemoryWriteFP64(address, dreg(rt)); MemoryWriteFP64(address + kDRegSizeInBytes, dreg(rt2)); break; } default: VIXL_UNREACHABLE(); } } void Simulator::VisitLoadLiteral(Instruction* instr) { uint8_t* address = instr->LiteralAddress(); unsigned rt = instr->Rt(); switch (instr->Mask(LoadLiteralMask)) { case LDR_w_lit: set_wreg(rt, MemoryRead32(address)); break; case LDR_x_lit: set_xreg(rt, MemoryRead64(address)); break; case LDR_s_lit: set_sreg(rt, MemoryReadFP32(address)); break; case LDR_d_lit: set_dreg(rt, MemoryReadFP64(address)); break; default: VIXL_UNREACHABLE(); } } uint8_t* Simulator::AddressModeHelper(unsigned addr_reg, int64_t offset, AddrMode addrmode) { uint64_t address = xreg(addr_reg, Reg31IsStackPointer); if ((addr_reg == 31) && ((address % 16) != 0)) { // When the base register is SP the stack pointer is required to be // quadword aligned prior to the address calculation and write-backs. // Misalignment will cause a stack alignment fault. VIXL_ALIGNMENT_EXCEPTION(); } if ((addrmode == PreIndex) || (addrmode == PostIndex)) { VIXL_ASSERT(offset != 0); set_xreg(addr_reg, address + offset, Reg31IsStackPointer); } if ((addrmode == Offset) || (addrmode == PreIndex)) { address += offset; } // Verify that the calculated address is available to the host. VIXL_ASSERT(address == static_cast<uintptr_t>(address)); return reinterpret_cast<uint8_t*>(address); } uint64_t Simulator::MemoryRead(const uint8_t* address, unsigned num_bytes) { VIXL_ASSERT(address != NULL); VIXL_ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t))); uint64_t read = 0; memcpy(&read, address, num_bytes); return read; } uint8_t Simulator::MemoryRead8(uint8_t* address) { return MemoryRead(address, sizeof(uint8_t)); } uint16_t Simulator::MemoryRead16(uint8_t* address) { return MemoryRead(address, sizeof(uint16_t)); } uint32_t Simulator::MemoryRead32(uint8_t* address) { return MemoryRead(address, sizeof(uint32_t)); } float Simulator::MemoryReadFP32(uint8_t* address) { return rawbits_to_float(MemoryRead32(address)); } uint64_t Simulator::MemoryRead64(uint8_t* address) { return MemoryRead(address, sizeof(uint64_t)); } double Simulator::MemoryReadFP64(uint8_t* address) { return rawbits_to_double(MemoryRead64(address)); } void Simulator::MemoryWrite(uint8_t* address, uint64_t value, unsigned num_bytes) { VIXL_ASSERT(address != NULL); VIXL_ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t))); memcpy(address, &value, num_bytes); } void Simulator::MemoryWrite32(uint8_t* address, uint32_t value) { MemoryWrite(address, value, sizeof(uint32_t)); } void Simulator::MemoryWriteFP32(uint8_t* address, float value) { MemoryWrite32(address, float_to_rawbits(value)); } void Simulator::MemoryWrite64(uint8_t* address, uint64_t value) { MemoryWrite(address, value, sizeof(uint64_t)); } void Simulator::MemoryWriteFP64(uint8_t* address, double value) { MemoryWrite64(address, double_to_rawbits(value)); } void Simulator::VisitMoveWideImmediate(Instruction* instr) { MoveWideImmediateOp mov_op = static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask)); int64_t new_xn_val = 0; bool is_64_bits = instr->SixtyFourBits() != 0; // Shift is limited for W operations. VIXL_ASSERT(is_64_bits || (instr->ShiftMoveWide() < 2)); // Get the shifted immediate. int64_t shift = instr->ShiftMoveWide() * 16; int64_t shifted_imm16 = instr->ImmMoveWide() << shift; // Compute the new value. switch (mov_op) { case MOVN_w: case MOVN_x: { new_xn_val = ~shifted_imm16; if (!is_64_bits) new_xn_val &= kWRegMask; break; } case MOVK_w: case MOVK_x: { unsigned reg_code = instr->Rd(); int64_t prev_xn_val = is_64_bits ? xreg(reg_code) : wreg(reg_code); new_xn_val = (prev_xn_val & ~(INT64_C(0xffff) << shift)) | shifted_imm16; break; } case MOVZ_w: case MOVZ_x: { new_xn_val = shifted_imm16; break; } default: VIXL_UNREACHABLE(); } // Update the destination register. set_xreg(instr->Rd(), new_xn_val); } void Simulator::VisitConditionalSelect(Instruction* instr) { uint64_t new_val = xreg(instr->Rn()); if (ConditionFailed(static_cast<Condition>(instr->Condition()))) { new_val = xreg(instr->Rm()); switch (instr->Mask(ConditionalSelectMask)) { case CSEL_w: case CSEL_x: break; case CSINC_w: case CSINC_x: new_val++; break; case CSINV_w: case CSINV_x: new_val = ~new_val; break; case CSNEG_w: case CSNEG_x: new_val = -new_val; break; default: VIXL_UNIMPLEMENTED(); } } unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; set_reg(reg_size, instr->Rd(), new_val); } void Simulator::VisitDataProcessing1Source(Instruction* instr) { unsigned dst = instr->Rd(); unsigned src = instr->Rn(); switch (instr->Mask(DataProcessing1SourceMask)) { case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSize)); break; case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSize)); break; case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse16)); break; case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse16)); break; case REV_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse32)); break; case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse32)); break; case REV_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse64)); break; case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSize)); break; case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSize)); break; case CLS_w: { set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSize)); break; } case CLS_x: { set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSize)); break; } default: VIXL_UNIMPLEMENTED(); } } uint64_t Simulator::ReverseBits(uint64_t value, unsigned num_bits) { VIXL_ASSERT((num_bits == kWRegSize) || (num_bits == kXRegSize)); uint64_t result = 0; for (unsigned i = 0; i < num_bits; i++) { result = (result << 1) | (value & 1); value >>= 1; } return result; } uint64_t Simulator::ReverseBytes(uint64_t value, ReverseByteMode mode) { // Split the 64-bit value into an 8-bit array, where b[0] is the least // significant byte, and b[7] is the most significant. uint8_t bytes[8]; uint64_t mask = UINT64_C(0xff00000000000000); for (int i = 7; i >= 0; i--) { bytes[i] = (value & mask) >> (i * 8); mask >>= 8; } // Permutation tables for REV instructions. // permute_table[Reverse16] is used by REV16_x, REV16_w // permute_table[Reverse32] is used by REV32_x, REV_w // permute_table[Reverse64] is used by REV_x VIXL_STATIC_ASSERT((Reverse16 == 0) && (Reverse32 == 1) && (Reverse64 == 2)); static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1}, {4, 5, 6, 7, 0, 1, 2, 3}, {0, 1, 2, 3, 4, 5, 6, 7} }; uint64_t result = 0; for (int i = 0; i < 8; i++) { result <<= 8; result |= bytes[permute_table[mode][i]]; } return result; } void Simulator::VisitDataProcessing2Source(Instruction* instr) { Shift shift_op = NO_SHIFT; int64_t result = 0; switch (instr->Mask(DataProcessing2SourceMask)) { case SDIV_w: { int32_t rn = wreg(instr->Rn()); int32_t rm = wreg(instr->Rm()); if ((rn == kWMinInt) && (rm == -1)) { result = kWMinInt; } else if (rm == 0) { // Division by zero can be trapped, but not on A-class processors. result = 0; } else { result = rn / rm; } break; } case SDIV_x: { int64_t rn = xreg(instr->Rn()); int64_t rm = xreg(instr->Rm()); if ((rn == kXMinInt) && (rm == -1)) { result = kXMinInt; } else if (rm == 0) { // Division by zero can be trapped, but not on A-class processors. result = 0; } else { result = rn / rm; } break; } case UDIV_w: { uint32_t rn = static_cast<uint32_t>(wreg(instr->Rn())); uint32_t rm = static_cast<uint32_t>(wreg(instr->Rm())); if (rm == 0) { // Division by zero can be trapped, but not on A-class processors. result = 0; } else { result = rn / rm; } break; } case UDIV_x: { uint64_t rn = static_cast<uint64_t>(xreg(instr->Rn())); uint64_t rm = static_cast<uint64_t>(xreg(instr->Rm())); if (rm == 0) { // Division by zero can be trapped, but not on A-class processors. result = 0; } else { result = rn / rm; } break; } case LSLV_w: case LSLV_x: shift_op = LSL; break; case LSRV_w: case LSRV_x: shift_op = LSR; break; case ASRV_w: case ASRV_x: shift_op = ASR; break; case RORV_w: case RORV_x: shift_op = ROR; break; default: VIXL_UNIMPLEMENTED(); } unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; if (shift_op != NO_SHIFT) { // Shift distance encoded in the least-significant five/six bits of the // register. int mask = (instr->SixtyFourBits() != 0) ? 0x3f : 0x1f; unsigned shift = wreg(instr->Rm()) & mask; result = ShiftOperand(reg_size, reg(reg_size, instr->Rn()), shift_op, shift); } set_reg(reg_size, instr->Rd(), result); } // The algorithm used is adapted from the one described in section 8.2 of // Hacker's Delight, by Henry S. Warren, Jr. // It assumes that a right shift on a signed integer is an arithmetic shift. static int64_t MultiplyHighSigned(int64_t u, int64_t v) { uint64_t u0, v0, w0; int64_t u1, v1, w1, w2, t; u0 = u & 0xffffffff; u1 = u >> 32; v0 = v & 0xffffffff; v1 = v >> 32; w0 = u0 * v0; t = u1 * v0 + (w0 >> 32); w1 = t & 0xffffffff; w2 = t >> 32; w1 = u0 * v1 + w1; return u1 * v1 + w2 + (w1 >> 32); } void Simulator::VisitDataProcessing3Source(Instruction* instr) { unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; int64_t result = 0; // Extract and sign- or zero-extend 32-bit arguments for widening operations. uint64_t rn_u32 = reg<uint32_t>(instr->Rn()); uint64_t rm_u32 = reg<uint32_t>(instr->Rm()); int64_t rn_s32 = reg<int32_t>(instr->Rn()); int64_t rm_s32 = reg<int32_t>(instr->Rm()); switch (instr->Mask(DataProcessing3SourceMask)) { case MADD_w: case MADD_x: result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm())); break; case MSUB_w: case MSUB_x: result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm())); break; case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break; case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break; case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break; case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break; case SMULH_x: result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm())); break; default: VIXL_UNIMPLEMENTED(); } set_reg(reg_size, instr->Rd(), result); } void Simulator::VisitBitfield(Instruction* instr) { unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize; int64_t reg_mask = instr->SixtyFourBits() ? kXRegMask : kWRegMask; int64_t R = instr->ImmR(); int64_t S = instr->ImmS(); int64_t diff = S - R; int64_t mask; if (diff >= 0) { mask = (diff < (reg_size - 1)) ? (INT64_C(1) << (diff + 1)) - 1 : reg_mask; } else { mask = (INT64_C(1) << (S + 1)) - 1; mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R)); diff += reg_size; } // inzero indicates if the extracted bitfield is inserted into the // destination register value or in zero. // If extend is true, extend the sign of the extracted bitfield. bool inzero = false; bool extend = false; switch (instr->Mask(BitfieldMask)) { case BFM_x: case BFM_w: break; case SBFM_x: case SBFM_w: inzero = true; extend = true; break; case UBFM_x: case UBFM_w: inzero = true; break; default: VIXL_UNIMPLEMENTED(); } int64_t dst = inzero ? 0 : reg(reg_size, instr->Rd()); int64_t src = reg(reg_size, instr->Rn()); // Rotate source bitfield into place. int64_t result = (static_cast<uint64_t>(src) >> R) | (src << (reg_size - R)); // Determine the sign extension. int64_t topbits = ((INT64_C(1) << (reg_size - diff - 1)) - 1) << (diff + 1); int64_t signbits = extend && ((src >> S) & 1) ? topbits : 0; // Merge sign extension, dest/zero and bitfield. result = signbits | (result & mask) | (dst & ~mask); set_reg(reg_size, instr->Rd(), result); } void Simulator::VisitExtract(Instruction* instr) { unsigned lsb = instr->ImmS(); unsigned reg_size = (instr->SixtyFourBits() != 0) ? kXRegSize : kWRegSize; set_reg(reg_size, instr->Rd(), (static_cast<uint64_t>(reg(reg_size, instr->Rm())) >> lsb) | (reg(reg_size, instr->Rn()) << (reg_size - lsb))); } void Simulator::VisitFPImmediate(Instruction* instr) { AssertSupportedFPCR(); unsigned dest = instr->Rd(); switch (instr->Mask(FPImmediateMask)) { case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break; case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break; default: VIXL_UNREACHABLE(); } } void Simulator::VisitFPIntegerConvert(Instruction* instr) { AssertSupportedFPCR(); unsigned dst = instr->Rd(); unsigned src = instr->Rn(); FPRounding round = RMode(); switch (instr->Mask(FPIntegerConvertMask)) { case FCVTAS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieAway)); break; case FCVTAS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieAway)); break; case FCVTAS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieAway)); break; case FCVTAS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieAway)); break; case FCVTAU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieAway)); break; case FCVTAU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieAway)); break; case FCVTAU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieAway)); break; case FCVTAU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieAway)); break; case FCVTMS_ws: set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity)); break; case FCVTMS_xs: set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity)); break; case FCVTMS_wd: set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity)); break; case FCVTMS_xd: set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity)); break; case FCVTMU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity)); break; case FCVTMU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity)); break; case FCVTMU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity)); break; case FCVTMU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity)); break; case FCVTNS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieEven)); break; case FCVTNS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieEven)); break; case FCVTNS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieEven)); break; case FCVTNS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieEven)); break; case FCVTNU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieEven)); break; case FCVTNU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieEven)); break; case FCVTNU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieEven)); break; case FCVTNU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieEven)); break; case FCVTZS_ws: set_wreg(dst, FPToInt32(sreg(src), FPZero)); break; case FCVTZS_xs: set_xreg(dst, FPToInt64(sreg(src), FPZero)); break; case FCVTZS_wd: set_wreg(dst, FPToInt32(dreg(src), FPZero)); break; case FCVTZS_xd: set_xreg(dst, FPToInt64(dreg(src), FPZero)); break; case FCVTZU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPZero)); break; case FCVTZU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPZero)); break; case FCVTZU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPZero)); break; case FCVTZU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPZero)); break; case FMOV_ws: set_wreg(dst, sreg_bits(src)); break; case FMOV_xd: set_xreg(dst, dreg_bits(src)); break; case FMOV_sw: set_sreg_bits(dst, wreg(src)); break; case FMOV_dx: set_dreg_bits(dst, xreg(src)); break; // A 32-bit input can be handled in the same way as a 64-bit input, since // the sign- or zero-extension will not affect the conversion. case SCVTF_dx: set_dreg(dst, FixedToDouble(xreg(src), 0, round)); break; case SCVTF_dw: set_dreg(dst, FixedToDouble(wreg(src), 0, round)); break; case UCVTF_dx: set_dreg(dst, UFixedToDouble(xreg(src), 0, round)); break; case UCVTF_dw: { set_dreg(dst, UFixedToDouble(static_cast<uint32_t>(wreg(src)), 0, round)); break; } case SCVTF_sx: set_sreg(dst, FixedToFloat(xreg(src), 0, round)); break; case SCVTF_sw: set_sreg(dst, FixedToFloat(wreg(src), 0, round)); break; case UCVTF_sx: set_sreg(dst, UFixedToFloat(xreg(src), 0, round)); break; case UCVTF_sw: { set_sreg(dst, UFixedToFloat(static_cast<uint32_t>(wreg(src)), 0, round)); break; } default: VIXL_UNREACHABLE(); } } void Simulator::VisitFPFixedPointConvert(Instruction* instr) { AssertSupportedFPCR(); unsigned dst = instr->Rd(); unsigned src = instr->Rn(); int fbits = 64 - instr->FPScale(); FPRounding round = RMode(); switch (instr->Mask(FPFixedPointConvertMask)) { // A 32-bit input can be handled in the same way as a 64-bit input, since // the sign- or zero-extension will not affect the conversion. case SCVTF_dx_fixed: set_dreg(dst, FixedToDouble(xreg(src), fbits, round)); break; case SCVTF_dw_fixed: set_dreg(dst, FixedToDouble(wreg(src), fbits, round)); break; case UCVTF_dx_fixed: set_dreg(dst, UFixedToDouble(xreg(src), fbits, round)); break; case UCVTF_dw_fixed: { set_dreg(dst, UFixedToDouble(static_cast<uint32_t>(wreg(src)), fbits, round)); break; } case SCVTF_sx_fixed: set_sreg(dst, FixedToFloat(xreg(src), fbits, round)); break; case SCVTF_sw_fixed: set_sreg(dst, FixedToFloat(wreg(src), fbits, round)); break; case UCVTF_sx_fixed: set_sreg(dst, UFixedToFloat(xreg(src), fbits, round)); break; case UCVTF_sw_fixed: { set_sreg(dst, UFixedToFloat(static_cast<uint32_t>(wreg(src)), fbits, round)); break; } default: VIXL_UNREACHABLE(); } } int32_t Simulator::FPToInt32(double value, FPRounding rmode) { value = FPRoundInt(value, rmode); if (value >= kWMaxInt) { return kWMaxInt; } else if (value < kWMinInt) { return kWMinInt; } return std::isnan(value) ? 0 : static_cast<int32_t>(value); } int64_t Simulator::FPToInt64(double value, FPRounding rmode) { value = FPRoundInt(value, rmode); if (value >= kXMaxInt) { return kXMaxInt; } else if (value < kXMinInt) { return kXMinInt; } return std::isnan(value) ? 0 : static_cast<int64_t>(value); } uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) { value = FPRoundInt(value, rmode); if (value >= kWMaxUInt) { return kWMaxUInt; } else if (value < 0.0) { return 0; } return std::isnan(value) ? 0 : static_cast<uint32_t>(value); } uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) { value = FPRoundInt(value, rmode); if (value >= kXMaxUInt) { return kXMaxUInt; } else if (value < 0.0) { return 0; } return std::isnan(value) ? 0 : static_cast<uint64_t>(value); } void Simulator::VisitFPCompare(Instruction* instr) { AssertSupportedFPCR(); unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSize : kSRegSize; double fn_val = fpreg(reg_size, instr->Rn()); switch (instr->Mask(FPCompareMask)) { case FCMP_s: case FCMP_d: FPCompare(fn_val, fpreg(reg_size, instr->Rm())); break; case FCMP_s_zero: case FCMP_d_zero: FPCompare(fn_val, 0.0); break; default: VIXL_UNIMPLEMENTED(); } } void Simulator::VisitFPConditionalCompare(Instruction* instr) { AssertSupportedFPCR(); switch (instr->Mask(FPConditionalCompareMask)) { case FCCMP_s: case FCCMP_d: { if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { // If the condition passes, set the status flags to the result of // comparing the operands. unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSize : kSRegSize; FPCompare(fpreg(reg_size, instr->Rn()), fpreg(reg_size, instr->Rm())); } else { // If the condition fails, set the status flags to the nzcv immediate. nzcv().SetFlags(instr->Nzcv()); } break; } default: VIXL_UNIMPLEMENTED(); } } void Simulator::VisitFPConditionalSelect(Instruction* instr) { AssertSupportedFPCR(); Instr selected; if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { selected = instr->Rn(); } else { selected = instr->Rm(); } switch (instr->Mask(FPConditionalSelectMask)) { case FCSEL_s: set_sreg(instr->Rd(), sreg(selected)); break; case FCSEL_d: set_dreg(instr->Rd(), dreg(selected)); break; default: VIXL_UNIMPLEMENTED(); } } void Simulator::VisitFPDataProcessing1Source(Instruction* instr) { AssertSupportedFPCR(); unsigned fd = instr->Rd(); unsigned fn = instr->Rn(); switch (instr->Mask(FPDataProcessing1SourceMask)) { case FMOV_s: set_sreg(fd, sreg(fn)); break; case FMOV_d: set_dreg(fd, dreg(fn)); break; case FABS_s: set_sreg(fd, fabsf(sreg(fn))); break; case FABS_d: set_dreg(fd, fabs(dreg(fn))); break; case FNEG_s: set_sreg(fd, -sreg(fn)); break; case FNEG_d: set_dreg(fd, -dreg(fn)); break; case FSQRT_s: set_sreg(fd, FPSqrt(sreg(fn))); break; case FSQRT_d: set_dreg(fd, FPSqrt(dreg(fn))); break; case FRINTA_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieAway)); break; case FRINTA_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieAway)); break; case FRINTM_s: set_sreg(fd, FPRoundInt(sreg(fn), FPNegativeInfinity)); break; case FRINTM_d: set_dreg(fd, FPRoundInt(dreg(fn), FPNegativeInfinity)); break; case FRINTN_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieEven)); break; case FRINTN_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieEven)); break; case FRINTZ_s: set_sreg(fd, FPRoundInt(sreg(fn), FPZero)); break; case FRINTZ_d: set_dreg(fd, FPRoundInt(dreg(fn), FPZero)); break; case FCVT_ds: set_dreg(fd, FPToDouble(sreg(fn))); break; case FCVT_sd: set_sreg(fd, FPToFloat(dreg(fn), FPTieEven)); break; default: VIXL_UNIMPLEMENTED(); } } // Assemble the specified IEEE-754 components into the target type and apply // appropriate rounding. // sign: 0 = positive, 1 = negative // exponent: Unbiased IEEE-754 exponent. // mantissa: The mantissa of the input. The top bit (which is not encoded for // normal IEEE-754 values) must not be omitted. This bit has the // value 'pow(2, exponent)'. // // The input value is assumed to be a normalized value. That is, the input may // not be infinity or NaN. If the source value is subnormal, it must be // normalized before calling this function such that the highest set bit in the // mantissa has the value 'pow(2, exponent)'. // // Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than // calling a templated FPRound. template <class T, int ebits, int mbits> static T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa, FPRounding round_mode) { VIXL_ASSERT((sign == 0) || (sign == 1)); // Only the FPTieEven rounding mode is implemented. VIXL_ASSERT(round_mode == FPTieEven); USE(round_mode); // Rounding can promote subnormals to normals, and normals to infinities. For // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be // encodable as a float, but rounding based on the low-order mantissa bits // could make it overflow. With ties-to-even rounding, this value would become // an infinity. // ---- Rounding Method ---- // // The exponent is irrelevant in the rounding operation, so we treat the // lowest-order bit that will fit into the result ('onebit') as having // the value '1'. Similarly, the highest-order bit that won't fit into // the result ('halfbit') has the value '0.5'. The 'point' sits between // 'onebit' and 'halfbit': // // These bits fit into the result. // |---------------------| // mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx // || // / | // / halfbit // onebit // // For subnormal outputs, the range of representable bits is smaller and // the position of onebit and halfbit depends on the exponent of the // input, but the method is otherwise similar. // // onebit(frac) // | // | halfbit(frac) halfbit(adjusted) // | / / // | | | // 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00 // 0b00.0... -> 0b00.0... -> 0b00 // 0b00.1 (exact) -> 0b00.0111..111 -> 0b00 // 0b00.1... -> 0b00.1... -> 0b01 // 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01 // 0b01.0... -> 0b01.0... -> 0b01 // 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10 // 0b01.1... -> 0b01.1... -> 0b10 // 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10 // 0b10.0... -> 0b10.0... -> 0b10 // 0b10.1 (exact) -> 0b10.0111..111 -> 0b10 // 0b10.1... -> 0b10.1... -> 0b11 // 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11 // ... / | / | // / | / | // / | // adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / | // // mantissa = (mantissa >> shift) + halfbit(adjusted); static const int mantissa_offset = 0; static const int exponent_offset = mantissa_offset + mbits; static const int sign_offset = exponent_offset + ebits; VIXL_ASSERT(sign_offset == (sizeof(T) * 8 - 1)); // Bail out early for zero inputs. if (mantissa == 0) { return sign << sign_offset; } // If all bits in the exponent are set, the value is infinite or NaN. // This is true for all binary IEEE-754 formats. static const int infinite_exponent = (1 << ebits) - 1; static const int max_normal_exponent = infinite_exponent - 1; // Apply the exponent bias to encode it for the result. Doing this early makes // it easy to detect values that will be infinite or subnormal. exponent += max_normal_exponent >> 1; if (exponent > max_normal_exponent) { // Overflow: The input is too large for the result type to represent. The // FPTieEven rounding mode handles overflows using infinities. exponent = infinite_exponent; mantissa = 0; return (sign << sign_offset) | (exponent << exponent_offset) | (mantissa << mantissa_offset); } // Calculate the shift required to move the top mantissa bit to the proper // place in the destination type. const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64); int shift = highest_significant_bit - mbits; if (exponent <= 0) { // The output will be subnormal (before rounding). // For subnormal outputs, the shift must be adjusted by the exponent. The +1 // is necessary because the exponent of a subnormal value (encoded as 0) is // the same as the exponent of the smallest normal value (encoded as 1). shift += -exponent + 1; // Handle inputs that would produce a zero output. // // Shifts higher than highest_significant_bit+1 will always produce a zero // result. A shift of exactly highest_significant_bit+1 might produce a // non-zero result after rounding. if (shift > (highest_significant_bit + 1)) { // The result will always be +/-0.0. return sign << sign_offset; } // Properly encode the exponent for a subnormal output. exponent = 0; } else { // Clear the topmost mantissa bit, since this is not encoded in IEEE-754 // normal values. mantissa &= ~(UINT64_C(1) << highest_significant_bit); } if (shift > 0) { // We have to shift the mantissa to the right. Some precision is lost, so we // need to apply rounding. uint64_t onebit_mantissa = (mantissa >> (shift)) & 1; uint64_t halfbit_mantissa = (mantissa >> (shift-1)) & 1; uint64_t adjusted = mantissa - (halfbit_mantissa & ~onebit_mantissa); T halfbit_adjusted = (adjusted >> (shift-1)) & 1; T result = (sign << sign_offset) | (exponent << exponent_offset) | ((mantissa >> shift) << mantissa_offset); // A very large mantissa can overflow during rounding. If this happens, the // exponent should be incremented and the mantissa set to 1.0 (encoded as // 0). Applying halfbit_adjusted after assembling the float has the nice // side-effect that this case is handled for free. // // This also handles cases where a very large finite value overflows to // infinity, or where a very large subnormal value overflows to become // normal. return result + halfbit_adjusted; } else { // We have to shift the mantissa to the left (or not at all). The input // mantissa is exactly representable in the output mantissa, so apply no // rounding correction. return (sign << sign_offset) | (exponent << exponent_offset) | ((mantissa << -shift) << mantissa_offset); } } // See FPRound for a description of this function. static inline double FPRoundToDouble(int64_t sign, int64_t exponent, uint64_t mantissa, FPRounding round_mode) { int64_t bits = FPRound<int64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign, exponent, mantissa, round_mode); return rawbits_to_double(bits); } // See FPRound for a description of this function. static inline float FPRoundToFloat(int64_t sign, int64_t exponent, uint64_t mantissa, FPRounding round_mode) { int32_t bits = FPRound<int32_t, kFloatExponentBits, kFloatMantissaBits>(sign, exponent, mantissa, round_mode); return rawbits_to_float(bits); } double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) { if (src >= 0) { return UFixedToDouble(src, fbits, round); } else { // This works for all negative values, including INT64_MIN. return -UFixedToDouble(-src, fbits, round); } } double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) { // An input of 0 is a special case because the result is effectively // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit. if (src == 0) { return 0.0; } // Calculate the exponent. The highest significant bit will have the value // 2^exponent. const int highest_significant_bit = 63 - CountLeadingZeros(src, 64); const int64_t exponent = highest_significant_bit - fbits; return FPRoundToDouble(0, exponent, src, round); } float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) { if (src >= 0) { return UFixedToFloat(src, fbits, round); } else { // This works for all negative values, including INT64_MIN. return -UFixedToFloat(-src, fbits, round); } } float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) { // An input of 0 is a special case because the result is effectively // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit. if (src == 0) { return 0.0f; } // Calculate the exponent. The highest significant bit will have the value // 2^exponent. const int highest_significant_bit = 63 - CountLeadingZeros(src, 64); const int32_t exponent = highest_significant_bit - fbits; return FPRoundToFloat(0, exponent, src, round); } double Simulator::FPRoundInt(double value, FPRounding round_mode) { if ((value == 0.0) || (value == kFP64PositiveInfinity) || (value == kFP64NegativeInfinity)) { return value; } else if (std::isnan(value)) { return FPProcessNaN(value); } double int_result = floor(value); double error = value - int_result; switch (round_mode) { case FPTieAway: { // Take care of correctly handling the range ]-0.5, -0.0], which must // yield -0.0. if ((-0.5 < value) && (value < 0.0)) { int_result = -0.0; } else if ((error > 0.5) || ((error == 0.5) && (int_result >= 0.0))) { // If the error is greater than 0.5, or is equal to 0.5 and the integer // result is positive, round up. int_result++; } break; } case FPTieEven: { // Take care of correctly handling the range [-0.5, -0.0], which must // yield -0.0. if ((-0.5 <= value) && (value < 0.0)) { int_result = -0.0; // If the error is greater than 0.5, or is equal to 0.5 and the integer // result is odd, round up. } else if ((error > 0.5) || ((error == 0.5) && (fmod(int_result, 2) != 0))) { int_result++; } break; } case FPZero: { // If value>0 then we take floor(value) // otherwise, ceil(value). if (value < 0) { int_result = ceil(value); } break; } case FPNegativeInfinity: { // We always use floor(value). break; } default: VIXL_UNIMPLEMENTED(); } return int_result; } double Simulator::FPToDouble(float value) { switch (std::fpclassify(value)) { case FP_NAN: { if (DN()) return kFP64DefaultNaN; // Convert NaNs as the processor would: // - The sign is propagated. // - The payload (mantissa) is transferred entirely, except that the top // bit is forced to '1', making the result a quiet NaN. The unused // (low-order) payload bits are set to 0. uint32_t raw = float_to_rawbits(value); uint64_t sign = raw >> 31; uint64_t exponent = (1 << 11) - 1; uint64_t payload = unsigned_bitextract_64(21, 0, raw); payload <<= (52 - 23); // The unused low-order bits should be 0. payload |= (UINT64_C(1) << 51); // Force a quiet NaN. return rawbits_to_double((sign << 63) | (exponent << 52) | payload); } case FP_ZERO: case FP_NORMAL: case FP_SUBNORMAL: case FP_INFINITE: { // All other inputs are preserved in a standard cast, because every value // representable using an IEEE-754 float is also representable using an // IEEE-754 double. return static_cast<double>(value); } } VIXL_UNREACHABLE(); return static_cast<double>(value); } float Simulator::FPToFloat(double value, FPRounding round_mode) { // Only the FPTieEven rounding mode is implemented. VIXL_ASSERT(round_mode == FPTieEven); USE(round_mode); switch (std::fpclassify(value)) { case FP_NAN: { if (DN()) return kFP32DefaultNaN; // Convert NaNs as the processor would: // - The sign is propagated. // - The payload (mantissa) is transferred as much as possible, except // that the top bit is forced to '1', making the result a quiet NaN. uint64_t raw = double_to_rawbits(value); uint32_t sign = raw >> 63; uint32_t exponent = (1 << 8) - 1; uint32_t payload = unsigned_bitextract_64(50, 52 - 23, raw); payload |= (1 << 22); // Force a quiet NaN. return rawbits_to_float((sign << 31) | (exponent << 23) | payload); } case FP_ZERO: case FP_INFINITE: { // In a C++ cast, any value representable in the target type will be // unchanged. This is always the case for +/-0.0 and infinities. return static_cast<float>(value); } case FP_NORMAL: case FP_SUBNORMAL: { // Convert double-to-float as the processor would, assuming that FPCR.FZ // (flush-to-zero) is not set. uint64_t raw = double_to_rawbits(value); // Extract the IEEE-754 double components. uint32_t sign = raw >> 63; // Extract the exponent and remove the IEEE-754 encoding bias. int32_t exponent = unsigned_bitextract_64(62, 52, raw) - 1023; // Extract the mantissa and add the implicit '1' bit. uint64_t mantissa = unsigned_bitextract_64(51, 0, raw); if (std::fpclassify(value) == FP_NORMAL) { mantissa |= (UINT64_C(1) << 52); } return FPRoundToFloat(sign, exponent, mantissa, round_mode); } } VIXL_UNREACHABLE(); return value; } void Simulator::VisitFPDataProcessing2Source(Instruction* instr) { AssertSupportedFPCR(); unsigned fd = instr->Rd(); unsigned fn = instr->Rn(); unsigned fm = instr->Rm(); // Fmaxnm and Fminnm have special NaN handling. switch (instr->Mask(FPDataProcessing2SourceMask)) { case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); return; case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); return; case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); return; case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); return; default: break; // Fall through. } if (FPProcessNaNs(instr)) return; switch (instr->Mask(FPDataProcessing2SourceMask)) { case FADD_s: set_sreg(fd, FPAdd(sreg(fn), sreg(fm))); break; case FADD_d: set_dreg(fd, FPAdd(dreg(fn), dreg(fm))); break; case FSUB_s: set_sreg(fd, FPSub(sreg(fn), sreg(fm))); break; case FSUB_d: set_dreg(fd, FPSub(dreg(fn), dreg(fm))); break; case FMUL_s: set_sreg(fd, FPMul(sreg(fn), sreg(fm))); break; case FMUL_d: set_dreg(fd, FPMul(dreg(fn), dreg(fm))); break; case FDIV_s: set_sreg(fd, FPDiv(sreg(fn), sreg(fm))); break; case FDIV_d: set_dreg(fd, FPDiv(dreg(fn), dreg(fm))); break; case FMAX_s: set_sreg(fd, FPMax(sreg(fn), sreg(fm))); break; case FMAX_d: set_dreg(fd, FPMax(dreg(fn), dreg(fm))); break; case FMIN_s: set_sreg(fd, FPMin(sreg(fn), sreg(fm))); break; case FMIN_d: set_dreg(fd, FPMin(dreg(fn), dreg(fm))); break; case FMAXNM_s: case FMAXNM_d: case FMINNM_s: case FMINNM_d: // These were handled before the standard FPProcessNaNs() stage. VIXL_UNREACHABLE(); default: VIXL_UNIMPLEMENTED(); } } void Simulator::VisitFPDataProcessing3Source(Instruction* instr) { AssertSupportedFPCR(); unsigned fd = instr->Rd(); unsigned fn = instr->Rn(); unsigned fm = instr->Rm(); unsigned fa = instr->Ra(); switch (instr->Mask(FPDataProcessing3SourceMask)) { // fd = fa +/- (fn * fm) case FMADD_s: set_sreg(fd, FPMulAdd(sreg(fa), sreg(fn), sreg(fm))); break; case FMSUB_s: set_sreg(fd, FPMulAdd(sreg(fa), -sreg(fn), sreg(fm))); break; case FMADD_d: set_dreg(fd, FPMulAdd(dreg(fa), dreg(fn), dreg(fm))); break; case FMSUB_d: set_dreg(fd, FPMulAdd(dreg(fa), -dreg(fn), dreg(fm))); break; // Negated variants of the above. case FNMADD_s: set_sreg(fd, FPMulAdd(-sreg(fa), -sreg(fn), sreg(fm))); break; case FNMSUB_s: set_sreg(fd, FPMulAdd(-sreg(fa), sreg(fn), sreg(fm))); break; case FNMADD_d: set_dreg(fd, FPMulAdd(-dreg(fa), -dreg(fn), dreg(fm))); break; case FNMSUB_d: set_dreg(fd, FPMulAdd(-dreg(fa), dreg(fn), dreg(fm))); break; default: VIXL_UNIMPLEMENTED(); } } template <typename T> T Simulator::FPAdd(T op1, T op2) { // NaNs should be handled elsewhere. VIXL_ASSERT(!std::isnan(op1) && !std::isnan(op2)); if (std::isinf(op1) && std::isinf(op2) && (op1 != op2)) { // inf + -inf returns the default NaN. FPProcessException(); return FPDefaultNaN<T>(); } else { // Other cases should be handled by standard arithmetic. return op1 + op2; } } template <typename T> T Simulator::FPDiv(T op1, T op2) { // NaNs should be handled elsewhere. VIXL_ASSERT(!std::isnan(op1) && !std::isnan(op2)); if ((std::isinf(op1) && std::isinf(op2)) || ((op1 == 0.0) && (op2 == 0.0))) { // inf / inf and 0.0 / 0.0 return the default NaN. FPProcessException(); return FPDefaultNaN<T>(); } else { if (op2 == 0.0) FPProcessException(); // Other cases should be handled by standard arithmetic. return op1 / op2; } } template <typename T> T Simulator::FPMax(T a, T b) { // NaNs should be handled elsewhere. VIXL_ASSERT(!std::isnan(a) && !std::isnan(b)); if ((a == 0.0) && (b == 0.0) && (copysign(1.0, a) != copysign(1.0, b))) { // a and b are zero, and the sign differs: return +0.0. return 0.0; } else { return (a > b) ? a : b; } } template <typename T> T Simulator::FPMaxNM(T a, T b) { if (IsQuietNaN(a) && !IsQuietNaN(b)) { a = kFP64NegativeInfinity; } else if (!IsQuietNaN(a) && IsQuietNaN(b)) { b = kFP64NegativeInfinity; } T result = FPProcessNaNs(a, b); return std::isnan(result) ? result : FPMax(a, b); } template <typename T> T Simulator::FPMin(T a, T b) { // NaNs should be handled elsewhere. VIXL_ASSERT(!std::isnan(a) && !std::isnan(b)); if ((a == 0.0) && (b == 0.0) && (copysign(1.0, a) != copysign(1.0, b))) { // a and b are zero, and the sign differs: return -0.0. return -0.0; } else { return (a < b) ? a : b; } } template <typename T> T Simulator::FPMinNM(T a, T b) { if (IsQuietNaN(a) && !IsQuietNaN(b)) { a = kFP64PositiveInfinity; } else if (!IsQuietNaN(a) && IsQuietNaN(b)) { b = kFP64PositiveInfinity; } T result = FPProcessNaNs(a, b); return std::isnan(result) ? result : FPMin(a, b); } template <typename T> T Simulator::FPMul(T op1, T op2) { // NaNs should be handled elsewhere. VIXL_ASSERT(!std::isnan(op1) && !std::isnan(op2)); if ((std::isinf(op1) && (op2 == 0.0)) || (std::isinf(op2) && (op1 == 0.0))) { // inf * 0.0 returns the default NaN. FPProcessException(); return FPDefaultNaN<T>(); } else { // Other cases should be handled by standard arithmetic. return op1 * op2; } } template<typename T> T Simulator::FPMulAdd(T a, T op1, T op2) { T result = FPProcessNaNs3(a, op1, op2); T sign_a = copysign(1.0, a); T sign_prod = copysign(1.0, op1) * copysign(1.0, op2); bool isinf_prod = std::isinf(op1) || std::isinf(op2); bool operation_generates_nan = (std::isinf(op1) && (op2 == 0.0)) || // inf * 0.0 (std::isinf(op2) && (op1 == 0.0)) || // 0.0 * inf (std::isinf(a) && isinf_prod && (sign_a != sign_prod)); // inf - inf if (std::isnan(result)) { // Generated NaNs override quiet NaNs propagated from a. if (operation_generates_nan && IsQuietNaN(a)) { FPProcessException(); return FPDefaultNaN<T>(); } else { return result; } } // If the operation would produce a NaN, return the default NaN. if (operation_generates_nan) { FPProcessException(); return FPDefaultNaN<T>(); } // Work around broken fma implementations for exact zero results: The sign of // exact 0.0 results is positive unless both a and op1 * op2 are negative. if (((op1 == 0.0) || (op2 == 0.0)) && (a == 0.0)) { return ((sign_a < 0) && (sign_prod < 0)) ? -0.0 : 0.0; } result = FusedMultiplyAdd(op1, op2, a); VIXL_ASSERT(!std::isnan(result)); // Work around broken fma implementations for rounded zero results: If a is // 0.0, the sign of the result is the sign of op1 * op2 before rounding. if ((a == 0.0) && (result == 0.0)) { return copysign(0.0, sign_prod); } return result; } template <typename T> T Simulator::FPSub(T op1, T op2) { // NaNs should be handled elsewhere. VIXL_ASSERT(!std::isnan(op1) && !std::isnan(op2)); if (std::isinf(op1) && std::isinf(op2) && (op1 == op2)) { // inf - inf returns the default NaN. FPProcessException(); return FPDefaultNaN<T>(); } else { // Other cases should be handled by standard arithmetic. return op1 - op2; } } template <typename T> T Simulator::FPSqrt(T op) { if (std::isnan(op)) { return FPProcessNaN(op); } else if (op < 0.0) { FPProcessException(); return FPDefaultNaN<T>(); } else { return sqrt(op); } } template <typename T> T Simulator::FPProcessNaN(T op) { VIXL_ASSERT(std::isnan(op)); if (IsSignallingNaN(op)) { FPProcessException(); } return DN() ? FPDefaultNaN<T>() : ToQuietNaN(op); } template <typename T> T Simulator::FPProcessNaNs(T op1, T op2) { if (IsSignallingNaN(op1)) { return FPProcessNaN(op1); } else if (IsSignallingNaN(op2)) { return FPProcessNaN(op2); } else if (std::isnan(op1)) { VIXL_ASSERT(IsQuietNaN(op1)); return FPProcessNaN(op1); } else if (std::isnan(op2)) { VIXL_ASSERT(IsQuietNaN(op2)); return FPProcessNaN(op2); } else { return 0.0; } } template <typename T> T Simulator::FPProcessNaNs3(T op1, T op2, T op3) { if (IsSignallingNaN(op1)) { return FPProcessNaN(op1); } else if (IsSignallingNaN(op2)) { return FPProcessNaN(op2); } else if (IsSignallingNaN(op3)) { return FPProcessNaN(op3); } else if (std::isnan(op1)) { VIXL_ASSERT(IsQuietNaN(op1)); return FPProcessNaN(op1); } else if (std::isnan(op2)) { VIXL_ASSERT(IsQuietNaN(op2)); return FPProcessNaN(op2); } else if (std::isnan(op3)) { VIXL_ASSERT(IsQuietNaN(op3)); return FPProcessNaN(op3); } else { return 0.0; } } bool Simulator::FPProcessNaNs(Instruction* instr) { unsigned fd = instr->Rd(); unsigned fn = instr->Rn(); unsigned fm = instr->Rm(); bool done = false; if (instr->Mask(FP64) == FP64) { double result = FPProcessNaNs(dreg(fn), dreg(fm)); if (std::isnan(result)) { set_dreg(fd, result); done = true; } } else { float result = FPProcessNaNs(sreg(fn), sreg(fm)); if (std::isnan(result)) { set_sreg(fd, result); done = true; } } return done; } void Simulator::VisitSystem(Instruction* instr) { // Some system instructions hijack their Op and Cp fields to represent a // range of immediates instead of indicating a different instruction. This // makes the decoding tricky. if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) { switch (instr->Mask(SystemSysRegMask)) { case MRS: { switch (instr->ImmSystemRegister()) { case NZCV: set_xreg(instr->Rt(), nzcv().RawValue()); break; case FPCR: set_xreg(instr->Rt(), fpcr().RawValue()); break; default: VIXL_UNIMPLEMENTED(); } break; } case MSR: { switch (instr->ImmSystemRegister()) { case NZCV: nzcv().SetRawValue(xreg(instr->Rt())); break; case FPCR: fpcr().SetRawValue(xreg(instr->Rt())); break; default: VIXL_UNIMPLEMENTED(); } break; } } } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) { VIXL_ASSERT(instr->Mask(SystemHintMask) == HINT); switch (instr->ImmHint()) { case NOP: break; default: VIXL_UNIMPLEMENTED(); } } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) { __sync_synchronize(); } else { VIXL_UNIMPLEMENTED(); } } void Simulator::VisitException(Instruction* instr) { switch (instr->Mask(ExceptionMask)) { case BRK: HostBreakpoint(); break; case HLT: // The Printf pseudo instruction is so useful, we include it in the // default simulator. if (instr->ImmException() == kPrintfOpcode) { DoPrintf(instr); } else { HostBreakpoint(); } break; default: VIXL_UNIMPLEMENTED(); } } void Simulator::DoPrintf(Instruction* instr) { VIXL_ASSERT((instr->Mask(ExceptionMask) == HLT) && (instr->ImmException() == kPrintfOpcode)); // Read the arguments encoded inline in the instruction stream. uint32_t arg_count; uint32_t arg_pattern_list; VIXL_STATIC_ASSERT(sizeof(*instr) == 1); memcpy(&arg_count, instr + kPrintfArgCountOffset, sizeof(arg_count)); memcpy(&arg_pattern_list, instr + kPrintfArgPatternListOffset, sizeof(arg_pattern_list)); VIXL_ASSERT(arg_count <= kPrintfMaxArgCount); VIXL_ASSERT((arg_pattern_list >> (kPrintfArgPatternBits * arg_count)) == 0); // We need to call the host printf function with a set of arguments defined by // arg_pattern_list. Because we don't know the types and sizes of the // arguments, this is very difficult to do in a robust and portable way. To // work around the problem, we pick apart the format string, and print one // format placeholder at a time. // Allocate space for the format string. We take a copy, so we can modify it. // Leave enough space for one extra character per expected argument (plus the // '\0' termination). const char * format_base = reg<const char *>(0); VIXL_ASSERT(format_base != NULL); size_t length = strlen(format_base) + 1; char * const format = new char[length + arg_count]; // A list of chunks, each with exactly one format placeholder. const char * chunks[kPrintfMaxArgCount]; // Copy the format string and search for format placeholders. uint32_t placeholder_count = 0; char * format_scratch = format; for (size_t i = 0; i < length; i++) { if (format_base[i] != '%') { *format_scratch++ = format_base[i]; } else { if (format_base[i + 1] == '%') { // Ignore explicit "%%" sequences. *format_scratch++ = format_base[i]; i++; // Chunks after the first are passed as format strings to printf, so we // need to escape '%' characters in those chunks. if (placeholder_count > 0) *format_scratch++ = format_base[i]; } else { VIXL_CHECK(placeholder_count < arg_count); // Insert '\0' before placeholders, and store their locations. *format_scratch++ = '\0'; chunks[placeholder_count++] = format_scratch; *format_scratch++ = format_base[i]; } } } VIXL_CHECK(placeholder_count == arg_count); // Finally, call printf with each chunk, passing the appropriate register // argument. Normally, printf returns the number of bytes transmitted, so we // can emulate a single printf call by adding the result from each chunk. If // any call returns a negative (error) value, though, just return that value. printf("%s", clr_printf); // Because '\0' is inserted before each placeholder, the first string in // 'format' contains no format placeholders and should be printed literally. int result = printf("%s", format); int pcs_r = 1; // Start at x1. x0 holds the format string. int pcs_f = 0; // Start at d0. if (result >= 0) { for (uint32_t i = 0; i < placeholder_count; i++) { int part_result = -1; uint32_t arg_pattern = arg_pattern_list >> (i * kPrintfArgPatternBits); arg_pattern &= (1 << kPrintfArgPatternBits) - 1; switch (arg_pattern) { case kPrintfArgW: part_result = printf(chunks[i], wreg(pcs_r++)); break; case kPrintfArgX: part_result = printf(chunks[i], xreg(pcs_r++)); break; case kPrintfArgD: part_result = printf(chunks[i], dreg(pcs_f++)); break; default: VIXL_UNREACHABLE(); } if (part_result < 0) { // Handle error values. result = part_result; break; } result += part_result; } } printf("%s", clr_normal); // Printf returns its result in x0 (just like the C library's printf). set_xreg(0, result); // The printf parameters are inlined in the code, so skip them. set_pc(instr->InstructionAtOffset(kPrintfLength)); // Set LR as if we'd just called a native printf function. set_lr(pc()); delete[] format; } } // namespace vixl #endif // USE_SIMULATOR