/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _UI_INPUT_DISPATCHER_H #define _UI_INPUT_DISPATCHER_H #include <input/Input.h> #include <input/InputTransport.h> #include <utils/KeyedVector.h> #include <utils/Vector.h> #include <utils/threads.h> #include <utils/Timers.h> #include <utils/RefBase.h> #include <utils/String8.h> #include <utils/Looper.h> #include <utils/BitSet.h> #include <cutils/atomic.h> #include <stddef.h> #include <unistd.h> #include <limits.h> #include "InputWindow.h" #include "InputApplication.h" #include "InputListener.h" namespace android { /* * Constants used to report the outcome of input event injection. */ enum { /* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */ INPUT_EVENT_INJECTION_PENDING = -1, /* Injection succeeded. */ INPUT_EVENT_INJECTION_SUCCEEDED = 0, /* Injection failed because the injector did not have permission to inject * into the application with input focus. */ INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1, /* Injection failed because there were no available input targets. */ INPUT_EVENT_INJECTION_FAILED = 2, /* Injection failed due to a timeout. */ INPUT_EVENT_INJECTION_TIMED_OUT = 3 }; /* * Constants used to determine the input event injection synchronization mode. */ enum { /* Injection is asynchronous and is assumed always to be successful. */ INPUT_EVENT_INJECTION_SYNC_NONE = 0, /* Waits for previous events to be dispatched so that the input dispatcher can determine * whether input event injection willbe permitted based on the current input focus. * Does not wait for the input event to finish processing. */ INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1, /* Waits for the input event to be completely processed. */ INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2, }; /* * An input target specifies how an input event is to be dispatched to a particular window * including the window's input channel, control flags, a timeout, and an X / Y offset to * be added to input event coordinates to compensate for the absolute position of the * window area. */ struct InputTarget { enum { /* This flag indicates that the event is being delivered to a foreground application. */ FLAG_FOREGROUND = 1 << 0, /* This flag indicates that the target of a MotionEvent is partly or wholly * obscured by another visible window above it. The motion event should be * delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */ FLAG_WINDOW_IS_OBSCURED = 1 << 1, /* This flag indicates that a motion event is being split across multiple windows. */ FLAG_SPLIT = 1 << 2, /* This flag indicates that the pointer coordinates dispatched to the application * will be zeroed out to avoid revealing information to an application. This is * used in conjunction with FLAG_DISPATCH_AS_OUTSIDE to prevent apps not sharing * the same UID from watching all touches. */ FLAG_ZERO_COORDS = 1 << 3, /* This flag indicates that the event should be sent as is. * Should always be set unless the event is to be transmuted. */ FLAG_DISPATCH_AS_IS = 1 << 8, /* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside * of the area of this target and so should instead be delivered as an * AMOTION_EVENT_ACTION_OUTSIDE to this target. */ FLAG_DISPATCH_AS_OUTSIDE = 1 << 9, /* This flag indicates that a hover sequence is starting in the given window. * The event is transmuted into ACTION_HOVER_ENTER. */ FLAG_DISPATCH_AS_HOVER_ENTER = 1 << 10, /* This flag indicates that a hover event happened outside of a window which handled * previous hover events, signifying the end of the current hover sequence for that * window. * The event is transmuted into ACTION_HOVER_ENTER. */ FLAG_DISPATCH_AS_HOVER_EXIT = 1 << 11, /* This flag indicates that the event should be canceled. * It is used to transmute ACTION_MOVE into ACTION_CANCEL when a touch slips * outside of a window. */ FLAG_DISPATCH_AS_SLIPPERY_EXIT = 1 << 12, /* This flag indicates that the event should be dispatched as an initial down. * It is used to transmute ACTION_MOVE into ACTION_DOWN when a touch slips * into a new window. */ FLAG_DISPATCH_AS_SLIPPERY_ENTER = 1 << 13, /* Mask for all dispatch modes. */ FLAG_DISPATCH_MASK = FLAG_DISPATCH_AS_IS | FLAG_DISPATCH_AS_OUTSIDE | FLAG_DISPATCH_AS_HOVER_ENTER | FLAG_DISPATCH_AS_HOVER_EXIT | FLAG_DISPATCH_AS_SLIPPERY_EXIT | FLAG_DISPATCH_AS_SLIPPERY_ENTER, }; // The input channel to be targeted. sp<InputChannel> inputChannel; // Flags for the input target. int32_t flags; // The x and y offset to add to a MotionEvent as it is delivered. // (ignored for KeyEvents) float xOffset, yOffset; // Scaling factor to apply to MotionEvent as it is delivered. // (ignored for KeyEvents) float scaleFactor; // The subset of pointer ids to include in motion events dispatched to this input target // if FLAG_SPLIT is set. BitSet32 pointerIds; }; /* * Input dispatcher configuration. * * Specifies various options that modify the behavior of the input dispatcher. * The values provided here are merely defaults. The actual values will come from ViewConfiguration * and are passed into the dispatcher during initialization. */ struct InputDispatcherConfiguration { // The key repeat initial timeout. nsecs_t keyRepeatTimeout; // The key repeat inter-key delay. nsecs_t keyRepeatDelay; InputDispatcherConfiguration() : keyRepeatTimeout(500 * 1000000LL), keyRepeatDelay(50 * 1000000LL) { } }; /* * Input dispatcher policy interface. * * The input reader policy is used by the input reader to interact with the Window Manager * and other system components. * * The actual implementation is partially supported by callbacks into the DVM * via JNI. This interface is also mocked in the unit tests. */ class InputDispatcherPolicyInterface : public virtual RefBase { protected: InputDispatcherPolicyInterface() { } virtual ~InputDispatcherPolicyInterface() { } public: /* Notifies the system that a configuration change has occurred. */ virtual void notifyConfigurationChanged(nsecs_t when) = 0; /* Notifies the system that an application is not responding. * Returns a new timeout to continue waiting, or 0 to abort dispatch. */ virtual nsecs_t notifyANR(const sp<InputApplicationHandle>& inputApplicationHandle, const sp<InputWindowHandle>& inputWindowHandle, const String8& reason) = 0; /* Notifies the system that an input channel is unrecoverably broken. */ virtual void notifyInputChannelBroken(const sp<InputWindowHandle>& inputWindowHandle) = 0; /* Gets the input dispatcher configuration. */ virtual void getDispatcherConfiguration(InputDispatcherConfiguration* outConfig) = 0; /* Filters an input event. * Return true to dispatch the event unmodified, false to consume the event. * A filter can also transform and inject events later by passing POLICY_FLAG_FILTERED * to injectInputEvent. */ virtual bool filterInputEvent(const InputEvent* inputEvent, uint32_t policyFlags) = 0; /* Intercepts a key event immediately before queueing it. * The policy can use this method as an opportunity to perform power management functions * and early event preprocessing such as updating policy flags. * * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event * should be dispatched to applications. */ virtual void interceptKeyBeforeQueueing(const KeyEvent* keyEvent, uint32_t& policyFlags) = 0; /* Intercepts a touch, trackball or other motion event before queueing it. * The policy can use this method as an opportunity to perform power management functions * and early event preprocessing such as updating policy flags. * * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event * should be dispatched to applications. */ virtual void interceptMotionBeforeQueueing(nsecs_t when, uint32_t& policyFlags) = 0; /* Allows the policy a chance to intercept a key before dispatching. */ virtual nsecs_t interceptKeyBeforeDispatching(const sp<InputWindowHandle>& inputWindowHandle, const KeyEvent* keyEvent, uint32_t policyFlags) = 0; /* Allows the policy a chance to perform default processing for an unhandled key. * Returns an alternate keycode to redispatch as a fallback, or 0 to give up. */ virtual bool dispatchUnhandledKey(const sp<InputWindowHandle>& inputWindowHandle, const KeyEvent* keyEvent, uint32_t policyFlags, KeyEvent* outFallbackKeyEvent) = 0; /* Notifies the policy about switch events. */ virtual void notifySwitch(nsecs_t when, uint32_t switchValues, uint32_t switchMask, uint32_t policyFlags) = 0; /* Poke user activity for an event dispatched to a window. */ virtual void pokeUserActivity(nsecs_t eventTime, int32_t eventType) = 0; /* Checks whether a given application pid/uid has permission to inject input events * into other applications. * * This method is special in that its implementation promises to be non-reentrant and * is safe to call while holding other locks. (Most other methods make no such guarantees!) */ virtual bool checkInjectEventsPermissionNonReentrant( int32_t injectorPid, int32_t injectorUid) = 0; }; /* Notifies the system about input events generated by the input reader. * The dispatcher is expected to be mostly asynchronous. */ class InputDispatcherInterface : public virtual RefBase, public InputListenerInterface { protected: InputDispatcherInterface() { } virtual ~InputDispatcherInterface() { } public: /* Dumps the state of the input dispatcher. * * This method may be called on any thread (usually by the input manager). */ virtual void dump(String8& dump) = 0; /* Called by the heatbeat to ensures that the dispatcher has not deadlocked. */ virtual void monitor() = 0; /* Runs a single iteration of the dispatch loop. * Nominally processes one queued event, a timeout, or a response from an input consumer. * * This method should only be called on the input dispatcher thread. */ virtual void dispatchOnce() = 0; /* Injects an input event and optionally waits for sync. * The synchronization mode determines whether the method blocks while waiting for * input injection to proceed. * Returns one of the INPUT_EVENT_INJECTION_XXX constants. * * This method may be called on any thread (usually by the input manager). */ virtual int32_t injectInputEvent(const InputEvent* event, int32_t displayId, int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis, uint32_t policyFlags) = 0; /* Sets the list of input windows. * * This method may be called on any thread (usually by the input manager). */ virtual void setInputWindows(const Vector<sp<InputWindowHandle> >& inputWindowHandles) = 0; /* Sets the focused application. * * This method may be called on any thread (usually by the input manager). */ virtual void setFocusedApplication( const sp<InputApplicationHandle>& inputApplicationHandle) = 0; /* Sets the input dispatching mode. * * This method may be called on any thread (usually by the input manager). */ virtual void setInputDispatchMode(bool enabled, bool frozen) = 0; /* Sets whether input event filtering is enabled. * When enabled, incoming input events are sent to the policy's filterInputEvent * method instead of being dispatched. The filter is expected to use * injectInputEvent to inject the events it would like to have dispatched. * It should include POLICY_FLAG_FILTERED in the policy flags during injection. */ virtual void setInputFilterEnabled(bool enabled) = 0; /* Transfers touch focus from the window associated with one channel to the * window associated with the other channel. * * Returns true on success. False if the window did not actually have touch focus. */ virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel, const sp<InputChannel>& toChannel) = 0; /* Registers or unregister input channels that may be used as targets for input events. * If monitor is true, the channel will receive a copy of all input events. * * These methods may be called on any thread (usually by the input manager). */ virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel, const sp<InputWindowHandle>& inputWindowHandle, bool monitor) = 0; virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) = 0; }; /* Dispatches events to input targets. Some functions of the input dispatcher, such as * identifying input targets, are controlled by a separate policy object. * * IMPORTANT INVARIANT: * Because the policy can potentially block or cause re-entrance into the input dispatcher, * the input dispatcher never calls into the policy while holding its internal locks. * The implementation is also carefully designed to recover from scenarios such as an * input channel becoming unregistered while identifying input targets or processing timeouts. * * Methods marked 'Locked' must be called with the lock acquired. * * Methods marked 'LockedInterruptible' must be called with the lock acquired but * may during the course of their execution release the lock, call into the policy, and * then reacquire the lock. The caller is responsible for recovering gracefully. * * A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa. */ class InputDispatcher : public InputDispatcherInterface { protected: virtual ~InputDispatcher(); public: explicit InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy); virtual void dump(String8& dump); virtual void monitor(); virtual void dispatchOnce(); virtual void notifyConfigurationChanged(const NotifyConfigurationChangedArgs* args); virtual void notifyKey(const NotifyKeyArgs* args); virtual void notifyMotion(const NotifyMotionArgs* args); virtual void notifySwitch(const NotifySwitchArgs* args); virtual void notifyDeviceReset(const NotifyDeviceResetArgs* args); virtual int32_t injectInputEvent(const InputEvent* event, int32_t displayId, int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis, uint32_t policyFlags); virtual void setInputWindows(const Vector<sp<InputWindowHandle> >& inputWindowHandles); virtual void setFocusedApplication(const sp<InputApplicationHandle>& inputApplicationHandle); virtual void setInputDispatchMode(bool enabled, bool frozen); virtual void setInputFilterEnabled(bool enabled); virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel, const sp<InputChannel>& toChannel); virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel, const sp<InputWindowHandle>& inputWindowHandle, bool monitor); virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel); private: template <typename T> struct Link { T* next; T* prev; protected: inline Link() : next(NULL), prev(NULL) { } }; struct InjectionState { mutable int32_t refCount; int32_t injectorPid; int32_t injectorUid; int32_t injectionResult; // initially INPUT_EVENT_INJECTION_PENDING bool injectionIsAsync; // set to true if injection is not waiting for the result int32_t pendingForegroundDispatches; // the number of foreground dispatches in progress InjectionState(int32_t injectorPid, int32_t injectorUid); void release(); private: ~InjectionState(); }; struct EventEntry : Link<EventEntry> { enum { TYPE_CONFIGURATION_CHANGED, TYPE_DEVICE_RESET, TYPE_KEY, TYPE_MOTION }; mutable int32_t refCount; int32_t type; nsecs_t eventTime; uint32_t policyFlags; InjectionState* injectionState; bool dispatchInProgress; // initially false, set to true while dispatching inline bool isInjected() const { return injectionState != NULL; } void release(); virtual void appendDescription(String8& msg) const = 0; protected: EventEntry(int32_t type, nsecs_t eventTime, uint32_t policyFlags); virtual ~EventEntry(); void releaseInjectionState(); }; struct ConfigurationChangedEntry : EventEntry { ConfigurationChangedEntry(nsecs_t eventTime); virtual void appendDescription(String8& msg) const; protected: virtual ~ConfigurationChangedEntry(); }; struct DeviceResetEntry : EventEntry { int32_t deviceId; DeviceResetEntry(nsecs_t eventTime, int32_t deviceId); virtual void appendDescription(String8& msg) const; protected: virtual ~DeviceResetEntry(); }; struct KeyEntry : EventEntry { int32_t deviceId; uint32_t source; int32_t action; int32_t flags; int32_t keyCode; int32_t scanCode; int32_t metaState; int32_t repeatCount; nsecs_t downTime; bool syntheticRepeat; // set to true for synthetic key repeats enum InterceptKeyResult { INTERCEPT_KEY_RESULT_UNKNOWN, INTERCEPT_KEY_RESULT_SKIP, INTERCEPT_KEY_RESULT_CONTINUE, INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER, }; InterceptKeyResult interceptKeyResult; // set based on the interception result nsecs_t interceptKeyWakeupTime; // used with INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER KeyEntry(nsecs_t eventTime, int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, int32_t repeatCount, nsecs_t downTime); virtual void appendDescription(String8& msg) const; void recycle(); protected: virtual ~KeyEntry(); }; struct MotionEntry : EventEntry { nsecs_t eventTime; int32_t deviceId; uint32_t source; int32_t action; int32_t flags; int32_t metaState; int32_t buttonState; int32_t edgeFlags; float xPrecision; float yPrecision; nsecs_t downTime; int32_t displayId; uint32_t pointerCount; PointerProperties pointerProperties[MAX_POINTERS]; PointerCoords pointerCoords[MAX_POINTERS]; MotionEntry(nsecs_t eventTime, int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags, float xPrecision, float yPrecision, nsecs_t downTime, int32_t displayId, uint32_t pointerCount, const PointerProperties* pointerProperties, const PointerCoords* pointerCoords, float xOffset, float yOffset); virtual void appendDescription(String8& msg) const; protected: virtual ~MotionEntry(); }; // Tracks the progress of dispatching a particular event to a particular connection. struct DispatchEntry : Link<DispatchEntry> { const uint32_t seq; // unique sequence number, never 0 EventEntry* eventEntry; // the event to dispatch int32_t targetFlags; float xOffset; float yOffset; float scaleFactor; nsecs_t deliveryTime; // time when the event was actually delivered // Set to the resolved action and flags when the event is enqueued. int32_t resolvedAction; int32_t resolvedFlags; DispatchEntry(EventEntry* eventEntry, int32_t targetFlags, float xOffset, float yOffset, float scaleFactor); ~DispatchEntry(); inline bool hasForegroundTarget() const { return targetFlags & InputTarget::FLAG_FOREGROUND; } inline bool isSplit() const { return targetFlags & InputTarget::FLAG_SPLIT; } private: static volatile int32_t sNextSeqAtomic; static uint32_t nextSeq(); }; // A command entry captures state and behavior for an action to be performed in the // dispatch loop after the initial processing has taken place. It is essentially // a kind of continuation used to postpone sensitive policy interactions to a point // in the dispatch loop where it is safe to release the lock (generally after finishing // the critical parts of the dispatch cycle). // // The special thing about commands is that they can voluntarily release and reacquire // the dispatcher lock at will. Initially when the command starts running, the // dispatcher lock is held. However, if the command needs to call into the policy to // do some work, it can release the lock, do the work, then reacquire the lock again // before returning. // // This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch // never calls into the policy while holding its lock. // // Commands are implicitly 'LockedInterruptible'. struct CommandEntry; typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry); class Connection; struct CommandEntry : Link<CommandEntry> { CommandEntry(Command command); ~CommandEntry(); Command command; // parameters for the command (usage varies by command) sp<Connection> connection; nsecs_t eventTime; KeyEntry* keyEntry; sp<InputApplicationHandle> inputApplicationHandle; sp<InputWindowHandle> inputWindowHandle; String8 reason; int32_t userActivityEventType; uint32_t seq; bool handled; }; // Generic queue implementation. template <typename T> struct Queue { T* head; T* tail; inline Queue() : head(NULL), tail(NULL) { } inline bool isEmpty() const { return !head; } inline void enqueueAtTail(T* entry) { entry->prev = tail; if (tail) { tail->next = entry; } else { head = entry; } entry->next = NULL; tail = entry; } inline void enqueueAtHead(T* entry) { entry->next = head; if (head) { head->prev = entry; } else { tail = entry; } entry->prev = NULL; head = entry; } inline void dequeue(T* entry) { if (entry->prev) { entry->prev->next = entry->next; } else { head = entry->next; } if (entry->next) { entry->next->prev = entry->prev; } else { tail = entry->prev; } } inline T* dequeueAtHead() { T* entry = head; head = entry->next; if (head) { head->prev = NULL; } else { tail = NULL; } return entry; } uint32_t count() const; }; /* Specifies which events are to be canceled and why. */ struct CancelationOptions { enum Mode { CANCEL_ALL_EVENTS = 0, CANCEL_POINTER_EVENTS = 1, CANCEL_NON_POINTER_EVENTS = 2, CANCEL_FALLBACK_EVENTS = 3, }; // The criterion to use to determine which events should be canceled. Mode mode; // Descriptive reason for the cancelation. const char* reason; // The specific keycode of the key event to cancel, or -1 to cancel any key event. int32_t keyCode; // The specific device id of events to cancel, or -1 to cancel events from any device. int32_t deviceId; CancelationOptions(Mode mode, const char* reason) : mode(mode), reason(reason), keyCode(-1), deviceId(-1) { } }; /* Tracks dispatched key and motion event state so that cancelation events can be * synthesized when events are dropped. */ class InputState { public: InputState(); ~InputState(); // Returns true if there is no state to be canceled. bool isNeutral() const; // Returns true if the specified source is known to have received a hover enter // motion event. bool isHovering(int32_t deviceId, uint32_t source, int32_t displayId) const; // Records tracking information for a key event that has just been published. // Returns true if the event should be delivered, false if it is inconsistent // and should be skipped. bool trackKey(const KeyEntry* entry, int32_t action, int32_t flags); // Records tracking information for a motion event that has just been published. // Returns true if the event should be delivered, false if it is inconsistent // and should be skipped. bool trackMotion(const MotionEntry* entry, int32_t action, int32_t flags); // Synthesizes cancelation events for the current state and resets the tracked state. void synthesizeCancelationEvents(nsecs_t currentTime, Vector<EventEntry*>& outEvents, const CancelationOptions& options); // Clears the current state. void clear(); // Copies pointer-related parts of the input state to another instance. void copyPointerStateTo(InputState& other) const; // Gets the fallback key associated with a keycode. // Returns -1 if none. // Returns AKEYCODE_UNKNOWN if we are only dispatching the unhandled key to the policy. int32_t getFallbackKey(int32_t originalKeyCode); // Sets the fallback key for a particular keycode. void setFallbackKey(int32_t originalKeyCode, int32_t fallbackKeyCode); // Removes the fallback key for a particular keycode. void removeFallbackKey(int32_t originalKeyCode); inline const KeyedVector<int32_t, int32_t>& getFallbackKeys() const { return mFallbackKeys; } private: struct KeyMemento { int32_t deviceId; uint32_t source; int32_t keyCode; int32_t scanCode; int32_t metaState; int32_t flags; nsecs_t downTime; uint32_t policyFlags; }; struct MotionMemento { int32_t deviceId; uint32_t source; int32_t flags; float xPrecision; float yPrecision; nsecs_t downTime; int32_t displayId; uint32_t pointerCount; PointerProperties pointerProperties[MAX_POINTERS]; PointerCoords pointerCoords[MAX_POINTERS]; bool hovering; uint32_t policyFlags; void setPointers(const MotionEntry* entry); }; Vector<KeyMemento> mKeyMementos; Vector<MotionMemento> mMotionMementos; KeyedVector<int32_t, int32_t> mFallbackKeys; ssize_t findKeyMemento(const KeyEntry* entry) const; ssize_t findMotionMemento(const MotionEntry* entry, bool hovering) const; void addKeyMemento(const KeyEntry* entry, int32_t flags); void addMotionMemento(const MotionEntry* entry, int32_t flags, bool hovering); static bool shouldCancelKey(const KeyMemento& memento, const CancelationOptions& options); static bool shouldCancelMotion(const MotionMemento& memento, const CancelationOptions& options); }; /* Manages the dispatch state associated with a single input channel. */ class Connection : public RefBase { protected: virtual ~Connection(); public: enum Status { // Everything is peachy. STATUS_NORMAL, // An unrecoverable communication error has occurred. STATUS_BROKEN, // The input channel has been unregistered. STATUS_ZOMBIE }; Status status; sp<InputChannel> inputChannel; // never null sp<InputWindowHandle> inputWindowHandle; // may be null bool monitor; InputPublisher inputPublisher; InputState inputState; // True if the socket is full and no further events can be published until // the application consumes some of the input. bool inputPublisherBlocked; // Queue of events that need to be published to the connection. Queue<DispatchEntry> outboundQueue; // Queue of events that have been published to the connection but that have not // yet received a "finished" response from the application. Queue<DispatchEntry> waitQueue; explicit Connection(const sp<InputChannel>& inputChannel, const sp<InputWindowHandle>& inputWindowHandle, bool monitor); inline const char* getInputChannelName() const { return inputChannel->getName().string(); } const char* getWindowName() const; const char* getStatusLabel() const; DispatchEntry* findWaitQueueEntry(uint32_t seq); }; enum DropReason { DROP_REASON_NOT_DROPPED = 0, DROP_REASON_POLICY = 1, DROP_REASON_APP_SWITCH = 2, DROP_REASON_DISABLED = 3, DROP_REASON_BLOCKED = 4, DROP_REASON_STALE = 5, }; sp<InputDispatcherPolicyInterface> mPolicy; InputDispatcherConfiguration mConfig; Mutex mLock; Condition mDispatcherIsAliveCondition; sp<Looper> mLooper; EventEntry* mPendingEvent; Queue<EventEntry> mInboundQueue; Queue<EventEntry> mRecentQueue; Queue<CommandEntry> mCommandQueue; void dispatchOnceInnerLocked(nsecs_t* nextWakeupTime); // Enqueues an inbound event. Returns true if mLooper->wake() should be called. bool enqueueInboundEventLocked(EventEntry* entry); // Cleans up input state when dropping an inbound event. void dropInboundEventLocked(EventEntry* entry, DropReason dropReason); // Adds an event to a queue of recent events for debugging purposes. void addRecentEventLocked(EventEntry* entry); // App switch latency optimization. bool mAppSwitchSawKeyDown; nsecs_t mAppSwitchDueTime; static bool isAppSwitchKeyCode(int32_t keyCode); bool isAppSwitchKeyEventLocked(KeyEntry* keyEntry); bool isAppSwitchPendingLocked(); void resetPendingAppSwitchLocked(bool handled); // Stale event latency optimization. static bool isStaleEventLocked(nsecs_t currentTime, EventEntry* entry); // Blocked event latency optimization. Drops old events when the user intends // to transfer focus to a new application. EventEntry* mNextUnblockedEvent; sp<InputWindowHandle> findTouchedWindowAtLocked(int32_t displayId, int32_t x, int32_t y); // All registered connections mapped by channel file descriptor. KeyedVector<int, sp<Connection> > mConnectionsByFd; ssize_t getConnectionIndexLocked(const sp<InputChannel>& inputChannel); // Input channels that will receive a copy of all input events. Vector<sp<InputChannel> > mMonitoringChannels; // Event injection and synchronization. Condition mInjectionResultAvailableCondition; bool hasInjectionPermission(int32_t injectorPid, int32_t injectorUid); void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult); Condition mInjectionSyncFinishedCondition; void incrementPendingForegroundDispatchesLocked(EventEntry* entry); void decrementPendingForegroundDispatchesLocked(EventEntry* entry); // Key repeat tracking. struct KeyRepeatState { KeyEntry* lastKeyEntry; // or null if no repeat nsecs_t nextRepeatTime; } mKeyRepeatState; void resetKeyRepeatLocked(); KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime); // Key replacement tracking struct KeyReplacement { int32_t keyCode; int32_t deviceId; bool operator==(const KeyReplacement& rhs) const { return keyCode == rhs.keyCode && deviceId == rhs.deviceId; } bool operator<(const KeyReplacement& rhs) const { return keyCode != rhs.keyCode ? keyCode < rhs.keyCode : deviceId < rhs.deviceId; } }; // Maps the key code replaced, device id tuple to the key code it was replaced with KeyedVector<KeyReplacement, int32_t> mReplacedKeys; // Deferred command processing. bool haveCommandsLocked() const; bool runCommandsLockedInterruptible(); CommandEntry* postCommandLocked(Command command); // Input filter processing. bool shouldSendKeyToInputFilterLocked(const NotifyKeyArgs* args); bool shouldSendMotionToInputFilterLocked(const NotifyMotionArgs* args); // Inbound event processing. void drainInboundQueueLocked(); void releasePendingEventLocked(); void releaseInboundEventLocked(EventEntry* entry); // Dispatch state. bool mDispatchEnabled; bool mDispatchFrozen; bool mInputFilterEnabled; Vector<sp<InputWindowHandle> > mWindowHandles; sp<InputWindowHandle> getWindowHandleLocked(const sp<InputChannel>& inputChannel) const; bool hasWindowHandleLocked(const sp<InputWindowHandle>& windowHandle) const; // Focus tracking for keys, trackball, etc. sp<InputWindowHandle> mFocusedWindowHandle; // Focus tracking for touch. struct TouchedWindow { sp<InputWindowHandle> windowHandle; int32_t targetFlags; BitSet32 pointerIds; // zero unless target flag FLAG_SPLIT is set }; struct TouchState { bool down; bool split; int32_t deviceId; // id of the device that is currently down, others are rejected uint32_t source; // source of the device that is current down, others are rejected int32_t displayId; // id to the display that currently has a touch, others are rejected Vector<TouchedWindow> windows; TouchState(); ~TouchState(); void reset(); void copyFrom(const TouchState& other); void addOrUpdateWindow(const sp<InputWindowHandle>& windowHandle, int32_t targetFlags, BitSet32 pointerIds); void removeWindow(const sp<InputWindowHandle>& windowHandle); void filterNonAsIsTouchWindows(); sp<InputWindowHandle> getFirstForegroundWindowHandle() const; bool isSlippery() const; }; KeyedVector<int32_t, TouchState> mTouchStatesByDisplay; TouchState mTempTouchState; // Focused application. sp<InputApplicationHandle> mFocusedApplicationHandle; // Dispatcher state at time of last ANR. String8 mLastANRState; // Dispatch inbound events. bool dispatchConfigurationChangedLocked( nsecs_t currentTime, ConfigurationChangedEntry* entry); bool dispatchDeviceResetLocked( nsecs_t currentTime, DeviceResetEntry* entry); bool dispatchKeyLocked( nsecs_t currentTime, KeyEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime); bool dispatchMotionLocked( nsecs_t currentTime, MotionEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime); void dispatchEventLocked(nsecs_t currentTime, EventEntry* entry, const Vector<InputTarget>& inputTargets); void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry); void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry); // Keeping track of ANR timeouts. enum InputTargetWaitCause { INPUT_TARGET_WAIT_CAUSE_NONE, INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY, INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY, }; InputTargetWaitCause mInputTargetWaitCause; nsecs_t mInputTargetWaitStartTime; nsecs_t mInputTargetWaitTimeoutTime; bool mInputTargetWaitTimeoutExpired; sp<InputApplicationHandle> mInputTargetWaitApplicationHandle; // Contains the last window which received a hover event. sp<InputWindowHandle> mLastHoverWindowHandle; // Finding targets for input events. int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry, const sp<InputApplicationHandle>& applicationHandle, const sp<InputWindowHandle>& windowHandle, nsecs_t* nextWakeupTime, const char* reason); void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout, const sp<InputChannel>& inputChannel); nsecs_t getTimeSpentWaitingForApplicationLocked(nsecs_t currentTime); void resetANRTimeoutsLocked(); int32_t findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry, Vector<InputTarget>& inputTargets, nsecs_t* nextWakeupTime); int32_t findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry, Vector<InputTarget>& inputTargets, nsecs_t* nextWakeupTime, bool* outConflictingPointerActions); void addWindowTargetLocked(const sp<InputWindowHandle>& windowHandle, int32_t targetFlags, BitSet32 pointerIds, Vector<InputTarget>& inputTargets); void addMonitoringTargetsLocked(Vector<InputTarget>& inputTargets); void pokeUserActivityLocked(const EventEntry* eventEntry); bool checkInjectionPermission(const sp<InputWindowHandle>& windowHandle, const InjectionState* injectionState); bool isWindowObscuredAtPointLocked(const sp<InputWindowHandle>& windowHandle, int32_t x, int32_t y) const; String8 getApplicationWindowLabelLocked(const sp<InputApplicationHandle>& applicationHandle, const sp<InputWindowHandle>& windowHandle); String8 checkWindowReadyForMoreInputLocked(nsecs_t currentTime, const sp<InputWindowHandle>& windowHandle, const EventEntry* eventEntry, const char* targetType); // Manage the dispatch cycle for a single connection. // These methods are deliberately not Interruptible because doing all of the work // with the mutex held makes it easier to ensure that connection invariants are maintained. // If needed, the methods post commands to run later once the critical bits are done. void prepareDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget); void enqueueDispatchEntriesLocked(nsecs_t currentTime, const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget); void enqueueDispatchEntryLocked(const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget, int32_t dispatchMode); void startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection); void finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection, uint32_t seq, bool handled); void abortBrokenDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection, bool notify); void drainDispatchQueueLocked(Queue<DispatchEntry>* queue); void releaseDispatchEntryLocked(DispatchEntry* dispatchEntry); static int handleReceiveCallback(int fd, int events, void* data); void synthesizeCancelationEventsForAllConnectionsLocked( const CancelationOptions& options); void synthesizeCancelationEventsForInputChannelLocked(const sp<InputChannel>& channel, const CancelationOptions& options); void synthesizeCancelationEventsForConnectionLocked(const sp<Connection>& connection, const CancelationOptions& options); // Splitting motion events across windows. MotionEntry* splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds); // Reset and drop everything the dispatcher is doing. void resetAndDropEverythingLocked(const char* reason); // Dump state. void dumpDispatchStateLocked(String8& dump); void logDispatchStateLocked(); // Registration. void removeMonitorChannelLocked(const sp<InputChannel>& inputChannel); status_t unregisterInputChannelLocked(const sp<InputChannel>& inputChannel, bool notify); // Add or remove a connection to the mActiveConnections vector. void activateConnectionLocked(Connection* connection); void deactivateConnectionLocked(Connection* connection); // Interesting events that we might like to log or tell the framework about. void onDispatchCycleFinishedLocked( nsecs_t currentTime, const sp<Connection>& connection, uint32_t seq, bool handled); void onDispatchCycleBrokenLocked( nsecs_t currentTime, const sp<Connection>& connection); void onANRLocked( nsecs_t currentTime, const sp<InputApplicationHandle>& applicationHandle, const sp<InputWindowHandle>& windowHandle, nsecs_t eventTime, nsecs_t waitStartTime, const char* reason); // Outbound policy interactions. void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry); void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry); void doNotifyANRLockedInterruptible(CommandEntry* commandEntry); void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry); void doDispatchCycleFinishedLockedInterruptible(CommandEntry* commandEntry); bool afterKeyEventLockedInterruptible(const sp<Connection>& connection, DispatchEntry* dispatchEntry, KeyEntry* keyEntry, bool handled); bool afterMotionEventLockedInterruptible(const sp<Connection>& connection, DispatchEntry* dispatchEntry, MotionEntry* motionEntry, bool handled); void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry); void initializeKeyEvent(KeyEvent* event, const KeyEntry* entry); // Statistics gathering. void updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry, int32_t injectionResult, nsecs_t timeSpentWaitingForApplication); void traceInboundQueueLengthLocked(); void traceOutboundQueueLengthLocked(const sp<Connection>& connection); void traceWaitQueueLengthLocked(const sp<Connection>& connection); }; /* Enqueues and dispatches input events, endlessly. */ class InputDispatcherThread : public Thread { public: explicit InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher); ~InputDispatcherThread(); private: virtual bool threadLoop(); sp<InputDispatcherInterface> mDispatcher; }; } // namespace android #endif // _UI_INPUT_DISPATCHER_H