/* * Copyright (C) Texas Instruments - http://www.ti.com/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <errno.h> #include <malloc.h> #include <stdlib.h> #include <stdarg.h> #include <fcntl.h> #include <poll.h> #include <sys/eventfd.h> #include <sys/ioctl.h> #include <linux/fb.h> #include <linux/omapfb.h> #include <sys/mman.h> #include <sys/resource.h> #include <cutils/properties.h> #include <cutils/log.h> #include <cutils/native_handle.h> #define HWC_REMOVE_DEPRECATED_VERSIONS 0 #include <hardware/hardware.h> #include <hardware/hwcomposer.h> #include <EGL/egl.h> #include <hardware_legacy/uevent.h> #include <png.h> #include <utils/Timers.h> #include <system/graphics.h> #include <linux/bltsville.h> #define MAX_HWC_LAYERS 32 #define ASPECT_RATIO_TOLERANCE 0.02f #define min(a, b) ( { typeof(a) __a = (a), __b = (b); __a < __b ? __a : __b; } ) #define max(a, b) ( { typeof(a) __a = (a), __b = (b); __a > __b ? __a : __b; } ) #define swap(a, b) do { typeof(a) __a = (a); (a) = (b); (b) = __a; } while (0) #define WIDTH(rect) ((rect).right - (rect).left) #define HEIGHT(rect) ((rect).bottom - (rect).top) #define DIV_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) #include <video/dsscomp.h> #include <video/omap_hwc.h> #include "hal_public.h" #include "rgz_2d.h" #include <linux/ion.h> #include <linux/omap_ion.h> #include <ion/ion.h> #define MAX_HW_OVERLAYS 4 #define NUM_NONSCALING_OVERLAYS 1 #define NUM_EXT_DISPLAY_BACK_BUFFERS 2 struct ext_transform_t { __u8 rotation : 3; /* 90-degree clockwise rotations */ __u8 hflip : 1; /* flip l-r (after rotation) */ __u8 enabled : 1; /* cloning enabled */ __u8 docking : 1; /* docking vs. mirroring - used for state */ }; /* cloning support and state */ struct omap4_hwc_ext { /* support */ struct ext_transform_t mirror; /* mirroring settings */ struct ext_transform_t dock; /* docking settings */ float lcd_xpy; /* pixel ratio for UI */ __u8 avoid_mode_change; /* use HDMI mode used for mirroring if possible */ __u8 force_dock; /* must dock */ __u8 hdmi_state; /* whether HDMI is connected */ /* state */ __u8 on_tv; /* using a tv */ struct ext_transform_t current; /* current settings */ struct ext_transform_t last; /* last-used settings */ /* configuration */ __u32 last_xres_used; /* resolution and pixel ratio used for mode selection */ __u32 last_yres_used; __u32 last_mode; /* 2-s complement of last HDMI mode set, 0 if none */ __u32 mirror_mode; /* 2-s complement of mode used when mirroring */ float last_xpy; __u16 width; /* external screen dimensions */ __u16 height; __u32 xres; /* external screen resolution */ __u32 yres; float m[2][3]; /* external transformation matrix */ hwc_rect_t mirror_region; /* region of screen to mirror */ }; typedef struct omap4_hwc_ext omap4_hwc_ext_t; /* used by property settings */ enum { EXT_ROTATION = 3, /* rotation while mirroring */ EXT_HFLIP = (1 << 2), /* flip l-r on output (after rotation) */ }; enum bltpolicy { BLTPOLICY_DISABLED = 0, BLTPOLICY_DEFAULT = 1, /* Default blit policy */ BLTPOLICY_ALL, /* Test mode to attempt to blit all */ }; enum bltmode { BLTMODE_PAINT = 0, /* Attempt to blit layer by layer */ BLTMODE_REGION = 1, /* Attempt to blit layers via regions */ }; /* ARGB image */ struct omap4_hwc_img { int width; int height; int rowbytes; int size; unsigned char *ptr; } dock_image = { .rowbytes = 0 }; struct omap4_hwc_module { hwc_module_t base; IMG_framebuffer_device_public_t *fb_dev; }; typedef struct omap4_hwc_module omap4_hwc_module_t; struct counts { unsigned int possible_overlay_layers; unsigned int composited_layers; unsigned int scaled_layers; unsigned int RGB; unsigned int BGR; unsigned int NV12; unsigned int dockable; unsigned int protected; unsigned int max_hw_overlays; unsigned int max_scaling_overlays; unsigned int mem; unsigned int s3d; unsigned int large_rgb32_layers; }; struct omap4_hwc_device { /* static data */ hwc_composer_device_1_t base; hwc_procs_t *procs; pthread_t hdmi_thread; pthread_mutex_t lock; IMG_framebuffer_device_public_t *fb_dev; struct dsscomp_display_info fb_dis; int fb_fd; /* file descriptor for /dev/fb0 */ int dsscomp_fd; /* file descriptor for /dev/dsscomp */ int hdmi_fb_fd; /* file descriptor for /dev/fb1 */ int wakeup_evt; /* eventfd used to wakeup event thread */ int img_mem_size; /* size of fb for hdmi */ void *img_mem_ptr; /* start of fb for hdmi */ int flags_rgb_order; int flags_nv12_only; float upscaled_nv12_limit; int on_tv; /* using a tv */ int force_sgx; omap4_hwc_ext_t ext; /* external mirroring data */ int idle; float primary_m[2][3]; /* internal transformation matrix */ int primary_transform; int primary_rotation; hwc_rect_t primary_region; buffer_handle_t *buffers; int use_sgx; int swap_rb; unsigned int post2_layers; /* Buffers used with DSS pipes*/ unsigned int post2_blit_buffers; /* Buffers used with blit */ int ext_ovls; /* # of overlays on external display for current composition */ int ext_ovls_wanted; /* # of overlays that should be on external display for current composition */ int last_ext_ovls; /* # of overlays on external/internal display for last composition */ int last_int_ovls; enum bltmode blt_mode; enum bltpolicy blt_policy; int blit_flags; int blit_num; struct omap_hwc_data comp_data; /* This is a kernel data structure */ struct rgz_blt_entry blit_ops[RGZ_MAX_BLITS]; struct counts stats; int ion_fd; struct ion_handle *ion_handles[2]; /* fake vsync event state */ pthread_mutex_t vsync_lock; int vsync_enabled; uint64_t last_vsync_time; int last_vsync_time_valid; uint64_t fake_vsync_period; }; typedef struct omap4_hwc_device omap4_hwc_device_t; #define HAL_FMT(f) ((f) == HAL_PIXEL_FORMAT_TI_NV12 ? "NV12" : \ (f) == HAL_PIXEL_FORMAT_TI_NV12_1D ? "NV12" : \ (f) == HAL_PIXEL_FORMAT_YV12 ? "YV12" : \ (f) == HAL_PIXEL_FORMAT_BGRX_8888 ? "xRGB32" : \ (f) == HAL_PIXEL_FORMAT_RGBX_8888 ? "xBGR32" : \ (f) == HAL_PIXEL_FORMAT_BGRA_8888 ? "ARGB32" : \ (f) == HAL_PIXEL_FORMAT_RGBA_8888 ? "ABGR32" : \ (f) == HAL_PIXEL_FORMAT_RGB_565 ? "RGB565" : "??") #define DSS_FMT(f) ((f) == OMAP_DSS_COLOR_NV12 ? "NV12" : \ (f) == OMAP_DSS_COLOR_RGB24U ? "xRGB32" : \ (f) == OMAP_DSS_COLOR_ARGB32 ? "ARGB32" : \ (f) == OMAP_DSS_COLOR_RGB16 ? "RGB565" : "??") static int debug = 0; static int debugpost2 = 0; static int debugblt = 0; static rgz_t grgz; static struct bvsurfgeom gscrngeom; static void showfps(void) { static int framecount = 0; static int lastframecount = 0; static nsecs_t lastfpstime = 0; static float fps = 0; char value[PROPERTY_VALUE_MAX]; property_get("debug.hwc.showfps", value, "0"); if (!atoi(value)) { return; } framecount++; if (!(framecount & 0x7)) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); nsecs_t diff = now - lastfpstime; fps = ((framecount - lastframecount) * (float)(s2ns(1))) / diff; lastfpstime = now; lastframecount = framecount; ALOGI("%d Frames, %f FPS", framecount, fps); } } static void dump_layer(hwc_layer_1_t const* l) { ALOGD("\ttype=%d, flags=%08x, handle=%p, tr=%02x, blend=%04x, {%d,%d,%d,%d}, {%d,%d,%d,%d}", l->compositionType, l->flags, l->handle, l->transform, l->blending, l->sourceCrop.left, l->sourceCrop.top, l->sourceCrop.right, l->sourceCrop.bottom, l->displayFrame.left, l->displayFrame.top, l->displayFrame.right, l->displayFrame.bottom); } static void dump_dsscomp(struct dsscomp_setup_dispc_data *d) { unsigned i; ALOGD("[%08x] set: %c%c%c %d ovls\n", d->sync_id, (d->mode & DSSCOMP_SETUP_MODE_APPLY) ? 'A' : '-', (d->mode & DSSCOMP_SETUP_MODE_DISPLAY) ? 'D' : '-', (d->mode & DSSCOMP_SETUP_MODE_CAPTURE) ? 'C' : '-', d->num_ovls); for (i = 0; i < d->num_mgrs; i++) { struct dss2_mgr_info *mi = &d->mgrs[i]; ALOGD(" (dis%d alpha=%d col=%08x ilace=%d)\n", mi->ix, mi->alpha_blending, mi->default_color, mi->interlaced); } for (i = 0; i < d->num_ovls; i++) { struct dss2_ovl_info *oi = &d->ovls[i]; struct dss2_ovl_cfg *c = &oi->cfg; if (c->zonly) ALOGD("ovl%d(%s z%d)\n", c->ix, c->enabled ? "ON" : "off", c->zorder); else ALOGD("ovl%d(%s z%d %s%s *%d%% %d*%d:%d,%d+%d,%d rot%d%s => %d,%d+%d,%d %p/%p|%d)\n", c->ix, c->enabled ? "ON" : "off", c->zorder, DSS_FMT(c->color_mode), c->pre_mult_alpha ? " premult" : "", (c->global_alpha * 100 + 128) / 255, c->width, c->height, c->crop.x, c->crop.y, c->crop.w, c->crop.h, c->rotation, c->mirror ? "+mir" : "", c->win.x, c->win.y, c->win.w, c->win.h, (void *) oi->ba, (void *) oi->uv, c->stride); } } struct dump_buf { char *buf; int buf_len; int len; }; static void dump_printf(struct dump_buf *buf, const char *fmt, ...) { va_list ap; va_start(ap, fmt); buf->len += vsnprintf(buf->buf + buf->len, buf->buf_len - buf->len, fmt, ap); va_end(ap); } static void dump_set_info(omap4_hwc_device_t *hwc_dev, hwc_display_contents_1_t* list) { struct dsscomp_setup_dispc_data *dsscomp = &hwc_dev->comp_data.dsscomp_data; char logbuf[1024]; struct dump_buf log = { .buf = logbuf, .buf_len = sizeof(logbuf), }; unsigned int i; dump_printf(&log, "set H{"); for (i = 0; list && i < list->numHwLayers; i++) { if (i) dump_printf(&log, " "); hwc_layer_1_t *layer = &list->hwLayers[i]; IMG_native_handle_t *handle = (IMG_native_handle_t *)layer->handle; if (hwc_dev->post2_blit_buffers) { if ((i + 1) < hwc_dev->post2_layers) dump_printf(&log, "%p:%s,", handle, "DSS"); else dump_printf(&log, "%p:%s,", handle, "BV2D"); } else dump_printf(&log, "%p:%s,", handle, layer->compositionType == HWC_OVERLAY ? "DSS" : "SGX"); if ((layer->flags & HWC_SKIP_LAYER) || !handle) { dump_printf(&log, "SKIP"); continue; } if (layer->flags & HWC_HINT_CLEAR_FB) dump_printf(&log, "CLR,"); dump_printf(&log, "%d*%d(%s)", handle->iWidth, handle->iHeight, HAL_FMT(handle->iFormat)); if (layer->transform) dump_printf(&log, "~%d", layer->transform); } dump_printf(&log, "} D{"); for (i = 0; i < dsscomp->num_ovls; i++) { if (i) dump_printf(&log, " "); dump_printf(&log, "%d=", dsscomp->ovls[i].cfg.ix); if (dsscomp->ovls[i].cfg.enabled) dump_printf(&log, "%08x:%d*%d,%s", dsscomp->ovls[i].ba, dsscomp->ovls[i].cfg.width, dsscomp->ovls[i].cfg.height, DSS_FMT(dsscomp->ovls[i].cfg.color_mode)); else dump_printf(&log, "-"); } dump_printf(&log, "} L{"); for (i = 0; i < hwc_dev->post2_layers; i++) { if (i) dump_printf(&log, " "); dump_printf(&log, "%p", hwc_dev->buffers[i]); } if (hwc_dev->post2_blit_buffers) { dump_printf(&log, "} B{"); for (i = hwc_dev->post2_layers; i < hwc_dev->post2_blit_buffers + hwc_dev->post2_layers; i++) { dump_printf(&log, "%p ", hwc_dev->buffers[i]); } } dump_printf(&log, "}%s\n", hwc_dev->use_sgx ? " swap" : ""); ALOGD("%s", log.buf); } static int sync_id = 0; static int omap4_hwc_is_valid_format(int format) { switch(format) { case HAL_PIXEL_FORMAT_RGB_565: case HAL_PIXEL_FORMAT_RGBX_8888: case HAL_PIXEL_FORMAT_RGBA_8888: case HAL_PIXEL_FORMAT_BGRA_8888: case HAL_PIXEL_FORMAT_BGRX_8888: case HAL_PIXEL_FORMAT_TI_NV12: case HAL_PIXEL_FORMAT_TI_NV12_1D: return 1; default: return 0; } } static int scaled(hwc_layer_1_t *layer) { int w = WIDTH(layer->sourceCrop); int h = HEIGHT(layer->sourceCrop); if (layer->transform & HWC_TRANSFORM_ROT_90) swap(w, h); return WIDTH(layer->displayFrame) != w || HEIGHT(layer->displayFrame) != h; } static int is_protected(hwc_layer_1_t *layer) { IMG_native_handle_t *handle = (IMG_native_handle_t *)layer->handle; return (handle->usage & GRALLOC_USAGE_PROTECTED); } #define is_BLENDED(layer) ((layer)->blending != HWC_BLENDING_NONE) static int is_RGB32(IMG_native_handle_t *handle) { switch(handle->iFormat) { case HAL_PIXEL_FORMAT_BGRA_8888: case HAL_PIXEL_FORMAT_BGRX_8888: return 1; default: return 0; } } static int is_RGB(IMG_native_handle_t *handle) { switch(handle->iFormat) { case HAL_PIXEL_FORMAT_BGRA_8888: case HAL_PIXEL_FORMAT_BGRX_8888: case HAL_PIXEL_FORMAT_RGB_565: return 1; default: return 0; } } static int get_rgb_bpp(IMG_native_handle_t *handle) { switch(handle->iFormat) { case HAL_PIXEL_FORMAT_BGRA_8888: case HAL_PIXEL_FORMAT_BGRX_8888: case HAL_PIXEL_FORMAT_RGBX_8888: case HAL_PIXEL_FORMAT_RGBA_8888: return 32; case HAL_PIXEL_FORMAT_RGB_565: return 16; default: return 0; } } static int is_BGR_format(int format) { switch (format) { case HAL_PIXEL_FORMAT_RGBX_8888: case HAL_PIXEL_FORMAT_RGBA_8888: return 1; default: return 0; } } static int is_BGR(IMG_native_handle_t *handle) { return is_BGR_format(handle->iFormat); } static int is_NV12(IMG_native_handle_t *handle) { switch(handle->iFormat) { case HAL_PIXEL_FORMAT_TI_NV12: case HAL_PIXEL_FORMAT_TI_NV12_1D: return 1; default: return 0; } } static int is_upscaled_NV12(omap4_hwc_device_t *hwc_dev, hwc_layer_1_t *layer) { if (!layer) return 0; IMG_native_handle_t *handle = (IMG_native_handle_t *)layer->handle; if (!is_NV12(handle)) return 0; int w = WIDTH(layer->sourceCrop); int h = HEIGHT(layer->sourceCrop); if (layer->transform & HWC_TRANSFORM_ROT_90) swap(w, h); return (WIDTH(layer->displayFrame) >= w * hwc_dev->upscaled_nv12_limit || HEIGHT(layer->displayFrame) >= h * hwc_dev->upscaled_nv12_limit); } static int dockable(hwc_layer_1_t *layer) { IMG_native_handle_t *handle = (IMG_native_handle_t *)layer->handle; return (handle->usage & GRALLOC_USAGE_EXTERNAL_DISP); } /* test if layer appears to be RGB32 (4 Bpp) and > 1280x720 */ static int is_large_rgb32_layer(const hwc_layer_1_t *layer) { IMG_native_handle_t *handle = (IMG_native_handle_t *)layer->handle; return is_RGB32(handle) && (((layer->sourceCrop.right - layer->sourceCrop.left) > 1280) || ((layer->sourceCrop.bottom - layer->sourceCrop.top) > 720)); } static uint64_t vsync_clock_now() { uint64_t now = 0; struct timespec ts; if (!clock_gettime(CLOCK_MONOTONIC, &ts)) now = ((uint64_t)ts.tv_sec) * 1000000000ull + ts.tv_nsec; return now; } static void wakeup_hdmi_thread(omap4_hwc_device_t *hwc_dev) { uint64_t tmp = 1; write(hwc_dev->wakeup_evt, &tmp, sizeof(tmp)); } static void fire_vsync_event(omap4_hwc_device_t *hwc_dev, uint64_t timestamp) { pthread_mutex_lock(&hwc_dev->vsync_lock); hwc_dev->last_vsync_time_valid = 1; hwc_dev->last_vsync_time = timestamp; pthread_mutex_unlock(&hwc_dev->vsync_lock); if (hwc_dev->procs && hwc_dev->procs->vsync) hwc_dev->procs->vsync(hwc_dev->procs, 0, timestamp); } static unsigned int mem1d(IMG_native_handle_t *handle) { if (handle == NULL || is_NV12(handle)) return 0; int bpp = handle->iFormat == HAL_PIXEL_FORMAT_RGB_565 ? 2 : 4; int stride = ALIGN(handle->iWidth, HW_ALIGN) * bpp; return stride * handle->iHeight; } static void omap4_hwc_setup_layer_base(struct dss2_ovl_cfg *oc, int index, int format, int blended, int width, int height) { unsigned int bits_per_pixel; /* YUV2RGB conversion */ const struct omap_dss_cconv_coefs ctbl_bt601_5 = { 298, 409, 0, 298, -208, -100, 298, 0, 517, 0, }; /* convert color format */ switch (format) { case HAL_PIXEL_FORMAT_RGBA_8888: case HAL_PIXEL_FORMAT_BGRA_8888: oc->color_mode = OMAP_DSS_COLOR_ARGB32; bits_per_pixel = 32; if (blended) break; case HAL_PIXEL_FORMAT_RGBX_8888: case HAL_PIXEL_FORMAT_BGRX_8888: oc->color_mode = OMAP_DSS_COLOR_RGB24U; bits_per_pixel = 32; break; case HAL_PIXEL_FORMAT_RGB_565: oc->color_mode = OMAP_DSS_COLOR_RGB16; bits_per_pixel = 16; break; case HAL_PIXEL_FORMAT_TI_NV12: case HAL_PIXEL_FORMAT_TI_NV12_1D: oc->color_mode = OMAP_DSS_COLOR_NV12; bits_per_pixel = 8; oc->cconv = ctbl_bt601_5; break; default: /* Should have been filtered out */ ALOGV("Unsupported pixel format"); return; } oc->width = width; oc->height = height; oc->stride = ALIGN(width, HW_ALIGN) * bits_per_pixel / 8; oc->enabled = 1; oc->global_alpha = 255; oc->zorder = index; oc->ix = 0; /* defaults for SGX framebuffer renders */ oc->crop.w = oc->win.w = width; oc->crop.h = oc->win.h = height; /* for now interlacing and vc1 info is not supplied */ oc->ilace = OMAP_DSS_ILACE_NONE; oc->vc1.enable = 0; } static void omap4_hwc_setup_layer(omap4_hwc_device_t *hwc_dev, struct dss2_ovl_info *ovl, hwc_layer_1_t *layer, int index, int format, int width, int height) { struct dss2_ovl_cfg *oc = &ovl->cfg; //dump_layer(layer); omap4_hwc_setup_layer_base(oc, index, format, is_BLENDED(layer), width, height); /* convert transformation - assuming 0-set config */ if (layer->transform & HWC_TRANSFORM_FLIP_H) oc->mirror = 1; if (layer->transform & HWC_TRANSFORM_FLIP_V) { oc->rotation = 2; oc->mirror = !oc->mirror; } if (layer->transform & HWC_TRANSFORM_ROT_90) { oc->rotation += oc->mirror ? -1 : 1; oc->rotation &= 3; } oc->pre_mult_alpha = layer->blending == HWC_BLENDING_PREMULT; /* display position */ oc->win.x = layer->displayFrame.left; oc->win.y = layer->displayFrame.top; oc->win.w = WIDTH(layer->displayFrame); oc->win.h = HEIGHT(layer->displayFrame); /* crop */ oc->crop.x = layer->sourceCrop.left; oc->crop.y = layer->sourceCrop.top; oc->crop.w = WIDTH(layer->sourceCrop); oc->crop.h = HEIGHT(layer->sourceCrop); } const float m_unit[2][3] = { { 1., 0., 0. }, { 0., 1., 0. } }; static inline void m_translate(float m[2][3], int dx, int dy) { m[0][2] += dx; m[1][2] += dy; } static inline void m_scale1(float m[3], int from, int to) { m[0] = m[0] * to / from; m[1] = m[1] * to / from; m[2] = m[2] * to / from; } static inline void m_scale(float m[2][3], int x_from, int x_to, int y_from, int y_to) { m_scale1(m[0], x_from, x_to); m_scale1(m[1], y_from, y_to); } static void m_rotate(float m[2][3], int quarter_turns) { if (quarter_turns & 2) m_scale(m, 1, -1, 1, -1); if (quarter_turns & 1) { int q; q = m[0][0]; m[0][0] = -m[1][0]; m[1][0] = q; q = m[0][1]; m[0][1] = -m[1][1]; m[1][1] = q; q = m[0][2]; m[0][2] = -m[1][2]; m[1][2] = q; } } static inline int m_round(float x) { /* int truncates towards 0 */ return (int) (x < 0 ? x - 0.5 : x + 0.5); } /* * assuming xpy (xratio:yratio) original pixel ratio, calculate the adjusted width * and height for a screen of xres/yres and physical size of width/height. * The adjusted size is the largest that fits into the screen. */ static void get_max_dimensions(__u32 orig_xres, __u32 orig_yres, float xpy, __u32 scr_xres, __u32 scr_yres, __u32 scr_width, __u32 scr_height, __u32 *adj_xres, __u32 *adj_yres) { /* assume full screen (largest size)*/ *adj_xres = scr_xres; *adj_yres = scr_yres; /* assume 1:1 pixel ratios if none supplied */ if (!scr_width || !scr_height) { scr_width = scr_xres; scr_height = scr_yres; } /* trim to keep aspect ratio */ float x_factor = orig_xres * xpy * scr_height; float y_factor = orig_yres * scr_width; /* allow for tolerance so we avoid scaling if framebuffer is standard size */ if (x_factor < y_factor * (1.f - ASPECT_RATIO_TOLERANCE)) *adj_xres = (__u32) (x_factor * *adj_xres / y_factor + 0.5); else if (x_factor * (1.f - ASPECT_RATIO_TOLERANCE) > y_factor) *adj_yres = (__u32) (y_factor * *adj_yres / x_factor + 0.5); } static void set_ext_matrix(omap4_hwc_ext_t *ext, struct hwc_rect region) { int orig_w = WIDTH(region); int orig_h = HEIGHT(region); float xpy = ext->lcd_xpy; /* reorientation matrix is: m = (center-from-target-center) * (scale-to-target) * (mirror) * (rotate) * (center-to-original-center) */ memcpy(ext->m, m_unit, sizeof(m_unit)); m_translate(ext->m, -(orig_w >> 1) - region.left, -(orig_h >> 1) - region.top); m_rotate(ext->m, ext->current.rotation); if (ext->current.hflip) m_scale(ext->m, 1, -1, 1, 1); if (ext->current.rotation & 1) { swap(orig_w, orig_h); xpy = 1. / xpy; } /* get target size */ __u32 adj_xres, adj_yres; get_max_dimensions(orig_w, orig_h, xpy, ext->xres, ext->yres, ext->width, ext->height, &adj_xres, &adj_yres); m_scale(ext->m, orig_w, adj_xres, orig_h, adj_yres); m_translate(ext->m, ext->xres >> 1, ext->yres >> 1); } static int crop_to_rect(struct dss2_ovl_cfg *cfg, struct hwc_rect vis_rect) { struct { int xy[2]; int wh[2]; } crop, win; struct { int lt[2]; int rb[2]; } vis; win.xy[0] = cfg->win.x; win.xy[1] = cfg->win.y; win.wh[0] = cfg->win.w; win.wh[1] = cfg->win.h; crop.xy[0] = cfg->crop.x; crop.xy[1] = cfg->crop.y; crop.wh[0] = cfg->crop.w; crop.wh[1] = cfg->crop.h; vis.lt[0] = vis_rect.left; vis.lt[1] = vis_rect.top; vis.rb[0] = vis_rect.right; vis.rb[1] = vis_rect.bottom; int c, swap = cfg->rotation & 1; /* align crop window with display coordinates */ if (swap) crop.xy[1] -= (crop.wh[1] = -crop.wh[1]); if (cfg->rotation & 2) crop.xy[!swap] -= (crop.wh[!swap] = -crop.wh[!swap]); if ((!cfg->mirror) ^ !(cfg->rotation & 2)) crop.xy[swap] -= (crop.wh[swap] = -crop.wh[swap]); for (c = 0; c < 2; c++) { /* see if complete buffer is outside the vis or it is fully cropped or scaled to 0 */ if (win.wh[c] <= 0 || vis.rb[c] <= vis.lt[c] || win.xy[c] + win.wh[c] <= vis.lt[c] || win.xy[c] >= vis.rb[c] || !crop.wh[c ^ swap]) return -ENOENT; /* crop left/top */ if (win.xy[c] < vis.lt[c]) { /* correction term */ int a = (vis.lt[c] - win.xy[c]) * crop.wh[c ^ swap] / win.wh[c]; crop.xy[c ^ swap] += a; crop.wh[c ^ swap] -= a; win.wh[c] -= vis.lt[c] - win.xy[c]; win.xy[c] = vis.lt[c]; } /* crop right/bottom */ if (win.xy[c] + win.wh[c] > vis.rb[c]) { crop.wh[c ^ swap] = crop.wh[c ^ swap] * (vis.rb[c] - win.xy[c]) / win.wh[c]; win.wh[c] = vis.rb[c] - win.xy[c]; } if (!crop.wh[c ^ swap] || !win.wh[c]) return -ENOENT; } /* realign crop window to buffer coordinates */ if (cfg->rotation & 2) crop.xy[!swap] -= (crop.wh[!swap] = -crop.wh[!swap]); if ((!cfg->mirror) ^ !(cfg->rotation & 2)) crop.xy[swap] -= (crop.wh[swap] = -crop.wh[swap]); if (swap) crop.xy[1] -= (crop.wh[1] = -crop.wh[1]); cfg->win.x = win.xy[0]; cfg->win.y = win.xy[1]; cfg->win.w = win.wh[0]; cfg->win.h = win.wh[1]; cfg->crop.x = crop.xy[0]; cfg->crop.y = crop.xy[1]; cfg->crop.w = crop.wh[0]; cfg->crop.h = crop.wh[1]; return 0; } static void omap4_hwc_apply_transform(float transform[2][3],struct dss2_ovl_cfg *oc) { float x, y, w, h; /* display position */ x = transform[0][0] * oc->win.x + transform[0][1] * oc->win.y + transform[0][2]; y = transform[1][0] * oc->win.x + transform[1][1] * oc->win.y + transform[1][2]; w = transform[0][0] * oc->win.w + transform[0][1] * oc->win.h; h = transform[1][0] * oc->win.w + transform[1][1] * oc->win.h; oc->win.x = m_round(w > 0 ? x : x + w); oc->win.y = m_round(h > 0 ? y : y + h); oc->win.w = m_round(w > 0 ? w : -w); oc->win.h = m_round(h > 0 ? h : -h); } static void omap4_hwc_adjust_ext_layer(omap4_hwc_ext_t *ext, struct dss2_ovl_info *ovl) { struct dss2_ovl_cfg *oc = &ovl->cfg; /* crop to clone region if mirroring */ if (!ext->current.docking && crop_to_rect(&ovl->cfg, ext->mirror_region) != 0) { ovl->cfg.enabled = 0; return; } omap4_hwc_apply_transform(ext->m, oc); /* combining transformations: F^a*R^b*F^i*R^j = F^(a+b)*R^(j+b*(-1)^i), because F*R = R^(-1)*F */ oc->rotation += (oc->mirror ? -1 : 1) * ext->current.rotation; oc->rotation &= 3; if (ext->current.hflip) oc->mirror = !oc->mirror; } static struct dsscomp_platform_info limits; static void omap4_hwc_adjust_primary_display_layer(omap4_hwc_device_t *hwc_dev, struct dss2_ovl_info *ovl) { struct dss2_ovl_cfg *oc = &ovl->cfg; if (crop_to_rect(&ovl->cfg, hwc_dev->primary_region) != 0) { ovl->cfg.enabled = 0; return; } omap4_hwc_apply_transform(hwc_dev->primary_m, oc); /* combining transformations: F^a*R^b*F^i*R^j = F^(a+b)*R^(j+b*(-1)^i), because F*R = R^(-1)*F */ oc->rotation += (oc->mirror ? -1 : 1) * hwc_dev->primary_rotation; oc->rotation &= 3; } static int omap4_hwc_can_scale(__u32 src_w, __u32 src_h, __u32 dst_w, __u32 dst_h, int is_2d, struct dsscomp_display_info *dis, struct dsscomp_platform_info *limits, __u32 pclk, void *handle) { __u32 fclk = limits->fclk / 1000; __u32 min_src_w = DIV_ROUND_UP(src_w, is_2d ? limits->max_xdecim_2d : limits->max_xdecim_1d); __u32 min_src_h = DIV_ROUND_UP(src_h, is_2d ? limits->max_ydecim_2d : limits->max_ydecim_1d); /* ERRATAs */ /* cannot render 1-width layers on DSI video mode panels - we just disallow all 1-width LCD layers */ if (dis->channel != OMAP_DSS_CHANNEL_DIGIT && dst_w < limits->min_width) return 0; /* NOTE: no support for checking YUV422 layers that are tricky to scale */ /* FIXME: limit vertical downscale well below theoretical limit as we saw display artifacts */ if (dst_h < src_h / 4) return 0; /* max downscale */ if (dst_h * limits->max_downscale < min_src_h) return 0; /* for manual panels pclk is 0, and there are no pclk based scaling limits */ if (!pclk) return !(dst_w < src_w / limits->max_downscale / (is_2d ? limits->max_xdecim_2d : limits->max_xdecim_1d)); /* :HACK: limit horizontal downscale well below theoretical limit as we saw display artifacts */ if (dst_w * 4 < src_w) return 0; if (handle) if (get_rgb_bpp(handle) == 32 && src_w > 1280 && dst_w * 3 < src_w) return 0; /* max horizontal downscale is 4, or the fclk/pixclk */ if (fclk > pclk * limits->max_downscale) fclk = pclk * limits->max_downscale; /* for small parts, we need to use integer fclk/pixclk */ if (src_w < limits->integer_scale_ratio_limit) fclk = fclk / pclk * pclk; if ((__u32) dst_w * fclk < min_src_w * pclk) return 0; return 1; } static int omap4_hwc_can_scale_layer(omap4_hwc_device_t *hwc_dev, hwc_layer_1_t *layer, IMG_native_handle_t *handle) { int src_w = WIDTH(layer->sourceCrop); int src_h = HEIGHT(layer->sourceCrop); int dst_w = WIDTH(layer->displayFrame); int dst_h = HEIGHT(layer->displayFrame); /* account for 90-degree rotation */ if (layer->transform & HWC_TRANSFORM_ROT_90) swap(src_w, src_h); /* NOTE: layers should be able to be scaled externally since framebuffer is able to be scaled on selected external resolution */ return omap4_hwc_can_scale(src_w, src_h, dst_w, dst_h, is_NV12(handle), &hwc_dev->fb_dis, &limits, hwc_dev->fb_dis.timings.pixel_clock, handle); } static int omap4_hwc_is_valid_layer(omap4_hwc_device_t *hwc_dev, hwc_layer_1_t *layer, IMG_native_handle_t *handle) { /* Skip layers are handled by SF */ if ((layer->flags & HWC_SKIP_LAYER) || !handle) return 0; if (!omap4_hwc_is_valid_format(handle->iFormat)) return 0; /* 1D buffers: no transform, must fit in TILER slot */ if (!is_NV12(handle)) { if (layer->transform) return 0; if (mem1d(handle) > limits.tiler1d_slot_size) return 0; } return omap4_hwc_can_scale_layer(hwc_dev, layer, handle); } static __u32 add_scaling_score(__u32 score, __u32 xres, __u32 yres, __u32 refresh, __u32 ext_xres, __u32 ext_yres, __u32 mode_xres, __u32 mode_yres, __u32 mode_refresh) { __u32 area = xres * yres; __u32 ext_area = ext_xres * ext_yres; __u32 mode_area = mode_xres * mode_yres; /* prefer to upscale (1% tolerance) [0..1] (insert after 1st bit) */ int upscale = (ext_xres >= xres * 99 / 100 && ext_yres >= yres * 99 / 100); score = (((score & ~1) | upscale) << 1) | (score & 1); /* pick minimum scaling [0..16] */ if (ext_area > area) score = (score << 5) | (16 * area / ext_area); else score = (score << 5) | (16 * ext_area / area); /* pick smallest leftover area [0..16] */ score = (score << 5) | ((16 * ext_area + (mode_area >> 1)) / mode_area); /* adjust mode refresh rate */ mode_refresh += mode_refresh % 6 == 5; /* prefer same or higher frame rate */ upscale = (mode_refresh >= refresh); score = (score << 1) | upscale; /* pick closest frame rate */ if (mode_refresh > refresh) score = (score << 8) | (240 * refresh / mode_refresh); else score = (score << 8) | (240 * mode_refresh / refresh); return score; } static int omap4_hwc_set_best_hdmi_mode(omap4_hwc_device_t *hwc_dev, __u32 xres, __u32 yres, float xpy) { int dis_ix = hwc_dev->on_tv ? 0 : 1; int forced_preferred_mode = 0; struct _qdis { struct dsscomp_display_info dis; struct dsscomp_videomode modedb[32]; } d = { .dis = { .ix = dis_ix } }; omap4_hwc_ext_t *ext = &hwc_dev->ext; d.dis.modedb_len = sizeof(d.modedb) / sizeof(*d.modedb); int ret = ioctl(hwc_dev->dsscomp_fd, DSSCIOC_QUERY_DISPLAY, &d); if (ret) return ret; if (d.dis.timings.x_res * d.dis.timings.y_res == 0 || xres * yres == 0) return -EINVAL; __u32 i, best = ~0, best_score = 0; ext->width = d.dis.width_in_mm; ext->height = d.dis.height_in_mm; ext->xres = d.dis.timings.x_res; ext->yres = d.dis.timings.y_res; /* use VGA external resolution as default */ if (!ext->xres || !ext->yres) { ext->xres = 640; ext->yres = 480; } /* * copy the xres/yres from the preferred mode */ __u32 preferred_mode_xres = 0; __u32 preferred_mode_yres = 0; char value[PROPERTY_VALUE_MAX]; if (property_get("persist.hwc.preferred_mode", value, "") <= 0 || sscanf(value, "%dx%d", &preferred_mode_xres, &preferred_mode_yres) != 2) { for (i = 0; i < d.dis.modedb_len; i++) { if (d.modedb[i].flag & FB_FLAG_PREFERRED) { preferred_mode_xres = d.modedb[i].xres; preferred_mode_yres = d.modedb[i].yres; ALOGD("preferred mode %d: xres %u yres %u\n", i, d.modedb[i].xres, d.modedb[i].yres); break; } } } else { ALOGD("forced preferred mode xres %u yres %u\n", preferred_mode_xres, preferred_mode_yres); forced_preferred_mode = 1; } __u32 ext_fb_xres, ext_fb_yres; for (i = 0; i < d.dis.modedb_len; i++) { __u32 score = 0; __u32 mode_xres = d.modedb[i].xres; __u32 mode_yres = d.modedb[i].yres; __u32 ext_width = d.dis.width_in_mm; __u32 ext_height = d.dis.height_in_mm; /* reject it because the hw says it can't actually use this mode */ if ((d.modedb[i].flag & FB_FLAG_HW_CAPABLE) == 0) continue; if (d.modedb[i].vmode & FB_VMODE_INTERLACED) mode_yres /= 2; if (d.modedb[i].flag & FB_FLAG_RATIO_4_3) { ext_width = 4; ext_height = 3; } else if (d.modedb[i].flag & FB_FLAG_RATIO_16_9) { ext_width = 16; ext_height = 9; } if (!mode_xres || !mode_yres) continue; get_max_dimensions(xres, yres, xpy, mode_xres, mode_yres, ext_width, ext_height, &ext_fb_xres, &ext_fb_yres); /* we need to ensure that even TILER2D buffers can be scaled */ if (!d.modedb[i].pixclock || (d.modedb[i].vmode & ~FB_VMODE_INTERLACED) || !omap4_hwc_can_scale(xres, yres, ext_fb_xres, ext_fb_yres, 1, &d.dis, &limits, 1000000000 / d.modedb[i].pixclock, NULL)) continue; /* prefer CEA modes */ if (d.modedb[i].flag & (FB_FLAG_RATIO_4_3 | FB_FLAG_RATIO_16_9)) score += 1; /* prefer modes that match the preferred mode's resolution */ if (d.modedb[i].xres == preferred_mode_xres && d.modedb[i].yres == preferred_mode_yres) { if (forced_preferred_mode) score += 10; else score += 1; } /* prefer modes the kernel has hinted is the correct mode */ if (!forced_preferred_mode && (d.modedb[i].flag & FB_FLAG_PREFERRED)) score += 1; /* prefer the same mode as we use for mirroring to avoid mode change */ score = (score << 1) | (i == ~ext->mirror_mode && ext->avoid_mode_change); score = add_scaling_score(score, xres, yres, 60, ext_fb_xres, ext_fb_yres, mode_xres, mode_yres, d.modedb[i].refresh ? : 1); ALOGD("#%d: %dx%d %dHz flag 0x%x vmode 0x%x, score 0x%x", i, mode_xres, mode_yres, d.modedb[i].refresh, d.modedb[i].flag, d.modedb[i].vmode, score); if (debug) ALOGD(" score=0x%x adj.res=%dx%d", score, ext_fb_xres, ext_fb_yres); if (best_score < score) { ext->width = ext_width; ext->height = ext_height; ext->xres = mode_xres; ext->yres = mode_yres; best = i; best_score = score; } } if (~best) { struct dsscomp_setup_display_data sdis = { .ix = dis_ix, }; sdis.mode = d.dis.modedb[best]; ALOGD("picking #%d", best); /* only reconfigure on change */ if (ext->last_mode != ~best) { /* set a property that apps that care (e.g. YouTube) can use * to determine whether or not to stream lower resolution * videos when the hdmi mode is < 1080p. * otherwise, they'd give us 1080p and we'd just scale it * down to the hdmi mode res. UI apps are always going * to draw at 1080p and we'll scale down because the * system can't support dynamic dpi changes. */ char display[PROPERTY_VALUE_MAX]; snprintf(display, sizeof(display), "%dx%d", d.modedb[best].xres, d.modedb[best].yres); ALOGD("setting property sys.display-size to %s", display); property_set("sys.display-size", display); ioctl(hwc_dev->dsscomp_fd, DSSCIOC_SETUP_DISPLAY, &sdis); } ext->last_mode = ~best; } else { __u32 ext_width = d.dis.width_in_mm; __u32 ext_height = d.dis.height_in_mm; __u32 ext_fb_xres, ext_fb_yres; get_max_dimensions(xres, yres, xpy, d.dis.timings.x_res, d.dis.timings.y_res, ext_width, ext_height, &ext_fb_xres, &ext_fb_yres); if (!d.dis.timings.pixel_clock || !omap4_hwc_can_scale(xres, yres, ext_fb_xres, ext_fb_yres, 1, &d.dis, &limits, d.dis.timings.pixel_clock, NULL)) { ALOGW("DSS scaler cannot support HDMI cloning"); return -1; } } ext->last_xres_used = xres; ext->last_yres_used = yres; ext->last_xpy = xpy; if (d.dis.channel == OMAP_DSS_CHANNEL_DIGIT) ext->on_tv = 1; return 0; } static void gather_layer_statistics(omap4_hwc_device_t *hwc_dev, struct counts *num, hwc_display_contents_1_t *list) { unsigned int i; /* Figure out how many layers we can support via DSS */ for (i = 0; list && i < list->numHwLayers; i++) { hwc_layer_1_t *layer = &list->hwLayers[i]; IMG_native_handle_t *handle = (IMG_native_handle_t *)layer->handle; layer->compositionType = HWC_FRAMEBUFFER; if (omap4_hwc_is_valid_layer(hwc_dev, layer, handle)) { num->possible_overlay_layers++; /* NV12 layers can only be rendered on scaling overlays */ if (scaled(layer) || is_NV12(handle) || hwc_dev->primary_transform) num->scaled_layers++; if (is_BGR(handle)) num->BGR++; else if (is_RGB(handle)) num->RGB++; else if (is_NV12(handle)) num->NV12++; if (dockable(layer)) num->dockable++; if (is_protected(layer)) num->protected++; num->mem += mem1d(handle); if (is_large_rgb32_layer(layer)) num->large_rgb32_layers++; } } hwc_dev->stats = *num; } static void decide_supported_cloning(omap4_hwc_device_t *hwc_dev, struct counts *num) { omap4_hwc_ext_t *ext = &hwc_dev->ext; int nonscaling_ovls = NUM_NONSCALING_OVERLAYS; num->max_hw_overlays = MAX_HW_OVERLAYS; /* * We cannot atomically switch overlays from one display to another. First, they * have to be disabled, and the disabling has to take effect on the current display. * We keep track of the available number of overlays here. */ if (ext->dock.enabled && !(ext->mirror.enabled && !(num->dockable || ext->force_dock))) { /* some overlays may already be used by the external display, so we account for this */ /* reserve just a video pipeline for HDMI if docking */ hwc_dev->ext_ovls = (num->dockable || ext->force_dock) ? 1 : 0; num->max_hw_overlays -= max(hwc_dev->ext_ovls, hwc_dev->last_ext_ovls); /* use mirroring transform if we are auto-switching to docking mode while mirroring*/ if (ext->mirror.enabled) { ext->current = ext->mirror; ext->current.docking = 1; } else { ext->current = ext->dock; } } else if (ext->mirror.enabled) { /* * otherwise, manage just from half the pipelines. NOTE: there is * no danger of having used too many overlays for external display here. */ num->max_hw_overlays >>= 1; nonscaling_ovls >>= 1; hwc_dev->ext_ovls = MAX_HW_OVERLAYS - num->max_hw_overlays; ext->current = ext->mirror; } else { num->max_hw_overlays -= hwc_dev->last_ext_ovls; hwc_dev->ext_ovls = 0; ext->current.enabled = 0; } /* * :TRICKY: We may not have enough overlays on the external display. We "reserve" them * here to figure out if mirroring is supported, but may not do mirroring for the first * frame while the overlays required for it are cleared. */ hwc_dev->ext_ovls_wanted = hwc_dev->ext_ovls; hwc_dev->ext_ovls = min(MAX_HW_OVERLAYS - hwc_dev->last_int_ovls, hwc_dev->ext_ovls); /* if mirroring, we are limited by both internal and external overlays. However, ext_ovls is always <= MAX_HW_OVERLAYS / 2 <= max_hw_overlays */ if (!num->protected && hwc_dev->ext_ovls && ext->current.enabled && !ext->current.docking) num->max_hw_overlays = hwc_dev->ext_ovls; /* If FB is not same resolution as LCD don't use GFX pipe line*/ if (hwc_dev->primary_transform) { num->max_hw_overlays -= NUM_NONSCALING_OVERLAYS; num->max_scaling_overlays = num->max_hw_overlays; } else num->max_scaling_overlays = num->max_hw_overlays - nonscaling_ovls; } /* how many large layers can be composited by the DSS */ static const unsigned int MAX_DSS_LARGE_LAYERS = 4; static int can_dss_render_all(omap4_hwc_device_t *hwc_dev, struct counts *num) { omap4_hwc_ext_t *ext = &hwc_dev->ext; int on_tv = hwc_dev->on_tv || (ext->on_tv && ext->current.enabled); int tform = ext->current.enabled && (ext->current.rotation || ext->current.hflip); return !hwc_dev->force_sgx && /* must have at least one layer if using composition bypass to get sync object */ num->possible_overlay_layers && num->possible_overlay_layers <= num->max_hw_overlays && num->possible_overlay_layers == num->composited_layers && num->scaled_layers <= num->max_scaling_overlays && num->NV12 <= num->max_scaling_overlays && /* fits into TILER slot */ num->mem <= limits.tiler1d_slot_size && /* we cannot clone non-NV12 transformed layers */ (!tform || (num->NV12 == num->possible_overlay_layers) || (num->NV12 && ext->current.docking)) && /* HDMI cannot display BGR */ (num->BGR == 0 || (num->RGB == 0 && !on_tv) || !hwc_dev->flags_rgb_order) && /* current hardware can only handle a limited number of 'large' RGB32 layers */ num->large_rgb32_layers <= MAX_DSS_LARGE_LAYERS; } static inline int can_dss_render_layer(omap4_hwc_device_t *hwc_dev, hwc_layer_1_t *layer) { IMG_native_handle_t *handle = (IMG_native_handle_t *)layer->handle; omap4_hwc_ext_t *ext = &hwc_dev->ext; int cloning = ext->current.enabled && (!ext->current.docking || (handle!=NULL ? dockable(layer) : 0)); int on_tv = hwc_dev->on_tv || (ext->on_tv && cloning); int tform = cloning && (ext->current.rotation || ext->current.hflip); return omap4_hwc_is_valid_layer(hwc_dev, layer, handle) && /* cannot rotate non-NV12 layers on external display */ (!tform || is_NV12(handle)) && /* skip non-NV12 layers if also using SGX (if nv12_only flag is set) */ (!hwc_dev->flags_nv12_only || (!hwc_dev->use_sgx || is_NV12(handle))) && /* make sure RGB ordering is consistent (if rgb_order flag is set) */ (!(hwc_dev->swap_rb ? is_RGB(handle) : is_BGR(handle)) || !hwc_dev->flags_rgb_order) && /* TV can only render RGB */ !(on_tv && is_BGR(handle)); } static inline int display_area(struct dss2_ovl_info *o) { return o->cfg.win.w * o->cfg.win.h; } static int clone_layer(omap4_hwc_device_t *hwc_dev, int ix) { struct dsscomp_setup_dispc_data *dsscomp = &hwc_dev->comp_data.dsscomp_data; omap4_hwc_ext_t *ext = &hwc_dev->ext; int ext_ovl_ix = dsscomp->num_ovls - hwc_dev->post2_layers; struct dss2_ovl_info *o = &dsscomp->ovls[dsscomp->num_ovls]; if (dsscomp->num_ovls >= MAX_HW_OVERLAYS) { ALOGE("**** cannot clone layer #%d. using all %d overlays.", ix, dsscomp->num_ovls); return -EBUSY; } memcpy(o, dsscomp->ovls + ix, sizeof(*o)); /* reserve overlays at end for other display */ o->cfg.ix = MAX_HW_OVERLAYS - 1 - ext_ovl_ix; o->cfg.mgr_ix = 1; /* * Here the assumption is that overlay0 is the one attached to FB. * Hence this clone_layer call is for FB cloning (provided use_sgx is true). */ /* For the external displays whose transform is the same as * that of primary display, ion_handles would be NULL hence * the below logic doesn't execute. */ if (ix == 0 && hwc_dev->ion_handles[sync_id%2] && hwc_dev->use_sgx) { o->addressing = OMAP_DSS_BUFADDR_ION; o->ba = (int)hwc_dev->ion_handles[sync_id%2]; } else { o->addressing = OMAP_DSS_BUFADDR_OVL_IX; o->ba = ix; } /* use distinct z values (to simplify z-order checking) */ o->cfg.zorder += hwc_dev->post2_layers; omap4_hwc_adjust_ext_layer(&hwc_dev->ext, o); dsscomp->num_ovls++; return 0; } static int clone_external_layer(omap4_hwc_device_t *hwc_dev, int ix) { struct dsscomp_setup_dispc_data *dsscomp = &hwc_dev->comp_data.dsscomp_data; omap4_hwc_ext_t *ext = &hwc_dev->ext; /* mirror only 1 external layer */ struct dss2_ovl_info *o = &dsscomp->ovls[ix]; /* full screen video after transformation */ __u32 xres = o->cfg.crop.w, yres = o->cfg.crop.h; if ((ext->current.rotation + o->cfg.rotation) & 1) swap(xres, yres); float xpy = ext->lcd_xpy * o->cfg.win.w / o->cfg.win.h; if (o->cfg.rotation & 1) xpy = o->cfg.crop.h / xpy / o->cfg.crop.w; else xpy = o->cfg.crop.h * xpy / o->cfg.crop.w; if (ext->current.rotation & 1) xpy = 1. / xpy; /* adjust hdmi mode based on resolution */ if (xres != ext->last_xres_used || yres != ext->last_yres_used || xpy < ext->last_xpy * (1.f - ASPECT_RATIO_TOLERANCE) || xpy * (1.f - ASPECT_RATIO_TOLERANCE) > ext->last_xpy) { ALOGD("set up HDMI for %d*%d\n", xres, yres); if (omap4_hwc_set_best_hdmi_mode(hwc_dev, xres, yres, xpy)) { ext->current.enabled = 0; return -ENODEV; } } struct hwc_rect region = { .left = o->cfg.win.x, .top = o->cfg.win.y, .right = o->cfg.win.x + o->cfg.win.w, .bottom = o->cfg.win.y + o->cfg.win.h }; set_ext_matrix(&hwc_dev->ext, region); return clone_layer(hwc_dev, ix); } static int setup_mirroring(omap4_hwc_device_t *hwc_dev) { omap4_hwc_ext_t *ext = &hwc_dev->ext; __u32 xres = WIDTH(ext->mirror_region); __u32 yres = HEIGHT(ext->mirror_region); if (ext->current.rotation & 1) swap(xres, yres); if (omap4_hwc_set_best_hdmi_mode(hwc_dev, xres, yres, ext->lcd_xpy)) return -ENODEV; set_ext_matrix(ext, ext->mirror_region); return 0; } /* * We're using "implicit" synchronization, so make sure we aren't passing any * sync object descriptors around. */ static void check_sync_fds(size_t numDisplays, hwc_display_contents_1_t** displays) { //ALOGD("checking sync FDs"); unsigned int i, j; for (i = 0; i < numDisplays; i++) { hwc_display_contents_1_t* list = displays[i]; if (list->retireFenceFd >= 0) { ALOGW("retireFenceFd[%u] was %d", i, list->retireFenceFd); list->retireFenceFd = -1; } for (j = 0; j < list->numHwLayers; j++) { hwc_layer_1_t* layer = &list->hwLayers[j]; if (layer->acquireFenceFd >= 0) { ALOGW("acquireFenceFd[%u][%u] was %d, closing", i, j, layer->acquireFenceFd); close(layer->acquireFenceFd); layer->acquireFenceFd = -1; } if (layer->releaseFenceFd >= 0) { ALOGW("releaseFenceFd[%u][%u] was %d", i, j, layer->releaseFenceFd); layer->releaseFenceFd = -1; } } } } static void blit_reset(omap4_hwc_device_t *hwc_dev, int flags) { hwc_dev->blit_flags = 0; hwc_dev->blit_num = 0; hwc_dev->post2_blit_buffers = 0; hwc_dev->comp_data.blit_data.rgz_items = 0; /* We want to maintain the rgz dirty region data if there are no geometry changes */ if (flags & HWC_GEOMETRY_CHANGED) rgz_release(&grgz); } static int blit_layers(omap4_hwc_device_t *hwc_dev, hwc_display_contents_1_t *list, int bufoff) { /* Do not blit if this frame will be composed entirely by the GPU */ if (!list || hwc_dev->force_sgx) goto err_out; int rgz_in_op; int rgz_out_op; switch (hwc_dev->blt_mode) { case BLTMODE_PAINT: rgz_in_op = RGZ_IN_HWCCHK; rgz_out_op = RGZ_OUT_BVCMD_PAINT; break; case BLTMODE_REGION: default: rgz_in_op = RGZ_IN_HWC; rgz_out_op = RGZ_OUT_BVCMD_REGION; break; } rgz_in_params_t in = { .op = rgz_in_op, .data = { .hwc = { .dstgeom = &gscrngeom, .layers = list->hwLayers, .layerno = list->numHwLayers } } }; /* * This means if all the layers marked for the FRAMEBUFFER cannot be * blitted, do not blit, for e.g. SKIP layers */ if (rgz_in(&in, &grgz) != RGZ_ALL) goto err_out; unsigned int i, count = 0; for (i = 0; i < list->numHwLayers; i++) { if (list->hwLayers[i].compositionType != HWC_OVERLAY) { count++; } } rgz_out_params_t out = { .op = rgz_out_op, .data = { .bvc = { .dstgeom = &gscrngeom, .noblend = 0, } } }; if (rgz_out(&grgz, &out) != 0) { ALOGE("Failed generating blits"); goto err_out; } /* This is a special situation where the regionizer decided no blits are * needed for this frame but there are blit buffers to synchronize with. Can * happen only if the regionizer is enabled otherwise it's likely a bug */ if (rgz_out_op != RGZ_OUT_BVCMD_REGION && out.data.bvc.out_blits == 0 && out.data.bvc.out_nhndls > 0) { ALOGE("Regionizer invalid output blit_num %d, post2_blit_buffers %d", out.data.bvc.out_blits, out.data.bvc.out_nhndls); goto err_out; } hwc_dev->blit_flags |= HWC_BLT_FLAG_USE_FB; hwc_dev->blit_num = out.data.bvc.out_blits; hwc_dev->post2_blit_buffers = out.data.bvc.out_nhndls; for (i = 0; i < hwc_dev->post2_blit_buffers; i++) { //ALOGI("blit buffers[%d] = %p", bufoff, out.data.bvc.out_hndls[i]); hwc_dev->buffers[bufoff++] = out.data.bvc.out_hndls[i]; } struct rgz_blt_entry *res_blit_ops = (struct rgz_blt_entry *) out.data.bvc.cmdp; memcpy(hwc_dev->comp_data.blit_data.rgz_blts, res_blit_ops, sizeof(*res_blit_ops) * out.data.bvc.cmdlen); ALOGI_IF(debugblt, "blt struct sz %d", sizeof(*res_blit_ops) * out.data.bvc.cmdlen); ALOGE_IF(hwc_dev->blit_num != out.data.bvc.cmdlen,"blit_num != out.data.bvc.cmdlen, %d != %d", hwc_dev->blit_num, out.data.bvc.cmdlen); /* all layers will be rendered without SGX help either via DSS or blitter */ for (i = 0; i < list->numHwLayers; i++) { if (list->hwLayers[i].compositionType != HWC_OVERLAY) { list->hwLayers[i].compositionType = HWC_OVERLAY; //ALOGI("blitting layer %d", i); list->hwLayers[i].hints &= ~HWC_HINT_TRIPLE_BUFFER; } list->hwLayers[i].hints &= ~HWC_HINT_CLEAR_FB; } return 1; err_out: rgz_release(&grgz); return 0; } void debug_post2(omap4_hwc_device_t *hwc_dev, int nbufs) { if (!debugpost2) return; struct dsscomp_setup_dispc_data *dsscomp = &hwc_dev->comp_data.dsscomp_data; int i; for (i=0; i<nbufs; i++) { ALOGI("buf[%d] hndl %p", i, hwc_dev->buffers[i]); } for (i=0; i < dsscomp->num_ovls; i++) { ALOGI("ovl[%d] ba %d", i, dsscomp->ovls[i].ba); } } static int free_tiler2d_buffers(omap4_hwc_device_t *hwc_dev) { int i; for (i = 0 ; i < NUM_EXT_DISPLAY_BACK_BUFFERS; i++) { ion_free(hwc_dev->ion_fd, hwc_dev->ion_handles[i]); hwc_dev->ion_handles[i] = NULL; } return 0; } static int allocate_tiler2d_buffers(omap4_hwc_device_t *hwc_dev) { int ret, i; size_t stride; if (hwc_dev->ion_fd < 0) { ALOGE("No ion fd, hence can't allocate tiler2d buffers"); return -1; } for (i = 0; i < NUM_EXT_DISPLAY_BACK_BUFFERS; i++) { if (hwc_dev->ion_handles[i]) return 0; } for (i = 0 ; i < NUM_EXT_DISPLAY_BACK_BUFFERS; i++) { ret = ion_alloc_tiler(hwc_dev->ion_fd, hwc_dev->fb_dev->base.width, hwc_dev->fb_dev->base.height, TILER_PIXEL_FMT_32BIT, 0, &hwc_dev->ion_handles[i], &stride); if (ret) goto handle_error; ALOGI("ion handle[%d][%p]", i, hwc_dev->ion_handles[i]); } return 0; handle_error: free_tiler2d_buffers(hwc_dev); return -1; } static int omap4_hwc_prepare(struct hwc_composer_device_1 *dev, size_t numDisplays, hwc_display_contents_1_t** displays) { if (!numDisplays || displays == NULL) { return 0; } hwc_display_contents_1_t* list = displays[0]; // ignore displays beyond the first omap4_hwc_device_t *hwc_dev = (omap4_hwc_device_t *)dev; struct dsscomp_setup_dispc_data *dsscomp = &hwc_dev->comp_data.dsscomp_data; struct counts num = { .composited_layers = list ? list->numHwLayers : 0 }; unsigned int i, ix; pthread_mutex_lock(&hwc_dev->lock); memset(dsscomp, 0x0, sizeof(*dsscomp)); dsscomp->sync_id = sync_id++; gather_layer_statistics(hwc_dev, &num, list); decide_supported_cloning(hwc_dev, &num); /* phase 3 logic */ if (can_dss_render_all(hwc_dev, &num)) { /* All layers can be handled by the DSS -- don't use SGX for composition */ hwc_dev->use_sgx = 0; hwc_dev->swap_rb = num.BGR != 0; } else { /* Use SGX for composition plus first 3 layers that are DSS renderable */ hwc_dev->use_sgx = 1; hwc_dev->swap_rb = is_BGR_format(hwc_dev->fb_dev->base.format); } /* setup pipes */ int z = 0; int fb_z = -1; int scaled_gfx = 0; int ix_docking = -1; unsigned int big_layers = 0; int blit_all = 0; blit_reset(hwc_dev, list ? list->flags : 0); /* If the SGX is used or we are going to blit something we need a framebuffer * and a DSS pipe */ int needs_fb = hwc_dev->use_sgx; if (hwc_dev->blt_policy == BLTPOLICY_ALL) { /* Check if we can blit everything */ blit_all = blit_layers(hwc_dev, list, 0); if (blit_all) { needs_fb = 1; hwc_dev->use_sgx = 0; } } /* If a framebuffer is needed, begin using VID1 for DSS overlay layers, * we need GFX for FB */ dsscomp->num_ovls = needs_fb ? 1 /*VID1*/ : 0 /*GFX*/; /* set up if DSS layers */ unsigned int mem_used = 0; for (i = 0; list && i < list->numHwLayers && !blit_all; i++) { hwc_layer_1_t *layer = &list->hwLayers[i]; IMG_native_handle_t *handle = (IMG_native_handle_t *)layer->handle; if (dsscomp->num_ovls < num.max_hw_overlays && can_dss_render_layer(hwc_dev, layer) && (!hwc_dev->force_sgx || /* render protected and dockable layers via DSS */ is_protected(layer) || is_upscaled_NV12(hwc_dev, layer) || (hwc_dev->ext.current.docking && hwc_dev->ext.current.enabled && dockable(layer))) && mem_used + mem1d(handle) <= limits.tiler1d_slot_size && /* can't have a transparent overlay in the middle of the framebuffer stack */ !(is_BLENDED(layer) && fb_z >= 0) && /* current hardware can only handle a limited number of 'large' RGB32 layers */ !(is_large_rgb32_layer(layer) && big_layers >= MAX_DSS_LARGE_LAYERS)) { /* render via DSS overlay */ mem_used += mem1d(handle); layer->compositionType = HWC_OVERLAY; /* * This hint will not be used in vanilla ICS, but maybe in * JellyBean, it is useful to distinguish between blts and true * overlays */ layer->hints |= HWC_HINT_TRIPLE_BUFFER; /* clear FB above all opaque layers if rendering via SGX */ if (hwc_dev->use_sgx && !is_BLENDED(layer)) layer->hints |= HWC_HINT_CLEAR_FB; hwc_dev->buffers[dsscomp->num_ovls] = layer->handle; omap4_hwc_setup_layer(hwc_dev, &dsscomp->ovls[dsscomp->num_ovls], layer, z, handle->iFormat, handle->iWidth, handle->iHeight); dsscomp->ovls[dsscomp->num_ovls].cfg.ix = dsscomp->num_ovls + hwc_dev->primary_transform; dsscomp->ovls[dsscomp->num_ovls].addressing = OMAP_DSS_BUFADDR_LAYER_IX; dsscomp->ovls[dsscomp->num_ovls].ba = dsscomp->num_ovls; /* ensure GFX layer is never scaled */ if ((dsscomp->num_ovls == 0) && (!hwc_dev->primary_transform)) { scaled_gfx = scaled(layer) || is_NV12(handle); } else if (scaled_gfx && !scaled(layer) && !is_NV12(handle)) { /* swap GFX layer with this one */ dsscomp->ovls[dsscomp->num_ovls].cfg.ix = 0; dsscomp->ovls[0].cfg.ix = dsscomp->num_ovls; scaled_gfx = 0; } /* remember largest dockable layer */ if (dockable(layer) && (ix_docking < 0 || display_area(&dsscomp->ovls[dsscomp->num_ovls]) > display_area(&dsscomp->ovls[ix_docking]))) ix_docking = dsscomp->num_ovls; dsscomp->num_ovls++; z++; /* record whether or not this was a 'big' RGB32 layer */ if (is_large_rgb32_layer(layer)) { big_layers++; } } else if (hwc_dev->use_sgx) { if (fb_z < 0) { /* NOTE: we are not handling transparent cutout for now */ fb_z = z; z++; } else { /* move fb z-order up (by lowering dss layers) */ while (fb_z < z - 1) dsscomp->ovls[1 + fb_z++].cfg.zorder--; } } } /* if scaling GFX (e.g. only 1 scaled surface) use a VID pipe */ if (scaled_gfx) dsscomp->ovls[0].cfg.ix = dsscomp->num_ovls; if (hwc_dev->blt_policy == BLTPOLICY_DEFAULT) { if (hwc_dev->use_sgx) { if (blit_layers(hwc_dev, list, dsscomp->num_ovls == 1 ? 0 : dsscomp->num_ovls)) { hwc_dev->use_sgx = 0; } } } /* If the SGX is not used and there is blit data we need a framebuffer and * a DSS pipe well configured for it */ if (needs_fb) { /* assign a z-layer for fb */ if (fb_z < 0) { if (!hwc_dev->blt_policy != BLTPOLICY_DISABLED && num.composited_layers) ALOGE("**** should have assigned z-layer for fb"); fb_z = z++; } /* * This is needed because if we blit all we would lose the handle of * the first layer */ if (hwc_dev->use_sgx) { hwc_dev->buffers[0] = NULL; } omap4_hwc_setup_layer_base(&dsscomp->ovls[0].cfg, fb_z, hwc_dev->fb_dev->base.format, 1, /* FB is always premultiplied */ hwc_dev->fb_dev->base.width, hwc_dev->fb_dev->base.height); dsscomp->ovls[0].cfg.pre_mult_alpha = 1; dsscomp->ovls[0].addressing = OMAP_DSS_BUFADDR_LAYER_IX; dsscomp->ovls[0].ba = 0; dsscomp->ovls[0].cfg.ix = hwc_dev->primary_transform; } /* mirror layers */ hwc_dev->post2_layers = dsscomp->num_ovls; omap4_hwc_ext_t *ext = &hwc_dev->ext; if (ext->current.enabled && hwc_dev->ext_ovls) { if (ext->current.docking && ix_docking >= 0) { if (clone_external_layer(hwc_dev, ix_docking) == 0) dsscomp->ovls[dsscomp->num_ovls - 1].cfg.zorder = z++; } else if (ext->current.docking && ix_docking < 0 && ext->force_dock) { ix_docking = dsscomp->num_ovls; struct dss2_ovl_info *oi = &dsscomp->ovls[ix_docking]; omap4_hwc_setup_layer_base(&oi->cfg, 0, HAL_PIXEL_FORMAT_BGRA_8888, 1, dock_image.width, dock_image.height); oi->cfg.stride = dock_image.rowbytes; if (clone_external_layer(hwc_dev, ix_docking) == 0) { oi->addressing = OMAP_DSS_BUFADDR_FB; oi->ba = 0; z++; } } else if (!ext->current.docking) { int res = 0; /* reset mode if we are coming from docking */ if (ext->last.docking) res = setup_mirroring(hwc_dev); /* mirror all layers */ for (ix = 0; res == 0 && ix < hwc_dev->post2_layers; ix++) { if (clone_layer(hwc_dev, ix)) break; z++; } } } /* Apply transform for primary display */ if (hwc_dev->primary_transform) for (i = 0; i < dsscomp->num_ovls; i++) { if(dsscomp->ovls[i].cfg.mgr_ix == 0) omap4_hwc_adjust_primary_display_layer(hwc_dev, &dsscomp->ovls[i]); } ext->last = ext->current; if (z != dsscomp->num_ovls || dsscomp->num_ovls > MAX_HW_OVERLAYS) ALOGE("**** used %d z-layers for %d overlays\n", z, dsscomp->num_ovls); /* verify all z-orders and overlay indices are distinct */ for (i = z = ix = 0; i < dsscomp->num_ovls; i++) { struct dss2_ovl_cfg *c = &dsscomp->ovls[i].cfg; if (z & (1 << c->zorder)) ALOGE("**** used z-order #%d multiple times", c->zorder); if (ix & (1 << c->ix)) ALOGE("**** used ovl index #%d multiple times", c->ix); z |= 1 << c->zorder; ix |= 1 << c->ix; } dsscomp->mode = DSSCOMP_SETUP_DISPLAY; dsscomp->mgrs[0].ix = 0; dsscomp->mgrs[0].alpha_blending = 1; dsscomp->mgrs[0].swap_rb = hwc_dev->swap_rb; dsscomp->num_mgrs = 1; if (ext->current.enabled || hwc_dev->last_ext_ovls) { dsscomp->mgrs[1] = dsscomp->mgrs[0]; dsscomp->mgrs[1].ix = 1; dsscomp->num_mgrs++; hwc_dev->ext_ovls = dsscomp->num_ovls - hwc_dev->post2_layers; } /* * Whilst the mode of the display is being changed drop compositions to the * display */ if (ext->last_mode == 0 && hwc_dev->on_tv) { dsscomp->num_ovls = 0; } if (debug) { ALOGD("prepare (%d) - %s (comp=%d, poss=%d/%d scaled, RGB=%d,BGR=%d,NV12=%d) (ext=%s%s%ddeg%s %dex/%dmx (last %dex,%din)\n", dsscomp->sync_id, hwc_dev->use_sgx ? "SGX+OVL" : "all-OVL", num.composited_layers, num.possible_overlay_layers, num.scaled_layers, num.RGB, num.BGR, num.NV12, ext->on_tv ? "tv+" : "", ext->current.enabled ? ext->current.docking ? "dock+" : "mirror+" : "OFF+", ext->current.rotation * 90, ext->current.hflip ? "+hflip" : "", hwc_dev->ext_ovls, num.max_hw_overlays, hwc_dev->last_ext_ovls, hwc_dev->last_int_ovls); } pthread_mutex_unlock(&hwc_dev->lock); return 0; } static void omap4_hwc_reset_screen(omap4_hwc_device_t *hwc_dev) { static int first_set = 1; int ret; if (first_set) { first_set = 0; struct dsscomp_setup_dispc_data d = { .num_mgrs = 1, }; /* remove bootloader image from the screen as blank/unblank does not change the composition */ ret = ioctl(hwc_dev->dsscomp_fd, DSSCIOC_SETUP_DISPC, &d); if (ret) ALOGW("failed to remove bootloader image"); /* blank and unblank fd to make sure display is properly programmed on boot. * This is needed because the bootloader can not be trusted. */ ret = ioctl(hwc_dev->fb_fd, FBIOBLANK, FB_BLANK_POWERDOWN); if (ret) ALOGW("failed to blank display"); ret = ioctl(hwc_dev->fb_fd, FBIOBLANK, FB_BLANK_UNBLANK); if (ret) ALOGW("failed to blank display"); } } static int omap4_hwc_set(struct hwc_composer_device_1 *dev, size_t numDisplays, hwc_display_contents_1_t** displays) { if (!numDisplays || displays == NULL) { ALOGD("set: empty display list"); return 0; } hwc_display_t dpy = NULL; hwc_surface_t sur = NULL; hwc_display_contents_1_t* list = displays[0]; // ignore displays beyond the first if (list != NULL) { dpy = list->dpy; sur = list->sur; } omap4_hwc_device_t *hwc_dev = (omap4_hwc_device_t *)dev; struct dsscomp_setup_dispc_data *dsscomp = &hwc_dev->comp_data.dsscomp_data; int err = 0; int invalidate; pthread_mutex_lock(&hwc_dev->lock); /* disable resetting the screen on the first boot for devices * with hdmi as primary input. */ if (!hwc_dev->on_tv) omap4_hwc_reset_screen(hwc_dev); invalidate = hwc_dev->ext_ovls_wanted && (hwc_dev->ext_ovls < hwc_dev->ext_ovls_wanted) && (hwc_dev->stats.protected || !hwc_dev->ext_ovls); if (debug) dump_set_info(hwc_dev, list); if (dpy && sur) { // list can be NULL which means hwc is temporarily disabled. // however, if dpy and sur are null it means we're turning the // screen off. no shall not call eglSwapBuffers() in that case. if (hwc_dev->use_sgx) { if (!eglSwapBuffers((EGLDisplay)dpy, (EGLSurface)sur)) { ALOGE("eglSwapBuffers error"); err = HWC_EGL_ERROR; goto err_out; } } //dump_dsscomp(dsscomp); // signal the event thread that a post has happened wakeup_hdmi_thread(hwc_dev); if (hwc_dev->force_sgx > 0) hwc_dev->force_sgx--; hwc_dev->comp_data.blit_data.rgz_flags = hwc_dev->blit_flags; hwc_dev->comp_data.blit_data.rgz_items = hwc_dev->blit_num; int omaplfb_comp_data_sz = sizeof(hwc_dev->comp_data) + (hwc_dev->comp_data.blit_data.rgz_items * sizeof(struct rgz_blt_entry)); unsigned int nbufs = hwc_dev->post2_layers; if (hwc_dev->post2_blit_buffers) { /* * We don't want to pass a NULL entry in the Post2, but we need to * fix up buffer handle array and overlay indexes to account for * this */ nbufs += hwc_dev->post2_blit_buffers - 1; if (hwc_dev->post2_layers > 1) { unsigned int i, j; for (i = 0; i < nbufs; i++) { hwc_dev->buffers[i] = hwc_dev->buffers[i+1]; } for (i = 1, j= 1; j < hwc_dev->post2_layers; i++, j++) { dsscomp->ovls[j].ba = i; } } } ALOGI_IF(debugblt && hwc_dev->blt_policy != BLTPOLICY_DISABLED, "Post2, blits %d, ovl_buffers %d, blit_buffers %d sgx %d", hwc_dev->blit_num, hwc_dev->post2_layers, hwc_dev->post2_blit_buffers, hwc_dev->use_sgx); debug_post2(hwc_dev, nbufs); err = hwc_dev->fb_dev->Post2((framebuffer_device_t *)hwc_dev->fb_dev, hwc_dev->buffers, nbufs, dsscomp, omaplfb_comp_data_sz); showfps(); #if 0 if (!hwc_dev->use_sgx) { __u32 crt = 0; int err2 = ioctl(hwc_dev->fb_fd, FBIO_WAITFORVSYNC, &crt); if (err2) { ALOGE("failed to wait for vsync (%d)", errno); err = err ? : -errno; } } #endif } hwc_dev->last_ext_ovls = hwc_dev->ext_ovls; hwc_dev->last_int_ovls = hwc_dev->post2_layers; if (err) ALOGE("Post2 error"); check_sync_fds(numDisplays, displays); err_out: pthread_mutex_unlock(&hwc_dev->lock); if (invalidate && hwc_dev->procs && hwc_dev->procs->invalidate) hwc_dev->procs->invalidate(hwc_dev->procs); return err; } static void omap4_hwc_dump(struct hwc_composer_device_1 *dev, char *buff, int buff_len) { omap4_hwc_device_t *hwc_dev = (omap4_hwc_device_t *)dev; struct dsscomp_setup_dispc_data *dsscomp = &hwc_dev->comp_data.dsscomp_data; struct dump_buf log = { .buf = buff, .buf_len = buff_len, }; int i; dump_printf(&log, "omap4_hwc %d:\n", dsscomp->num_ovls); dump_printf(&log, " idle timeout: %dms\n", hwc_dev->idle); for (i = 0; i < dsscomp->num_ovls; i++) { struct dss2_ovl_cfg *cfg = &dsscomp->ovls[i].cfg; dump_printf(&log, " layer %d:\n", i); dump_printf(&log, " enabled:%s buff:%p %dx%d stride:%d\n", cfg->enabled ? "true" : "false", hwc_dev->buffers[i], cfg->width, cfg->height, cfg->stride); dump_printf(&log, " src:(%d,%d) %dx%d dst:(%d,%d) %dx%d ix:%d zorder:%d\n", cfg->crop.x, cfg->crop.y, cfg->crop.w, cfg->crop.h, cfg->win.x, cfg->win.y, cfg->win.w, cfg->win.h, cfg->ix, cfg->zorder); } if (hwc_dev->blt_policy != BLTPOLICY_DISABLED) { dump_printf(&log, " bltpolicy: %s, bltmode: %s\n", hwc_dev->blt_policy == BLTPOLICY_DEFAULT ? "default" : hwc_dev->blt_policy == BLTPOLICY_ALL ? "all" : "unknown", hwc_dev->blt_mode == BLTMODE_PAINT ? "paint" : "regionize"); } dump_printf(&log, "\n"); } static void free_png_image(omap4_hwc_device_t *hwc_dev, struct omap4_hwc_img *img) { memset(img, 0, sizeof(*img)); } static int load_png_image(omap4_hwc_device_t *hwc_dev, char *path, struct omap4_hwc_img *img) { void *ptr = NULL; png_bytepp row_pointers = NULL; FILE *fd = fopen(path, "rb"); if (!fd) { ALOGE("failed to open PNG file %s: (%d)", path, errno); return -EINVAL; } const int SIZE_PNG_HEADER = 8; __u8 header[SIZE_PNG_HEADER]; fread(header, 1, SIZE_PNG_HEADER, fd); if (png_sig_cmp(header, 0, SIZE_PNG_HEADER)) { ALOGE("%s is not a PNG file", path); goto fail; } png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!png_ptr) goto fail_alloc; png_infop info_ptr = png_create_info_struct(png_ptr); if (!info_ptr) goto fail_alloc; if (setjmp(png_jmpbuf(png_ptr))) goto fail_alloc; png_init_io(png_ptr, fd); png_set_sig_bytes(png_ptr, SIZE_PNG_HEADER); png_set_user_limits(png_ptr, limits.max_width, limits.max_height); png_read_info(png_ptr, info_ptr); __u8 bit_depth = png_get_bit_depth(png_ptr, info_ptr); __u32 width = png_get_image_width(png_ptr, info_ptr); __u32 height = png_get_image_height(png_ptr, info_ptr); __u8 color_type = png_get_color_type(png_ptr, info_ptr); switch (color_type) { case PNG_COLOR_TYPE_PALETTE: png_set_palette_to_rgb(png_ptr); png_set_filler(png_ptr, 128, PNG_FILLER_AFTER); break; case PNG_COLOR_TYPE_GRAY: if (bit_depth < 8) { png_set_expand_gray_1_2_4_to_8(png_ptr); if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) png_set_tRNS_to_alpha(png_ptr); } else { png_set_filler(png_ptr, 128, PNG_FILLER_AFTER); } /* fall through */ case PNG_COLOR_TYPE_GRAY_ALPHA: png_set_gray_to_rgb(png_ptr); break; case PNG_COLOR_TYPE_RGB: png_set_filler(png_ptr, 128, PNG_FILLER_AFTER); /* fall through */ case PNG_COLOR_TYPE_RGB_ALPHA: png_set_bgr(png_ptr); break; default: ALOGE("unsupported PNG color: %x", color_type); goto fail_alloc; } if (bit_depth == 16) png_set_strip_16(png_ptr); const int bpp = 4; img->size = ALIGN(width * height * bpp, 4096); if (img->size > hwc_dev->img_mem_size) { ALOGE("image does not fit into framebuffer area (%d > %d)", img->size, hwc_dev->img_mem_size); goto fail_alloc; } img->ptr = hwc_dev->img_mem_ptr; row_pointers = calloc(height, sizeof(*row_pointers)); if (!row_pointers) { ALOGE("failed to allocate row pointers"); goto fail_alloc; } __u32 i; for (i = 0; i < height; i++) row_pointers[i] = img->ptr + i * width * bpp; png_set_rows(png_ptr, info_ptr, row_pointers); png_read_update_info(png_ptr, info_ptr); img->rowbytes = png_get_rowbytes(png_ptr, info_ptr); png_read_image(png_ptr, row_pointers); png_read_end(png_ptr, NULL); free(row_pointers); png_destroy_read_struct(&png_ptr, &info_ptr, NULL); fclose(fd); img->width = width; img->height = height; return 0; fail_alloc: free_png_image(hwc_dev, img); free(row_pointers); if (!png_ptr || !info_ptr) ALOGE("failed to allocate PNG structures"); png_destroy_read_struct(&png_ptr, &info_ptr, NULL); fail: fclose(fd); return -EINVAL; } static int omap4_hwc_device_close(hw_device_t* device) { omap4_hwc_device_t *hwc_dev = (omap4_hwc_device_t *) device;; if (hwc_dev) { if (hwc_dev->dsscomp_fd >= 0) close(hwc_dev->dsscomp_fd); if (hwc_dev->hdmi_fb_fd >= 0) close(hwc_dev->hdmi_fb_fd); if (hwc_dev->fb_fd >= 0) close(hwc_dev->fb_fd); if (hwc_dev->ion_fd >= 0) ion_close(hwc_dev->ion_fd); /* pthread will get killed when parent process exits */ pthread_mutex_destroy(&hwc_dev->lock); pthread_mutex_destroy(&hwc_dev->vsync_lock); free(hwc_dev); } return 0; } static int omap4_hwc_open_fb_hal(IMG_framebuffer_device_public_t **fb_dev) { const struct hw_module_t *psModule; IMG_gralloc_module_public_t *psGrallocModule; int err; err = hw_get_module(GRALLOC_HARDWARE_MODULE_ID, &psModule); psGrallocModule = (IMG_gralloc_module_public_t *) psModule; if(err) goto err_out; if (strcmp(psGrallocModule->base.common.author, "Imagination Technologies")) { err = -EINVAL; goto err_out; } *fb_dev = psGrallocModule->psFrameBufferDevice; return 0; err_out: ALOGE("Composer HAL failed to load compatible Graphics HAL"); return err; } static void set_primary_display_transform_matrix(omap4_hwc_device_t *hwc_dev) { /* create primary display translation matrix */ hwc_dev->fb_dis.ix = 0;/*Default display*/ int ret = ioctl(hwc_dev->dsscomp_fd, DSSCIOC_QUERY_DISPLAY, &hwc_dev->fb_dis); if (ret) ALOGE("failed to get display info (%d): %m", errno); int lcd_w = hwc_dev->fb_dis.timings.x_res; int lcd_h = hwc_dev->fb_dis.timings.y_res; int orig_w = hwc_dev->fb_dev->base.width; int orig_h = hwc_dev->fb_dev->base.height; hwc_rect_t region = {.left = 0, .top = 0, .right = orig_w, .bottom = orig_h}; hwc_dev->primary_region = region; hwc_dev->primary_rotation = ((lcd_w > lcd_h) ^ (orig_w > orig_h)) ? 1 : 0; hwc_dev->primary_transform = ((lcd_w != orig_w)||(lcd_h != orig_h)) ? 1 : 0; ALOGI("transforming FB (%dx%d) => (%dx%d) rot%d", orig_w, orig_h, lcd_w, lcd_h, hwc_dev->primary_rotation); /* reorientation matrix is: m = (center-from-target-center) * (scale-to-target) * (mirror) * (rotate) * (center-to-original-center) */ memcpy(hwc_dev->primary_m, m_unit, sizeof(m_unit)); m_translate(hwc_dev->primary_m, -(orig_w >> 1), -(orig_h >> 1)); m_rotate(hwc_dev->primary_m, hwc_dev->primary_rotation); if (hwc_dev->primary_rotation & 1) swap(orig_w, orig_h); m_scale(hwc_dev->primary_m, orig_w, lcd_w, orig_h, lcd_h); m_translate(hwc_dev->primary_m, lcd_w >> 1, lcd_h >> 1); } static void handle_hotplug(omap4_hwc_device_t *hwc_dev) { omap4_hwc_ext_t *ext = &hwc_dev->ext; __u8 state = ext->hdmi_state; /* Ignore external HDMI logic if the primary display is HDMI */ if (hwc_dev->on_tv) { ALOGI("Primary display is HDMI - skip clone/dock logic"); if (state) { __u32 xres = hwc_dev->fb_dev->base.width; __u32 yres = hwc_dev->fb_dev->base.height; if (omap4_hwc_set_best_hdmi_mode(hwc_dev, xres, yres, ext->lcd_xpy)) { ALOGE("Failed to set HDMI mode"); } set_primary_display_transform_matrix(hwc_dev); ioctl(hwc_dev->fb_fd, FBIOBLANK, FB_BLANK_UNBLANK); if (hwc_dev->procs && hwc_dev->procs->invalidate) { hwc_dev->procs->invalidate(hwc_dev->procs); } } else ext->last_mode = 0; return; } pthread_mutex_lock(&hwc_dev->lock); ext->dock.enabled = ext->mirror.enabled = 0; if (state) { /* check whether we can clone and/or dock */ char value[PROPERTY_VALUE_MAX]; property_get("persist.hwc.docking.enabled", value, "1"); ext->dock.enabled = atoi(value) > 0; property_get("persist.hwc.mirroring.enabled", value, "1"); ext->mirror.enabled = atoi(value) > 0; property_get("persist.hwc.avoid_mode_change", value, "1"); ext->avoid_mode_change = atoi(value) > 0; /* get cloning transformation */ property_get("persist.hwc.docking.transform", value, "0"); ext->dock.rotation = atoi(value) & EXT_ROTATION; ext->dock.hflip = (atoi(value) & EXT_HFLIP) > 0; ext->dock.docking = 1; property_get("persist.hwc.mirroring.transform", value, hwc_dev->fb_dis.timings.y_res > hwc_dev->fb_dis.timings.x_res ? "3" : "0"); ext->mirror.rotation = atoi(value) & EXT_ROTATION; ext->mirror.hflip = (atoi(value) & EXT_HFLIP) > 0; ext->mirror.docking = 0; if (ext->force_dock) { /* restrict to docking with no transform */ ext->mirror.enabled = 0; ext->dock.rotation = 0; ext->dock.hflip = 0; if (!dock_image.rowbytes) { property_get("persist.hwc.dock_image", value, "/vendor/res/images/dock/dock.png"); load_png_image(hwc_dev, value, &dock_image); } } /* select best mode for mirroring */ if (ext->mirror.enabled) { ext->current = ext->mirror; ext->mirror_mode = 0; if (setup_mirroring(hwc_dev) == 0) { ext->mirror_mode = ext->last_mode; ioctl(hwc_dev->hdmi_fb_fd, FBIOBLANK, FB_BLANK_UNBLANK); } else ext->mirror.enabled = 0; } /* Allocate backup buffers for FB rotation * This is required only if the FB tranform is different from that * of the external display and the FB is not in TILER2D space */ if (ext->mirror.rotation && (limits.fbmem_type != DSSCOMP_FBMEM_TILER2D)) allocate_tiler2d_buffers(hwc_dev); } else { ext->last_mode = 0; if (ext->mirror.rotation && (limits.fbmem_type != DSSCOMP_FBMEM_TILER2D)) { /* free tiler 2D buffer on detach */ free_tiler2d_buffers(hwc_dev); } } ALOGI("external display changed (state=%d, mirror={%s tform=%ddeg%s}, dock={%s tform=%ddeg%s%s}, tv=%d", state, ext->mirror.enabled ? "enabled" : "disabled", ext->mirror.rotation * 90, ext->mirror.hflip ? "+hflip" : "", ext->dock.enabled ? "enabled" : "disabled", ext->dock.rotation * 90, ext->dock.hflip ? "+hflip" : "", ext->force_dock ? " forced" : "", ext->on_tv); pthread_mutex_unlock(&hwc_dev->lock); /* hwc_dev->procs is set right after the device is opened, but there is * still a race condition where a hotplug event might occur after the open * but before the procs are registered. */ if (hwc_dev->procs && hwc_dev->procs->invalidate) hwc_dev->procs->invalidate(hwc_dev->procs); } static void handle_uevents(omap4_hwc_device_t *hwc_dev, const char *buff, int len) { int dock; int hdmi; int vsync; int state = 0; uint64_t timestamp = 0; const char *s = buff; dock = !strcmp(s, "change@/devices/virtual/switch/dock"); hdmi = !strcmp(s, "change@/devices/virtual/switch/hdmi"); vsync = !strcmp(s, "change@/devices/platform/omapfb") || !strcmp(s, "change@/devices/virtual/switch/omapfb-vsync"); if (!dock && !vsync && !hdmi) return; s += strlen(s) + 1; while(*s) { if (!strncmp(s, "SWITCH_STATE=", strlen("SWITCH_STATE="))) state = atoi(s + strlen("SWITCH_STATE=")); else if (!strncmp(s, "SWITCH_TIME=", strlen("SWITCH_TIME="))) timestamp = strtoull(s + strlen("SWITCH_TIME="), NULL, 0); else if (!strncmp(s, "VSYNC=", strlen("VSYNC="))) timestamp = strtoull(s + strlen("VSYNC="), NULL, 0); s += strlen(s) + 1; if (s - buff >= len) break; } if (vsync) { fire_vsync_event(hwc_dev, timestamp); } else { if (dock) { hwc_dev->ext.force_dock = state == 1; } else { /* If the primary display is HDMI, VSYNC is enabled, and HDMI's plug * state has just gone from 1->0, then we need to be sure to start * faking the VSYNC events. */ if (hwc_dev->on_tv) { int new_state, state_change; pthread_mutex_lock(&hwc_dev->vsync_lock); new_state = state == 1; state_change = (new_state != hwc_dev->ext.hdmi_state); hwc_dev->ext.hdmi_state = new_state; if (state_change && !new_state) wakeup_hdmi_thread(hwc_dev); pthread_mutex_unlock(&hwc_dev->vsync_lock); } else { hwc_dev->ext.hdmi_state = state == 1; } } handle_hotplug(hwc_dev); } } static void *omap4_hwc_hdmi_thread(void *data) { omap4_hwc_device_t *hwc_dev = data; static char uevent_desc[4096]; struct pollfd fds[2]; int invalidate = 0; int timeout; int err; setpriority(PRIO_PROCESS, 0, HAL_PRIORITY_URGENT_DISPLAY); uevent_init(); fds[0].fd = uevent_get_fd(); fds[0].events = POLLIN; fds[1].fd = hwc_dev->wakeup_evt; fds[1].events = POLLIN; timeout = hwc_dev->idle ? hwc_dev->idle : -1; memset(uevent_desc, 0, sizeof(uevent_desc)); do { uint64_t idle_wakeup = (uint64_t)(-1); uint64_t vsync_wakeup = (uint64_t)(-1); uint64_t now = vsync_clock_now(); uint64_t effective_wakeup; int effective_timeout; if (timeout >= 0) idle_wakeup = now + (((uint64_t)timeout) * 1000000); if (hwc_dev->on_tv) { pthread_mutex_lock(&hwc_dev->vsync_lock); if (!hwc_dev->ext.hdmi_state && hwc_dev->vsync_enabled) { vsync_wakeup = hwc_dev->last_vsync_time_valid ? hwc_dev->last_vsync_time : now; vsync_wakeup += hwc_dev->fake_vsync_period; if (vsync_wakeup < now) vsync_wakeup = now; } pthread_mutex_unlock(&hwc_dev->vsync_lock); } effective_wakeup = idle_wakeup < vsync_wakeup ? idle_wakeup : vsync_wakeup; if (effective_wakeup == (uint64_t)(-1)) effective_timeout = -1; else if (effective_wakeup <= now) effective_timeout = 0; else effective_timeout = (int)((effective_wakeup - now + 999999) / 1000000); if (effective_timeout) err = poll(fds, 2, effective_timeout); else err = 0; now = vsync_clock_now(); if (err == 0) { int fired = 0; if (now >= vsync_wakeup) { fire_vsync_event(hwc_dev, vsync_wakeup); fired = 1; } if (hwc_dev->idle && (now >= idle_wakeup)) { if (hwc_dev->procs) { pthread_mutex_lock(&hwc_dev->lock); invalidate = hwc_dev->last_int_ovls > 1 && !hwc_dev->force_sgx; if (invalidate) { hwc_dev->force_sgx = 2; } pthread_mutex_unlock(&hwc_dev->lock); if (invalidate) { hwc_dev->procs->invalidate(hwc_dev->procs); timeout = -1; } } fired = 1; } if (fired) continue; } if (err == -1) { if (errno != EINTR) ALOGE("event error: %m"); continue; } if (fds[1].revents & POLLIN) { uint64_t tmp; read(hwc_dev->wakeup_evt, &tmp, sizeof(tmp)); if (!hwc_dev->force_sgx) timeout = hwc_dev->idle ? hwc_dev->idle : -1; } if (fds[0].revents & POLLIN) { /* keep last 2 zeroes to ensure double 0 termination */ int len = uevent_next_event(uevent_desc, sizeof(uevent_desc) - 2); handle_uevents(hwc_dev, uevent_desc, len); } } while (1); return NULL; } static void omap4_hwc_registerProcs(struct hwc_composer_device_1* dev, hwc_procs_t const* procs) { omap4_hwc_device_t *hwc_dev = (omap4_hwc_device_t *) dev; hwc_dev->procs = (typeof(hwc_dev->procs)) procs; } static int omap4_hwc_query(struct hwc_composer_device_1* dev, int what, int* value) { omap4_hwc_device_t *hwc_dev = (omap4_hwc_device_t *) dev; switch (what) { case HWC_BACKGROUND_LAYER_SUPPORTED: // we don't support the background layer yet value[0] = 0; break; case HWC_VSYNC_PERIOD: // vsync period in nanosecond value[0] = 1000000000.0 / hwc_dev->fb_dev->base.fps; break; default: // unsupported query return -EINVAL; } return 0; } static int omap4_hwc_event_control(struct hwc_composer_device_1* dev, int dpy, int event, int enabled) { omap4_hwc_device_t *hwc_dev = (omap4_hwc_device_t *) dev; switch (event) { case HWC_EVENT_VSYNC: { int val = !!enabled; int err; /* If the primary display is HDMI, then we need to be sure to fake a * stream vsync events if vsync is enabled, but HDMI happens to be * disconnected. */ if (hwc_dev->on_tv) { pthread_mutex_lock(&hwc_dev->vsync_lock); if (!val) hwc_dev->last_vsync_time_valid = 0; /* If VSYNC is enabled, but HDMI is not actually plugged in, we need * to fake it. Poke the work thread to make sure it is taking care * of things. */ if (!hwc_dev->ext.hdmi_state && !hwc_dev->vsync_enabled && val) wakeup_hdmi_thread(hwc_dev); hwc_dev->vsync_enabled = val; err = ioctl(hwc_dev->fb_fd, OMAPFB_ENABLEVSYNC, &val); pthread_mutex_unlock(&hwc_dev->vsync_lock); } else { err = ioctl(hwc_dev->fb_fd, OMAPFB_ENABLEVSYNC, &val); } if (err < 0) return -errno; return 0; } default: return -EINVAL; } } static int omap4_hwc_blank(struct hwc_composer_device_1 *dev, int dpy, int blank) { // We're using an older method of screen blanking based on // early_suspend in the kernel. No need to do anything here. return 0; } static int omap4_hwc_device_open(const hw_module_t* module, const char* name, hw_device_t** device) { omap4_hwc_module_t *hwc_mod = (omap4_hwc_module_t *)module; omap4_hwc_device_t *hwc_dev; int err = 0; if (strcmp(name, HWC_HARDWARE_COMPOSER)) { return -EINVAL; } if (!hwc_mod->fb_dev) { err = omap4_hwc_open_fb_hal(&hwc_mod->fb_dev); if (err) return err; if (!hwc_mod->fb_dev) { ALOGE("Framebuffer HAL not opened before HWC"); return -EFAULT; } hwc_mod->fb_dev->bBypassPost = 1; } hwc_dev = (omap4_hwc_device_t *)malloc(sizeof(*hwc_dev)); if (hwc_dev == NULL) return -ENOMEM; memset(hwc_dev, 0, sizeof(*hwc_dev)); hwc_dev->base.common.tag = HARDWARE_DEVICE_TAG; hwc_dev->base.common.version = HWC_DEVICE_API_VERSION_1_0; hwc_dev->base.common.module = (hw_module_t *)module; hwc_dev->base.common.close = omap4_hwc_device_close; hwc_dev->base.prepare = omap4_hwc_prepare; hwc_dev->base.set = omap4_hwc_set; hwc_dev->base.eventControl = omap4_hwc_event_control; hwc_dev->base.blank = omap4_hwc_blank; hwc_dev->base.query = omap4_hwc_query; hwc_dev->base.registerProcs = omap4_hwc_registerProcs; hwc_dev->base.dump = omap4_hwc_dump; hwc_dev->fb_dev = hwc_mod->fb_dev; hwc_dev->wakeup_evt = -1; *device = &hwc_dev->base.common; hwc_dev->vsync_enabled = 0; hwc_dev->last_vsync_time_valid = 0; hwc_dev->fake_vsync_period = 1000000000ull/60; hwc_dev->dsscomp_fd = open("/dev/dsscomp", O_RDWR); if (hwc_dev->dsscomp_fd < 0) { ALOGE("failed to open dsscomp (%d)", errno); err = -errno; goto done; } int ret = ioctl(hwc_dev->dsscomp_fd, DSSCIOC_QUERY_PLATFORM, &limits); if (ret) { ALOGE("failed to get platform limits (%d): %m", errno); err = -errno; goto done; } hwc_dev->fb_fd = open("/dev/graphics/fb0", O_RDWR); if (hwc_dev->fb_fd < 0) { ALOGE("failed to open fb (%d)", errno); err = -errno; goto done; } struct fb_fix_screeninfo fix; if (ioctl(hwc_dev->fb_fd, FBIOGET_FSCREENINFO, &fix)) { ALOGE("failed to get fb info (%d)", errno); err = -errno; goto done; } hwc_dev->img_mem_size = fix.smem_len; hwc_dev->img_mem_ptr = mmap(NULL, fix.smem_len, PROT_WRITE, MAP_SHARED, hwc_dev->fb_fd, 0); if (hwc_dev->img_mem_ptr == MAP_FAILED) { ALOGE("failed to map fb memory"); err = -errno; goto done; } /* Allocate the maximum buffers that we can receive from HWC */ hwc_dev->buffers = malloc(sizeof(buffer_handle_t) * MAX_HWC_LAYERS); if (!hwc_dev->buffers) { err = -ENOMEM; goto done; } ret = ioctl(hwc_dev->dsscomp_fd, DSSCIOC_QUERY_DISPLAY, &hwc_dev->fb_dis); if (ret) { ALOGE("failed to get display info (%d): %m", errno); err = -errno; goto done; } hwc_dev->ion_fd = ion_open(); if (hwc_dev->ion_fd < 0) { ALOGE("failed to open ion driver (%d)", errno); } int i; for (i = 0; i < NUM_EXT_DISPLAY_BACK_BUFFERS; i++) { hwc_dev->ion_handles[i] = NULL; } /* use default value in case some of requested display parameters missing */ hwc_dev->ext.lcd_xpy = 1.0; if (hwc_dev->fb_dis.timings.x_res && hwc_dev->fb_dis.height_in_mm) { hwc_dev->ext.lcd_xpy = (float) hwc_dev->fb_dis.width_in_mm / hwc_dev->fb_dis.timings.x_res / hwc_dev->fb_dis.height_in_mm * hwc_dev->fb_dis.timings.y_res; } if (hwc_dev->fb_dis.channel == OMAP_DSS_CHANNEL_DIGIT) { ALOGI("Primary display is HDMI"); hwc_dev->on_tv = 1; } else { hwc_dev->hdmi_fb_fd = open("/dev/graphics/fb1", O_RDWR); if (hwc_dev->hdmi_fb_fd < 0) { ALOGE("failed to open hdmi fb (%d)", errno); err = -errno; goto done; } } set_primary_display_transform_matrix(hwc_dev); if ((hwc_dev->wakeup_evt = eventfd(0, EFD_NONBLOCK)) < 0) { ALOGE("failed to eventfd (%d): %m", errno); err = -errno; goto done; } if (pthread_mutex_init(&hwc_dev->lock, NULL)) { ALOGE("failed to create mutex (%d): %m", errno); err = -errno; goto done; } if (pthread_mutex_init(&hwc_dev->vsync_lock, NULL)) { ALOGE("failed to create vsync mutex (%d): %m", errno); err = -errno; goto done; } if (pthread_create(&hwc_dev->hdmi_thread, NULL, omap4_hwc_hdmi_thread, hwc_dev)) { ALOGE("failed to create HDMI listening thread (%d): %m", errno); err = -errno; goto done; } /* get debug properties */ /* see if hwc is enabled at all */ char value[PROPERTY_VALUE_MAX]; property_get("debug.hwc.rgb_order", value, "1"); hwc_dev->flags_rgb_order = atoi(value); property_get("debug.hwc.nv12_only", value, "0"); hwc_dev->flags_nv12_only = atoi(value); property_get("debug.hwc.idle", value, "250"); hwc_dev->idle = atoi(value); /* get the board specific clone properties */ /* 0:0:1280:720 */ if (property_get("persist.hwc.mirroring.region", value, "") <= 0 || sscanf(value, "%d:%d:%d:%d", &hwc_dev->ext.mirror_region.left, &hwc_dev->ext.mirror_region.top, &hwc_dev->ext.mirror_region.right, &hwc_dev->ext.mirror_region.bottom) != 4 || hwc_dev->ext.mirror_region.left >= hwc_dev->ext.mirror_region.right || hwc_dev->ext.mirror_region.top >= hwc_dev->ext.mirror_region.bottom) { struct hwc_rect fb_region = { .right = hwc_dev->fb_dev->base.width, .bottom = hwc_dev->fb_dev->base.height }; hwc_dev->ext.mirror_region = fb_region; } ALOGI("clone region is set to (%d,%d) to (%d,%d)", hwc_dev->ext.mirror_region.left, hwc_dev->ext.mirror_region.top, hwc_dev->ext.mirror_region.right, hwc_dev->ext.mirror_region.bottom); /* read switch state */ int sw_fd = open("/sys/class/switch/hdmi/state", O_RDONLY); if (sw_fd >= 0) { char value; if (read(sw_fd, &value, 1) == 1) hwc_dev->ext.hdmi_state = value == '1'; close(sw_fd); } sw_fd = open("/sys/class/switch/dock/state", O_RDONLY); if (sw_fd >= 0) { char value; if (read(sw_fd, &value, 1) == 1) hwc_dev->ext.force_dock = value == '1'; close(sw_fd); } handle_hotplug(hwc_dev); ALOGI("omap4_hwc_device_open(rgb_order=%d nv12_only=%d)", hwc_dev->flags_rgb_order, hwc_dev->flags_nv12_only); int gc2d_fd = open("/dev/gcioctl", O_RDWR); if (gc2d_fd < 0) { ALOGI("Unable to open gc-core device (%d), blits disabled", errno); hwc_dev->blt_policy = BLTPOLICY_DISABLED; } else { property_get("persist.hwc.bltmode", value, "1"); hwc_dev->blt_mode = atoi(value); property_get("persist.hwc.bltpolicy", value, "1"); hwc_dev->blt_policy = atoi(value); ALOGI("blitter present, blits mode %d, blits policy %d", hwc_dev->blt_mode, hwc_dev->blt_policy); close(gc2d_fd); if (rgz_get_screengeometry(hwc_dev->fb_fd, &gscrngeom, hwc_dev->fb_dev->base.format) != 0) { err = -EINVAL; goto done; } } property_get("persist.hwc.upscaled_nv12_limit", value, "2."); sscanf(value, "%f", &hwc_dev->upscaled_nv12_limit); if (hwc_dev->upscaled_nv12_limit < 0. || hwc_dev->upscaled_nv12_limit > 2048.) { ALOGW("Invalid upscaled_nv12_limit (%s), setting to 2.", value); hwc_dev->upscaled_nv12_limit = 2.; } done: if (err && hwc_dev) { if (hwc_dev->dsscomp_fd >= 0) close(hwc_dev->dsscomp_fd); if (hwc_dev->hdmi_fb_fd >= 0) close(hwc_dev->hdmi_fb_fd); if (hwc_dev->fb_fd >= 0) close(hwc_dev->fb_fd); if (hwc_dev->wakeup_evt >= 0) close(hwc_dev->wakeup_evt); pthread_mutex_destroy(&hwc_dev->lock); pthread_mutex_destroy(&hwc_dev->vsync_lock); free(hwc_dev->buffers); free(hwc_dev); } return err; } static struct hw_module_methods_t omap4_hwc_module_methods = { .open = omap4_hwc_device_open, }; omap4_hwc_module_t HAL_MODULE_INFO_SYM = { .base = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = HWC_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = HWC_HARDWARE_MODULE_ID, .name = "OMAP 44xx Hardware Composer HAL", .author = "Texas Instruments", .methods = &omap4_hwc_module_methods, }, }, };