/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MONITOR_POOL_H_
#define ART_RUNTIME_MONITOR_POOL_H_
#include "monitor.h"
#include "base/allocator.h"
#ifdef __LP64__
#include <stdint.h>
#include "atomic.h"
#include "runtime.h"
#else
#include "base/stl_util.h" // STLDeleteElements
#endif
namespace art {
// Abstraction to keep monitors small enough to fit in a lock word (32bits). On 32bit systems the
// monitor id loses the alignment bits of the Monitor*.
class MonitorPool {
public:
static MonitorPool* Create() {
#ifndef __LP64__
return nullptr;
#else
return new MonitorPool();
#endif
}
static Monitor* CreateMonitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
#ifndef __LP64__
return new Monitor(self, owner, obj, hash_code);
#else
return GetMonitorPool()->CreateMonitorInPool(self, owner, obj, hash_code);
#endif
}
static void ReleaseMonitor(Thread* self, Monitor* monitor) {
#ifndef __LP64__
delete monitor;
#else
GetMonitorPool()->ReleaseMonitorToPool(self, monitor);
#endif
}
static void ReleaseMonitors(Thread* self, MonitorList::Monitors* monitors) {
#ifndef __LP64__
STLDeleteElements(monitors);
#else
GetMonitorPool()->ReleaseMonitorsToPool(self, monitors);
#endif
}
static Monitor* MonitorFromMonitorId(MonitorId mon_id) {
#ifndef __LP64__
return reinterpret_cast<Monitor*>(mon_id << 3);
#else
return GetMonitorPool()->LookupMonitor(mon_id);
#endif
}
static MonitorId MonitorIdFromMonitor(Monitor* mon) {
#ifndef __LP64__
return reinterpret_cast<MonitorId>(mon) >> 3;
#else
return mon->GetMonitorId();
#endif
}
static MonitorId ComputeMonitorId(Monitor* mon, Thread* self) {
#ifndef __LP64__
return MonitorIdFromMonitor(mon);
#else
return GetMonitorPool()->ComputeMonitorIdInPool(mon, self);
#endif
}
static MonitorPool* GetMonitorPool() {
#ifndef __LP64__
return nullptr;
#else
return Runtime::Current()->GetMonitorPool();
#endif
}
private:
#ifdef __LP64__
// When we create a monitor pool, threads have not been initialized, yet, so ignore thread-safety
// analysis.
MonitorPool() NO_THREAD_SAFETY_ANALYSIS;
void AllocateChunk() EXCLUSIVE_LOCKS_REQUIRED(Locks::allocated_monitor_ids_lock_);
Monitor* CreateMonitorInPool(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void ReleaseMonitorToPool(Thread* self, Monitor* monitor);
void ReleaseMonitorsToPool(Thread* self, MonitorList::Monitors* monitors);
// Note: This is safe as we do not ever move chunks.
Monitor* LookupMonitor(MonitorId mon_id) {
size_t offset = MonitorIdToOffset(mon_id);
size_t index = offset / kChunkSize;
size_t offset_in_chunk = offset % kChunkSize;
uintptr_t base = *(monitor_chunks_.LoadRelaxed()+index);
return reinterpret_cast<Monitor*>(base + offset_in_chunk);
}
static bool IsInChunk(uintptr_t base_addr, Monitor* mon) {
uintptr_t mon_ptr = reinterpret_cast<uintptr_t>(mon);
return base_addr <= mon_ptr && (mon_ptr - base_addr < kChunkSize);
}
// Note: This is safe as we do not ever move chunks.
MonitorId ComputeMonitorIdInPool(Monitor* mon, Thread* self) {
MutexLock mu(self, *Locks::allocated_monitor_ids_lock_);
for (size_t index = 0; index < num_chunks_; ++index) {
uintptr_t chunk_addr = *(monitor_chunks_.LoadRelaxed() + index);
if (IsInChunk(chunk_addr, mon)) {
return OffsetToMonitorId(reinterpret_cast<uintptr_t>(mon) - chunk_addr + index * kChunkSize);
}
}
LOG(FATAL) << "Did not find chunk that contains monitor.";
return 0;
}
static size_t MonitorIdToOffset(MonitorId id) {
return id << 3;
}
static MonitorId OffsetToMonitorId(size_t offset) {
return static_cast<MonitorId>(offset >> 3);
}
// TODO: There are assumptions in the code that monitor addresses are 8B aligned (>>3).
static constexpr size_t kMonitorAlignment = 8;
// Size of a monitor, rounded up to a multiple of alignment.
static constexpr size_t kAlignedMonitorSize = (sizeof(Monitor) + kMonitorAlignment - 1) &
-kMonitorAlignment;
// As close to a page as we can get seems a good start.
static constexpr size_t kChunkCapacity = kPageSize / kAlignedMonitorSize;
// Chunk size that is referenced in the id. We can collapse this to the actually used storage
// in a chunk, i.e., kChunkCapacity * kAlignedMonitorSize, but this will mean proper divisions.
static constexpr size_t kChunkSize = kPageSize;
// The number of initial chunks storable in monitor_chunks_. The number is large enough to make
// resizing unlikely, but small enough to not waste too much memory.
static constexpr size_t kInitialChunkStorage = 8U;
// List of memory chunks. Each chunk is kChunkSize.
Atomic<uintptr_t*> monitor_chunks_;
// Number of chunks stored.
size_t num_chunks_ GUARDED_BY(Locks::allocated_monitor_ids_lock_);
// Number of chunks storable.
size_t capacity_ GUARDED_BY(Locks::allocated_monitor_ids_lock_);
// To avoid race issues when resizing, we keep all the previous arrays.
std::vector<uintptr_t*> old_chunk_arrays_ GUARDED_BY(Locks::allocated_monitor_ids_lock_);
typedef TrackingAllocator<byte, kAllocatorTagMonitorPool> Allocator;
Allocator allocator_;
// Start of free list of monitors.
// Note: these point to the right memory regions, but do *not* denote initialized objects.
Monitor* first_free_ GUARDED_BY(Locks::allocated_monitor_ids_lock_);
#endif
};
} // namespace art
#endif // ART_RUNTIME_MONITOR_POOL_H_