// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdio.h>
#include <string>
#include <vector>
#include "ash/display/display_info.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "ui/gfx/display.h"
#include "ui/gfx/size_conversions.h"
#include "ui/gfx/size_f.h"
#if defined(OS_WIN)
#include "ui/aura/window_tree_host.h"
#include "ui/gfx/win/dpi.h"
#endif
namespace ash {
namespace {
bool use_125_dsf_for_ui_scaling = false;
// Check the content of |spec| and fill |bounds| and |device_scale_factor|.
// Returns true when |bounds| is found.
bool GetDisplayBounds(
const std::string& spec, gfx::Rect* bounds, float* device_scale_factor) {
int width = 0;
int height = 0;
int x = 0;
int y = 0;
if (sscanf(spec.c_str(), "%dx%d*%f",
&width, &height, device_scale_factor) >= 2 ||
sscanf(spec.c_str(), "%d+%d-%dx%d*%f", &x, &y, &width, &height,
device_scale_factor) >= 4) {
bounds->SetRect(x, y, width, height);
return true;
}
return false;
}
} // namespace
DisplayMode::DisplayMode()
: refresh_rate(0.0f),
interlaced(false),
native(false),
ui_scale(1.0f),
device_scale_factor(1.0f) {}
DisplayMode::DisplayMode(const gfx::Size& size,
float refresh_rate,
bool interlaced,
bool native)
: size(size),
refresh_rate(refresh_rate),
interlaced(interlaced),
native(native),
ui_scale(1.0f),
device_scale_factor(1.0f) {}
gfx::Size DisplayMode::GetSizeInDIP() const {
gfx::SizeF size_dip(size);
size_dip.Scale(ui_scale);
// DSF=1.25 is special. The screen is drawn with DSF=1.25 in some mode but it
// doesn't affect the screen size computation.
if (!use_125_dsf_for_ui_scaling || device_scale_factor != 1.25f)
size_dip.Scale(1.0f / device_scale_factor);
return gfx::ToFlooredSize(size_dip);
}
bool DisplayMode::IsEquivalent(const DisplayMode& other) const {
const float kEpsilon = 0.0001f;
return size == other.size &&
std::abs(ui_scale - other.ui_scale) < kEpsilon &&
std::abs(device_scale_factor - other.device_scale_factor) < kEpsilon;
}
// satic
DisplayInfo DisplayInfo::CreateFromSpec(const std::string& spec) {
return CreateFromSpecWithID(spec, gfx::Display::kInvalidDisplayID);
}
// static
void DisplayInfo::SetUse125DSFForUIScaling(bool enable) {
use_125_dsf_for_ui_scaling = enable;
}
// static
DisplayInfo DisplayInfo::CreateFromSpecWithID(const std::string& spec,
int64 id) {
// Default bounds for a display.
const int kDefaultHostWindowX = 200;
const int kDefaultHostWindowY = 200;
const int kDefaultHostWindowWidth = 1366;
const int kDefaultHostWindowHeight = 768;
// Use larger than max int to catch overflow early.
static int64 synthesized_display_id = 2200000000LL;
#if defined(OS_WIN)
gfx::Rect bounds_in_native(aura::WindowTreeHost::GetNativeScreenSize());
#else
gfx::Rect bounds_in_native(kDefaultHostWindowX, kDefaultHostWindowY,
kDefaultHostWindowWidth, kDefaultHostWindowHeight);
#endif
std::string main_spec = spec;
float ui_scale = 1.0f;
std::vector<std::string> parts;
if (Tokenize(main_spec, "@", &parts) == 2) {
double scale_in_double = 0;
if (base::StringToDouble(parts[1], &scale_in_double))
ui_scale = scale_in_double;
main_spec = parts[0];
}
size_t count = Tokenize(main_spec, "/", &parts);
gfx::Display::Rotation rotation(gfx::Display::ROTATE_0);
bool has_overscan = false;
if (count) {
main_spec = parts[0];
if (count >= 2) {
std::string options = parts[1];
for (size_t i = 0; i < options.size(); ++i) {
char c = options[i];
switch (c) {
case 'o':
has_overscan = true;
break;
case 'r': // rotate 90 degrees to 'right'.
rotation = gfx::Display::ROTATE_90;
break;
case 'u': // 180 degrees, 'u'pside-down.
rotation = gfx::Display::ROTATE_180;
break;
case 'l': // rotate 90 degrees to 'left'.
rotation = gfx::Display::ROTATE_270;
break;
}
}
}
}
float device_scale_factor = 1.0f;
if (!GetDisplayBounds(main_spec, &bounds_in_native, &device_scale_factor)) {
#if defined(OS_WIN)
if (gfx::IsHighDPIEnabled()) {
device_scale_factor = gfx::GetDPIScale();
}
#endif
}
std::vector<DisplayMode> display_modes;
if (Tokenize(main_spec, "#", &parts) == 2) {
size_t native_mode = 0;
int largest_area = -1;
float highest_refresh_rate = -1.0f;
main_spec = parts[0];
std::string resolution_list = parts[1];
count = Tokenize(resolution_list, "|", &parts);
for (size_t i = 0; i < count; ++i) {
DisplayMode mode;
gfx::Rect mode_bounds;
std::vector<std::string> resolution;
Tokenize(parts[i], "%", &resolution);
if (GetDisplayBounds(
resolution[0], &mode_bounds, &mode.device_scale_factor)) {
mode.size = mode_bounds.size();
if (resolution.size() > 1)
sscanf(resolution[1].c_str(), "%f", &mode.refresh_rate);
if (mode.size.GetArea() >= largest_area &&
mode.refresh_rate > highest_refresh_rate) {
// Use mode with largest area and highest refresh rate as native.
largest_area = mode.size.GetArea();
highest_refresh_rate = mode.refresh_rate;
native_mode = i;
}
display_modes.push_back(mode);
}
}
display_modes[native_mode].native = true;
}
if (id == gfx::Display::kInvalidDisplayID)
id = synthesized_display_id++;
DisplayInfo display_info(
id, base::StringPrintf("Display-%d", static_cast<int>(id)), has_overscan);
display_info.set_device_scale_factor(device_scale_factor);
display_info.set_rotation(rotation);
display_info.set_configured_ui_scale(ui_scale);
display_info.SetBounds(bounds_in_native);
display_info.set_display_modes(display_modes);
// To test the overscan, it creates the default 5% overscan.
if (has_overscan) {
int width = bounds_in_native.width() / device_scale_factor / 40;
int height = bounds_in_native.height() / device_scale_factor / 40;
display_info.SetOverscanInsets(gfx::Insets(height, width, height, width));
display_info.UpdateDisplaySize();
}
DVLOG(1) << "DisplayInfoFromSpec info=" << display_info.ToString()
<< ", spec=" << spec;
return display_info;
}
DisplayInfo::DisplayInfo()
: id_(gfx::Display::kInvalidDisplayID),
has_overscan_(false),
rotation_(gfx::Display::ROTATE_0),
touch_support_(gfx::Display::TOUCH_SUPPORT_UNKNOWN),
touch_device_id_(0),
device_scale_factor_(1.0f),
overscan_insets_in_dip_(0, 0, 0, 0),
configured_ui_scale_(1.0f),
native_(false),
is_aspect_preserving_scaling_(false),
color_profile_(ui::COLOR_PROFILE_STANDARD) {
}
DisplayInfo::DisplayInfo(int64 id,
const std::string& name,
bool has_overscan)
: id_(id),
name_(name),
has_overscan_(has_overscan),
rotation_(gfx::Display::ROTATE_0),
touch_support_(gfx::Display::TOUCH_SUPPORT_UNKNOWN),
touch_device_id_(0),
device_scale_factor_(1.0f),
overscan_insets_in_dip_(0, 0, 0, 0),
configured_ui_scale_(1.0f),
native_(false),
color_profile_(ui::COLOR_PROFILE_STANDARD) {
}
DisplayInfo::~DisplayInfo() {
}
void DisplayInfo::Copy(const DisplayInfo& native_info) {
DCHECK(id_ == native_info.id_);
name_ = native_info.name_;
has_overscan_ = native_info.has_overscan_;
DCHECK(!native_info.bounds_in_native_.IsEmpty());
bounds_in_native_ = native_info.bounds_in_native_;
size_in_pixel_ = native_info.size_in_pixel_;
device_scale_factor_ = native_info.device_scale_factor_;
display_modes_ = native_info.display_modes_;
touch_support_ = native_info.touch_support_;
touch_device_id_ = native_info.touch_device_id_;
// Copy overscan_insets_in_dip_ if it's not empty. This is for test
// cases which use "/o" annotation which sets the overscan inset
// to native, and that overscan has to be propagated. This does not
// happen on the real environment.
if (!native_info.overscan_insets_in_dip_.empty())
overscan_insets_in_dip_ = native_info.overscan_insets_in_dip_;
// Rotation_ and ui_scale_ color_profile_ are given by preference,
// or unit tests. Don't copy if this native_info came from
// DisplayChangeObserver.
if (!native_info.native()) {
rotation_ = native_info.rotation_;
configured_ui_scale_ = native_info.configured_ui_scale_;
color_profile_ = native_info.color_profile();
}
available_color_profiles_ = native_info.available_color_profiles();
// Don't copy insets as it may be given by preference. |rotation_|
// is treated as a native so that it can be specified in
// |CreateFromSpec|.
}
void DisplayInfo::SetBounds(const gfx::Rect& new_bounds_in_native) {
bounds_in_native_ = new_bounds_in_native;
size_in_pixel_ = new_bounds_in_native.size();
UpdateDisplaySize();
}
float DisplayInfo::GetEffectiveDeviceScaleFactor() const {
if (use_125_dsf_for_ui_scaling && device_scale_factor_ == 1.25f)
return (configured_ui_scale_ == 0.8f) ? 1.25f : 1.0f;
if (device_scale_factor_ == configured_ui_scale_)
return 1.0f;
return device_scale_factor_;
}
float DisplayInfo::GetEffectiveUIScale() const {
if (use_125_dsf_for_ui_scaling && device_scale_factor_ == 1.25f)
return (configured_ui_scale_ == 0.8f) ? 1.0f : configured_ui_scale_;
if (device_scale_factor_ == configured_ui_scale_)
return 1.0f;
return configured_ui_scale_;
}
void DisplayInfo::UpdateDisplaySize() {
size_in_pixel_ = bounds_in_native_.size();
if (!overscan_insets_in_dip_.empty()) {
gfx::Insets insets_in_pixel =
overscan_insets_in_dip_.Scale(device_scale_factor_);
size_in_pixel_.Enlarge(-insets_in_pixel.width(), -insets_in_pixel.height());
} else {
overscan_insets_in_dip_.Set(0, 0, 0, 0);
}
if (rotation_ == gfx::Display::ROTATE_90 ||
rotation_ == gfx::Display::ROTATE_270)
size_in_pixel_.SetSize(size_in_pixel_.height(), size_in_pixel_.width());
gfx::SizeF size_f(size_in_pixel_);
size_f.Scale(GetEffectiveUIScale());
size_in_pixel_ = gfx::ToFlooredSize(size_f);
}
void DisplayInfo::SetOverscanInsets(const gfx::Insets& insets_in_dip) {
overscan_insets_in_dip_ = insets_in_dip;
}
gfx::Insets DisplayInfo::GetOverscanInsetsInPixel() const {
return overscan_insets_in_dip_.Scale(device_scale_factor_);
}
gfx::Size DisplayInfo::GetNativeModeSize() const {
for (size_t i = 0; i < display_modes_.size(); ++i) {
if (display_modes_[i].native)
return display_modes_[i].size;
}
return gfx::Size();
}
std::string DisplayInfo::ToString() const {
int rotation_degree = static_cast<int>(rotation_) * 90;
return base::StringPrintf(
"DisplayInfo[%lld] native bounds=%s, size=%s, scale=%f, "
"overscan=%s, rotation=%d, ui-scale=%f, touchscreen=%s, "
"touch-device-id=%d",
static_cast<long long int>(id_),
bounds_in_native_.ToString().c_str(),
size_in_pixel_.ToString().c_str(),
device_scale_factor_,
overscan_insets_in_dip_.ToString().c_str(),
rotation_degree,
configured_ui_scale_,
touch_support_ == gfx::Display::TOUCH_SUPPORT_AVAILABLE
? "yes"
: touch_support_ == gfx::Display::TOUCH_SUPPORT_UNAVAILABLE
? "no"
: "unknown",
touch_device_id_);
}
std::string DisplayInfo::ToFullString() const {
std::string display_modes_str;
std::vector<DisplayMode>::const_iterator iter = display_modes_.begin();
for (; iter != display_modes_.end(); ++iter) {
if (!display_modes_str.empty())
display_modes_str += ",";
base::StringAppendF(&display_modes_str,
"(%dx%d@%f%c%s)",
iter->size.width(),
iter->size.height(),
iter->refresh_rate,
iter->interlaced ? 'I' : 'P',
iter->native ? "(N)" : "");
}
return ToString() + ", display_modes==" + display_modes_str;
}
void DisplayInfo::SetColorProfile(ui::ColorCalibrationProfile profile) {
if (IsColorProfileAvailable(profile))
color_profile_ = profile;
}
bool DisplayInfo::IsColorProfileAvailable(
ui::ColorCalibrationProfile profile) const {
return std::find(available_color_profiles_.begin(),
available_color_profiles_.end(),
profile) != available_color_profiles_.end();
}
} // namespace ash