// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process/process_metrics.h"
#include <windows.h>
#include <psapi.h>
#include "base/logging.h"
#include "base/sys_info.h"
namespace base {
// System pagesize. This value remains constant on x86/64 architectures.
const int PAGESIZE_KB = 4;
ProcessMetrics::~ProcessMetrics() { }
// static
ProcessMetrics* ProcessMetrics::CreateProcessMetrics(ProcessHandle process) {
return new ProcessMetrics(process);
}
size_t ProcessMetrics::GetPagefileUsage() const {
PROCESS_MEMORY_COUNTERS pmc;
if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) {
return pmc.PagefileUsage;
}
return 0;
}
// Returns the peak space allocated for the pagefile, in bytes.
size_t ProcessMetrics::GetPeakPagefileUsage() const {
PROCESS_MEMORY_COUNTERS pmc;
if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) {
return pmc.PeakPagefileUsage;
}
return 0;
}
// Returns the current working set size, in bytes.
size_t ProcessMetrics::GetWorkingSetSize() const {
PROCESS_MEMORY_COUNTERS pmc;
if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) {
return pmc.WorkingSetSize;
}
return 0;
}
// Returns the peak working set size, in bytes.
size_t ProcessMetrics::GetPeakWorkingSetSize() const {
PROCESS_MEMORY_COUNTERS pmc;
if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) {
return pmc.PeakWorkingSetSize;
}
return 0;
}
bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes,
size_t* shared_bytes) {
// PROCESS_MEMORY_COUNTERS_EX is not supported until XP SP2.
// GetProcessMemoryInfo() will simply fail on prior OS. So the requested
// information is simply not available. Hence, we will return 0 on unsupported
// OSes. Unlike most Win32 API, we don't need to initialize the "cb" member.
PROCESS_MEMORY_COUNTERS_EX pmcx;
if (private_bytes &&
GetProcessMemoryInfo(process_,
reinterpret_cast<PROCESS_MEMORY_COUNTERS*>(&pmcx),
sizeof(pmcx))) {
*private_bytes = pmcx.PrivateUsage;
}
if (shared_bytes) {
WorkingSetKBytes ws_usage;
if (!GetWorkingSetKBytes(&ws_usage))
return false;
*shared_bytes = ws_usage.shared * 1024;
}
return true;
}
void ProcessMetrics::GetCommittedKBytes(CommittedKBytes* usage) const {
MEMORY_BASIC_INFORMATION mbi = {0};
size_t committed_private = 0;
size_t committed_mapped = 0;
size_t committed_image = 0;
void* base_address = NULL;
while (VirtualQueryEx(process_, base_address, &mbi, sizeof(mbi)) ==
sizeof(mbi)) {
if (mbi.State == MEM_COMMIT) {
if (mbi.Type == MEM_PRIVATE) {
committed_private += mbi.RegionSize;
} else if (mbi.Type == MEM_MAPPED) {
committed_mapped += mbi.RegionSize;
} else if (mbi.Type == MEM_IMAGE) {
committed_image += mbi.RegionSize;
} else {
NOTREACHED();
}
}
void* new_base = (static_cast<BYTE*>(mbi.BaseAddress)) + mbi.RegionSize;
// Avoid infinite loop by weird MEMORY_BASIC_INFORMATION.
// If we query 64bit processes in a 32bit process, VirtualQueryEx()
// returns such data.
if (new_base <= base_address) {
usage->image = 0;
usage->mapped = 0;
usage->priv = 0;
return;
}
base_address = new_base;
}
usage->image = committed_image / 1024;
usage->mapped = committed_mapped / 1024;
usage->priv = committed_private / 1024;
}
bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const {
size_t ws_private = 0;
size_t ws_shareable = 0;
size_t ws_shared = 0;
DCHECK(ws_usage);
memset(ws_usage, 0, sizeof(*ws_usage));
DWORD number_of_entries = 4096; // Just a guess.
PSAPI_WORKING_SET_INFORMATION* buffer = NULL;
int retries = 5;
for (;;) {
DWORD buffer_size = sizeof(PSAPI_WORKING_SET_INFORMATION) +
(number_of_entries * sizeof(PSAPI_WORKING_SET_BLOCK));
// if we can't expand the buffer, don't leak the previous
// contents or pass a NULL pointer to QueryWorkingSet
PSAPI_WORKING_SET_INFORMATION* new_buffer =
reinterpret_cast<PSAPI_WORKING_SET_INFORMATION*>(
realloc(buffer, buffer_size));
if (!new_buffer) {
free(buffer);
return false;
}
buffer = new_buffer;
// Call the function once to get number of items
if (QueryWorkingSet(process_, buffer, buffer_size))
break; // Success
if (GetLastError() != ERROR_BAD_LENGTH) {
free(buffer);
return false;
}
number_of_entries = static_cast<DWORD>(buffer->NumberOfEntries);
// Maybe some entries are being added right now. Increase the buffer to
// take that into account.
number_of_entries = static_cast<DWORD>(number_of_entries * 1.25);
if (--retries == 0) {
free(buffer); // If we're looping, eventually fail.
return false;
}
}
// On windows 2000 the function returns 1 even when the buffer is too small.
// The number of entries that we are going to parse is the minimum between the
// size we allocated and the real number of entries.
number_of_entries =
std::min(number_of_entries, static_cast<DWORD>(buffer->NumberOfEntries));
for (unsigned int i = 0; i < number_of_entries; i++) {
if (buffer->WorkingSetInfo[i].Shared) {
ws_shareable++;
if (buffer->WorkingSetInfo[i].ShareCount > 1)
ws_shared++;
} else {
ws_private++;
}
}
ws_usage->priv = ws_private * PAGESIZE_KB;
ws_usage->shareable = ws_shareable * PAGESIZE_KB;
ws_usage->shared = ws_shared * PAGESIZE_KB;
free(buffer);
return true;
}
static uint64 FileTimeToUTC(const FILETIME& ftime) {
LARGE_INTEGER li;
li.LowPart = ftime.dwLowDateTime;
li.HighPart = ftime.dwHighDateTime;
return li.QuadPart;
}
double ProcessMetrics::GetCPUUsage() {
FILETIME creation_time;
FILETIME exit_time;
FILETIME kernel_time;
FILETIME user_time;
if (!GetProcessTimes(process_, &creation_time, &exit_time,
&kernel_time, &user_time)) {
// We don't assert here because in some cases (such as in the Task Manager)
// we may call this function on a process that has just exited but we have
// not yet received the notification.
return 0;
}
int64 system_time = (FileTimeToUTC(kernel_time) + FileTimeToUTC(user_time)) /
processor_count_;
TimeTicks time = TimeTicks::Now();
if (last_system_time_ == 0) {
// First call, just set the last values.
last_system_time_ = system_time;
last_cpu_time_ = time;
return 0;
}
int64 system_time_delta = system_time - last_system_time_;
// FILETIME is in 100-nanosecond units, so this needs microseconds times 10.
int64 time_delta = (time - last_cpu_time_).InMicroseconds() * 10;
DCHECK_NE(0U, time_delta);
if (time_delta == 0)
return 0;
// We add time_delta / 2 so the result is rounded.
int cpu = static_cast<int>((system_time_delta * 100 + time_delta / 2) /
time_delta);
last_system_time_ = system_time;
last_cpu_time_ = time;
return cpu;
}
bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
return GetProcessIoCounters(process_, io_counters) != FALSE;
}
ProcessMetrics::ProcessMetrics(ProcessHandle process)
: process_(process),
processor_count_(base::SysInfo::NumberOfProcessors()),
last_system_time_(0) {
}
// GetPerformanceInfo is not available on WIN2K. So we'll
// load it on-the-fly.
const wchar_t kPsapiDllName[] = L"psapi.dll";
typedef BOOL (WINAPI *GetPerformanceInfoFunction) (
PPERFORMANCE_INFORMATION pPerformanceInformation,
DWORD cb);
// Beware of races if called concurrently from multiple threads.
static BOOL InternalGetPerformanceInfo(
PPERFORMANCE_INFORMATION pPerformanceInformation, DWORD cb) {
static GetPerformanceInfoFunction GetPerformanceInfo_func = NULL;
if (!GetPerformanceInfo_func) {
HMODULE psapi_dll = ::GetModuleHandle(kPsapiDllName);
if (psapi_dll)
GetPerformanceInfo_func = reinterpret_cast<GetPerformanceInfoFunction>(
GetProcAddress(psapi_dll, "GetPerformanceInfo"));
if (!GetPerformanceInfo_func) {
// The function could be loaded!
memset(pPerformanceInformation, 0, cb);
return FALSE;
}
}
return GetPerformanceInfo_func(pPerformanceInformation, cb);
}
size_t GetSystemCommitCharge() {
// Get the System Page Size.
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
PERFORMANCE_INFORMATION info;
if (!InternalGetPerformanceInfo(&info, sizeof(info))) {
DLOG(ERROR) << "Failed to fetch internal performance info.";
return 0;
}
return (info.CommitTotal * system_info.dwPageSize) / 1024;
}
} // namespace base