// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/resources/picture_pile.h"
#include <algorithm>
#include <limits>
#include <vector>
#include "cc/base/region.h"
#include "cc/debug/rendering_stats_instrumentation.h"
#include "cc/resources/picture_pile_impl.h"
#include "cc/resources/raster_worker_pool.h"
#include "cc/resources/tile_priority.h"
namespace {
// Layout pixel buffer around the visible layer rect to record. Any base
// picture that intersects the visible layer rect expanded by this distance
// will be recorded.
const int kPixelDistanceToRecord = 8000;
// We don't perform solid color analysis on images that have more than 10 skia
// operations.
const int kOpCountThatIsOkToAnalyze = 10;
// TODO(humper): The density threshold here is somewhat arbitrary; need a
// way to set // this from the command line so we can write a benchmark
// script and find a sweet spot.
const float kDensityThreshold = 0.5f;
bool rect_sort_y(const gfx::Rect& r1, const gfx::Rect& r2) {
return r1.y() < r2.y() || (r1.y() == r2.y() && r1.x() < r2.x());
}
bool rect_sort_x(const gfx::Rect& r1, const gfx::Rect& r2) {
return r1.x() < r2.x() || (r1.x() == r2.x() && r1.y() < r2.y());
}
float PerformClustering(const std::vector<gfx::Rect>& tiles,
std::vector<gfx::Rect>* clustered_rects) {
// These variables track the record area and invalid area
// for the entire clustering
int total_record_area = 0;
int total_invalid_area = 0;
// These variables track the record area and invalid area
// for the current cluster being constructed.
gfx::Rect cur_record_rect;
int cluster_record_area = 0, cluster_invalid_area = 0;
for (std::vector<gfx::Rect>::const_iterator it = tiles.begin();
it != tiles.end();
it++) {
gfx::Rect invalid_tile = *it;
// For each tile, we consider adding the invalid tile to the
// current record rectangle. Only add it if the amount of empty
// space created is below a density threshold.
int tile_area = invalid_tile.width() * invalid_tile.height();
gfx::Rect proposed_union = cur_record_rect;
proposed_union.Union(invalid_tile);
int proposed_area = proposed_union.width() * proposed_union.height();
float proposed_density =
static_cast<float>(cluster_invalid_area + tile_area) /
static_cast<float>(proposed_area);
if (proposed_density >= kDensityThreshold) {
// It's okay to add this invalid tile to the
// current recording rectangle.
cur_record_rect = proposed_union;
cluster_record_area = proposed_area;
cluster_invalid_area += tile_area;
total_invalid_area += tile_area;
} else {
// Adding this invalid tile to the current recording rectangle
// would exceed our badness threshold, so put the current rectangle
// in the list of recording rects, and start a new one.
clustered_rects->push_back(cur_record_rect);
total_record_area += cluster_record_area;
cur_record_rect = invalid_tile;
cluster_invalid_area = tile_area;
cluster_record_area = tile_area;
}
}
DCHECK(!cur_record_rect.IsEmpty());
clustered_rects->push_back(cur_record_rect);
total_record_area += cluster_record_area;;
DCHECK_NE(total_record_area, 0);
return static_cast<float>(total_invalid_area) /
static_cast<float>(total_record_area);
}
float ClusterTiles(const std::vector<gfx::Rect>& invalid_tiles,
std::vector<gfx::Rect>* record_rects) {
TRACE_EVENT1("cc", "ClusterTiles",
"count",
invalid_tiles.size());
if (invalid_tiles.size() <= 1) {
// Quickly handle the special case for common
// single-invalidation update, and also the less common
// case of no tiles passed in.
*record_rects = invalid_tiles;
return 1;
}
// Sort the invalid tiles by y coordinate.
std::vector<gfx::Rect> invalid_tiles_vertical = invalid_tiles;
std::sort(invalid_tiles_vertical.begin(),
invalid_tiles_vertical.end(),
rect_sort_y);
float vertical_density;
std::vector<gfx::Rect> vertical_clustering;
vertical_density = PerformClustering(invalid_tiles_vertical,
&vertical_clustering);
// If vertical density is optimal, then we can return early.
if (vertical_density == 1.f) {
*record_rects = vertical_clustering;
return vertical_density;
}
// Now try again with a horizontal sort, see which one is best
std::vector<gfx::Rect> invalid_tiles_horizontal = invalid_tiles;
std::sort(invalid_tiles_horizontal.begin(),
invalid_tiles_horizontal.end(),
rect_sort_x);
float horizontal_density;
std::vector<gfx::Rect> horizontal_clustering;
horizontal_density = PerformClustering(invalid_tiles_horizontal,
&horizontal_clustering);
if (vertical_density < horizontal_density) {
*record_rects = horizontal_clustering;
return horizontal_density;
}
*record_rects = vertical_clustering;
return vertical_density;
}
} // namespace
namespace cc {
PicturePile::PicturePile()
: is_suitable_for_gpu_rasterization_(true),
pixel_record_distance_(kPixelDistanceToRecord) {
}
PicturePile::~PicturePile() {
}
bool PicturePile::UpdateAndExpandInvalidation(
ContentLayerClient* painter,
Region* invalidation,
SkColor background_color,
bool contents_opaque,
bool contents_fill_bounds_completely,
const gfx::Size& layer_size,
const gfx::Rect& visible_layer_rect,
int frame_number,
Picture::RecordingMode recording_mode,
RenderingStatsInstrumentation* stats_instrumentation) {
background_color_ = background_color;
contents_opaque_ = contents_opaque;
contents_fill_bounds_completely_ = contents_fill_bounds_completely;
bool updated = false;
Region resize_invalidation;
gfx::Size old_tiling_size = tiling_size();
if (old_tiling_size != layer_size) {
tiling_.SetTilingSize(layer_size);
updated = true;
}
gfx::Rect interest_rect = visible_layer_rect;
interest_rect.Inset(-pixel_record_distance_, -pixel_record_distance_);
recorded_viewport_ = interest_rect;
recorded_viewport_.Intersect(gfx::Rect(tiling_size()));
gfx::Rect interest_rect_over_tiles =
tiling_.ExpandRectToTileBounds(interest_rect);
gfx::Size min_tiling_size(
std::min(tiling_size().width(), old_tiling_size.width()),
std::min(tiling_size().height(), old_tiling_size.height()));
gfx::Size max_tiling_size(
std::max(tiling_size().width(), old_tiling_size.width()),
std::max(tiling_size().height(), old_tiling_size.height()));
if (old_tiling_size != layer_size) {
has_any_recordings_ = false;
// Drop recordings that are outside the new or old layer bounds or that
// changed size. Newly exposed areas are considered invalidated.
// Previously exposed areas that are now outside of bounds also need to
// be invalidated, as they may become part of raster when scale < 1.
std::vector<PictureMapKey> to_erase;
int min_toss_x = tiling_.num_tiles_x();
if (max_tiling_size.width() > min_tiling_size.width()) {
min_toss_x =
tiling_.FirstBorderTileXIndexFromSrcCoord(min_tiling_size.width());
}
int min_toss_y = tiling_.num_tiles_y();
if (max_tiling_size.height() > min_tiling_size.height()) {
min_toss_y =
tiling_.FirstBorderTileYIndexFromSrcCoord(min_tiling_size.height());
}
for (PictureMap::const_iterator it = picture_map_.begin();
it != picture_map_.end();
++it) {
const PictureMapKey& key = it->first;
if (key.first < min_toss_x && key.second < min_toss_y) {
has_any_recordings_ |= !!it->second.GetPicture();
continue;
}
to_erase.push_back(key);
}
for (size_t i = 0; i < to_erase.size(); ++i)
picture_map_.erase(to_erase[i]);
// If a recording is dropped and not re-recorded below, invalidate that
// full recording to cause any raster tiles that would use it to be
// dropped.
// If the recording will be replaced below, invalidate newly exposed
// areas and previously exposed areas to force raster tiles that include the
// old recording to know there is new recording to display.
gfx::Rect min_tiling_rect_over_tiles =
tiling_.ExpandRectToTileBounds(gfx::Rect(min_tiling_size));
if (min_toss_x < tiling_.num_tiles_x()) {
// The bounds which we want to invalidate are the tiles along the old
// edge of the pile when expanding, or the new edge of the pile when
// shrinking. In either case, it's the difference of the two, so we'll
// call this bounding box the DELTA EDGE RECT.
//
// In the picture below, the delta edge rect would be the bounding box of
// tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of
// the same tiles.
//
// min pile edge-v max pile edge-v
// ---------------+ - - - - - - - -+
// mmppssvvyybbeeh|h .
// mmppssvvyybbeeh|h .
// nnqqttwwzzccffi|i .
// nnqqttwwzzccffi|i .
// oorruuxxaaddggj|j .
// oorruuxxaaddggj|j .
// ---------------+ - - - - - - - -+ <- min pile edge
// .
// - - - - - - - - - - - - - - - -+ <- max pile edge
//
// If you were to slide a vertical beam from the left edge of the
// delta edge rect toward the right, it would either hit the right edge
// of the delta edge rect, or the interest rect (expanded to the bounds
// of the tiles it touches). The same is true for a beam parallel to
// any of the four edges, sliding across the delta edge rect. We use
// the union of these four rectangles generated by these beams to
// determine which part of the delta edge rect is outside of the expanded
// interest rect.
//
// Case 1: Intersect rect is outside the delta edge rect. It can be
// either on the left or the right. The |left_rect| and |right_rect|,
// cover this case, one will be empty and one will cover the full
// delta edge rect. In the picture below, |left_rect| would cover the
// delta edge rect, and |right_rect| would be empty.
// +----------------------+ |^^^^^^^^^^^^^^^|
// |===> DELTA EDGE RECT | | |
// |===> | | INTEREST RECT |
// |===> | | |
// |===> | | |
// +----------------------+ |vvvvvvvvvvvvvvv|
//
// Case 2: Interest rect is inside the delta edge rect. It will always
// fill the entire delta edge rect horizontally since the old edge rect
// is a single tile wide, and the interest rect has been expanded to the
// bounds of the tiles it touches. In this case the |left_rect| and
// |right_rect| will be empty, but the case is handled by the |top_rect|
// and |bottom_rect|. In the picture below, neither the |top_rect| nor
// |bottom_rect| would empty, they would each cover the area of the old
// edge rect outside the expanded interest rect.
// +-----------------+
// |:::::::::::::::::|
// |:::::::::::::::::|
// |vvvvvvvvvvvvvvvvv|
// | |
// +-----------------+
// | INTEREST RECT |
// | |
// +-----------------+
// | |
// | DELTA EDGE RECT |
// +-----------------+
//
// Lastly, we need to consider tiles inside the expanded interest rect.
// For those tiles, we want to invalidate exactly the newly exposed
// pixels. In the picture below the tiles in the delta edge rect have
// been resized and the area covered by periods must be invalidated. The
// |exposed_rect| will cover exactly that area.
// v-min pile edge
// +---------+-------+
// | ........|
// | ........|
// | DELTA EDGE.RECT.|
// | ........|
// | ........|
// | ........|
// | ........|
// | ........|
// | ........|
// +---------+-------+
int left = tiling_.TilePositionX(min_toss_x);
int right = left + tiling_.TileSizeX(min_toss_x);
int top = min_tiling_rect_over_tiles.y();
int bottom = min_tiling_rect_over_tiles.bottom();
int left_until = std::min(interest_rect_over_tiles.x(), right);
int right_until = std::max(interest_rect_over_tiles.right(), left);
int top_until = std::min(interest_rect_over_tiles.y(), bottom);
int bottom_until = std::max(interest_rect_over_tiles.bottom(), top);
int exposed_left = min_tiling_size.width();
int exposed_left_until = max_tiling_size.width();
int exposed_top = top;
int exposed_bottom = max_tiling_size.height();
DCHECK_GE(exposed_left, left);
gfx::Rect left_rect(left, top, left_until - left, bottom - top);
gfx::Rect right_rect(right_until, top, right - right_until, bottom - top);
gfx::Rect top_rect(left, top, right - left, top_until - top);
gfx::Rect bottom_rect(
left, bottom_until, right - left, bottom - bottom_until);
gfx::Rect exposed_rect(exposed_left,
exposed_top,
exposed_left_until - exposed_left,
exposed_bottom - exposed_top);
resize_invalidation.Union(left_rect);
resize_invalidation.Union(right_rect);
resize_invalidation.Union(top_rect);
resize_invalidation.Union(bottom_rect);
resize_invalidation.Union(exposed_rect);
}
if (min_toss_y < tiling_.num_tiles_y()) {
// The same thing occurs here as in the case above, but the invalidation
// rect is the bounding box around the bottom row of tiles in the min
// pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture.
int top = tiling_.TilePositionY(min_toss_y);
int bottom = top + tiling_.TileSizeY(min_toss_y);
int left = min_tiling_rect_over_tiles.x();
int right = min_tiling_rect_over_tiles.right();
int top_until = std::min(interest_rect_over_tiles.y(), bottom);
int bottom_until = std::max(interest_rect_over_tiles.bottom(), top);
int left_until = std::min(interest_rect_over_tiles.x(), right);
int right_until = std::max(interest_rect_over_tiles.right(), left);
int exposed_top = min_tiling_size.height();
int exposed_top_until = max_tiling_size.height();
int exposed_left = left;
int exposed_right = max_tiling_size.width();
DCHECK_GE(exposed_top, top);
gfx::Rect left_rect(left, top, left_until - left, bottom - top);
gfx::Rect right_rect(right_until, top, right - right_until, bottom - top);
gfx::Rect top_rect(left, top, right - left, top_until - top);
gfx::Rect bottom_rect(
left, bottom_until, right - left, bottom - bottom_until);
gfx::Rect exposed_rect(exposed_left,
exposed_top,
exposed_right - exposed_left,
exposed_top_until - exposed_top);
resize_invalidation.Union(left_rect);
resize_invalidation.Union(right_rect);
resize_invalidation.Union(top_rect);
resize_invalidation.Union(bottom_rect);
resize_invalidation.Union(exposed_rect);
}
}
// Detect cases where the full pile is invalidated, in this situation we
// can just drop/invalidate everything.
if (invalidation->Contains(gfx::Rect(old_tiling_size)) ||
invalidation->Contains(gfx::Rect(tiling_size()))) {
for (auto& it : picture_map_)
updated = it.second.Invalidate(frame_number) || updated;
} else {
// Expand invalidation that is on tiles that aren't in the interest rect and
// will not be re-recorded below. These tiles are no longer valid and should
// be considerered fully invalid, so we can know to not keep around raster
// tiles that intersect with these recording tiles.
Region invalidation_expanded_to_full_tiles;
for (Region::Iterator i(*invalidation); i.has_rect(); i.next()) {
gfx::Rect invalid_rect = i.rect();
// This rect covers the bounds (excluding borders) of all tiles whose
// bounds (including borders) touch the |interest_rect|. This matches
// the iteration of the |invalid_rect| below which includes borders when
// calling Invalidate() on pictures.
gfx::Rect invalid_rect_outside_interest_rect_tiles =
tiling_.ExpandRectToTileBounds(invalid_rect);
// We subtract the |interest_rect_over_tiles| which represents the bounds
// of tiles that will be re-recorded below. This matches the iteration of
// |interest_rect| below which includes borders.
// TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator
// instead of using Rect::Subtract which gives you the bounding box of the
// subtraction.
invalid_rect_outside_interest_rect_tiles.Subtract(
interest_rect_over_tiles);
invalidation_expanded_to_full_tiles.Union(
invalid_rect_outside_interest_rect_tiles);
// Split this inflated invalidation across tile boundaries and apply it
// to all tiles that it touches.
bool include_borders = true;
for (TilingData::Iterator iter(&tiling_, invalid_rect, include_borders);
iter;
++iter) {
const PictureMapKey& key = iter.index();
PictureMap::iterator picture_it = picture_map_.find(key);
if (picture_it == picture_map_.end())
continue;
// Inform the grid cell that it has been invalidated in this frame.
updated = picture_it->second.Invalidate(frame_number) || updated;
// Invalidate drops the picture so the whole tile better be invalidated
// if it won't be re-recorded below.
DCHECK(tiling_.TileBounds(key.first, key.second)
.Intersects(interest_rect_over_tiles) ||
invalidation_expanded_to_full_tiles.Contains(
tiling_.TileBounds(key.first, key.second)));
}
}
invalidation->Union(invalidation_expanded_to_full_tiles);
}
invalidation->Union(resize_invalidation);
// Make a list of all invalid tiles; we will attempt to
// cluster these into multiple invalidation regions.
std::vector<gfx::Rect> invalid_tiles;
bool include_borders = true;
for (TilingData::Iterator it(&tiling_, interest_rect, include_borders); it;
++it) {
const PictureMapKey& key = it.index();
PictureInfo& info = picture_map_[key];
gfx::Rect rect = PaddedRect(key);
int distance_to_visible =
rect.ManhattanInternalDistance(visible_layer_rect);
if (info.NeedsRecording(frame_number, distance_to_visible)) {
gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
invalid_tiles.push_back(tile);
} else if (!info.GetPicture()) {
if (recorded_viewport_.Intersects(rect)) {
// Recorded viewport is just an optimization for a fully recorded
// interest rect. In this case, a tile in that rect has declined
// to be recorded (probably due to frequent invalidations).
// TODO(enne): Shrink the recorded_viewport_ rather than clearing.
recorded_viewport_ = gfx::Rect();
}
// If a tile in the interest rect is not recorded, the entire tile needs
// to be considered invalid, so that we know not to keep around raster
// tiles that intersect this recording tile.
invalidation->Union(tiling_.TileBounds(it.index_x(), it.index_y()));
}
}
std::vector<gfx::Rect> record_rects;
ClusterTiles(invalid_tiles, &record_rects);
if (record_rects.empty())
return updated;
for (std::vector<gfx::Rect>::iterator it = record_rects.begin();
it != record_rects.end();
it++) {
gfx::Rect record_rect = *it;
record_rect = PadRect(record_rect);
int repeat_count = std::max(1, slow_down_raster_scale_factor_for_debug_);
scoped_refptr<Picture> picture;
// Note: Currently, gathering of pixel refs when using a single
// raster thread doesn't provide any benefit. This might change
// in the future but we avoid it for now to reduce the cost of
// Picture::Create.
bool gather_pixel_refs = RasterWorkerPool::GetNumRasterThreads() > 1;
{
base::TimeDelta best_duration = base::TimeDelta::Max();
for (int i = 0; i < repeat_count; i++) {
base::TimeTicks start_time = stats_instrumentation->StartRecording();
picture = Picture::Create(record_rect,
painter,
tile_grid_info_,
gather_pixel_refs,
recording_mode);
// Note the '&&' with previous is-suitable state.
// This means that once a picture-pile becomes unsuitable for gpu
// rasterization due to some content, it will continue to be unsuitable
// even if that content is replaced by gpu-friendly content.
// This is an optimization to avoid iterating though all pictures in
// the pile after each invalidation.
is_suitable_for_gpu_rasterization_ &=
picture->IsSuitableForGpuRasterization();
has_text_ |= picture->HasText();
base::TimeDelta duration =
stats_instrumentation->EndRecording(start_time);
best_duration = std::min(duration, best_duration);
}
int recorded_pixel_count =
picture->LayerRect().width() * picture->LayerRect().height();
stats_instrumentation->AddRecord(best_duration, recorded_pixel_count);
}
bool found_tile_for_recorded_picture = false;
bool include_borders = true;
for (TilingData::Iterator it(&tiling_, record_rect, include_borders); it;
++it) {
const PictureMapKey& key = it.index();
gfx::Rect tile = PaddedRect(key);
if (record_rect.Contains(tile)) {
PictureInfo& info = picture_map_[key];
info.SetPicture(picture);
found_tile_for_recorded_picture = true;
}
}
DetermineIfSolidColor();
DCHECK(found_tile_for_recorded_picture);
}
has_any_recordings_ = true;
DCHECK(CanRasterSlowTileCheck(recorded_viewport_));
return true;
}
void PicturePile::SetEmptyBounds() {
tiling_.SetTilingSize(gfx::Size());
picture_map_.clear();
has_any_recordings_ = false;
recorded_viewport_ = gfx::Rect();
}
void PicturePile::DetermineIfSolidColor() {
is_solid_color_ = false;
solid_color_ = SK_ColorTRANSPARENT;
if (picture_map_.empty()) {
return;
}
PictureMap::const_iterator it = picture_map_.begin();
const Picture* picture = it->second.GetPicture();
// Missing recordings due to frequent invalidations or being too far away
// from the interest rect will cause the a null picture to exist.
if (!picture)
return;
// Don't bother doing more work if the first image is too complicated.
if (picture->ApproximateOpCount() > kOpCountThatIsOkToAnalyze)
return;
// Make sure all of the mapped images point to the same picture.
for (++it; it != picture_map_.end(); ++it) {
if (it->second.GetPicture() != picture)
return;
}
skia::AnalysisCanvas canvas(recorded_viewport_.width(),
recorded_viewport_.height());
canvas.translate(-recorded_viewport_.x(), -recorded_viewport_.y());
picture->Raster(&canvas, nullptr, Region(), 1.0f);
is_solid_color_ = canvas.GetColorIfSolid(&solid_color_);
}
} // namespace cc