//===-- sanitizer_win.cc --------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements windows-specific functions from
// sanitizer_libc.h.
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_WINDOWS
#define WIN32_LEAN_AND_MEAN
#define NOGDI
#include <stdlib.h>
#include <io.h>
#include <windows.h>
#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_stacktrace.h"
namespace __sanitizer {
#include "sanitizer_syscall_generic.inc"
// --------------------- sanitizer_common.h
uptr GetPageSize() {
return 1U << 14; // FIXME: is this configurable?
}
uptr GetMmapGranularity() {
return 1U << 16; // FIXME: is this configurable?
}
uptr GetMaxVirtualAddress() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (uptr)si.lpMaximumApplicationAddress;
}
bool FileExists(const char *filename) {
UNIMPLEMENTED();
}
uptr internal_getpid() {
return GetProcessId(GetCurrentProcess());
}
// In contrast to POSIX, on Windows GetCurrentThreadId()
// returns a system-unique identifier.
uptr GetTid() {
return GetCurrentThreadId();
}
uptr GetThreadSelf() {
return GetTid();
}
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
uptr *stack_bottom) {
CHECK(stack_top);
CHECK(stack_bottom);
MEMORY_BASIC_INFORMATION mbi;
CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
// FIXME: is it possible for the stack to not be a single allocation?
// Are these values what ASan expects to get (reserved, not committed;
// including stack guard page) ?
*stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
*stack_bottom = (uptr)mbi.AllocationBase;
}
void *MmapOrDie(uptr size, const char *mem_type) {
void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (rv == 0) {
Report("ERROR: %s failed to "
"allocate 0x%zx (%zd) bytes of %s (error code: %d)\n",
SanitizerToolName, size, size, mem_type, GetLastError());
CHECK("unable to mmap" && 0);
}
return rv;
}
void UnmapOrDie(void *addr, uptr size) {
if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
Report("ERROR: %s failed to "
"deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
SanitizerToolName, size, size, addr, GetLastError());
CHECK("unable to unmap" && 0);
}
}
void *MmapFixedNoReserve(uptr fixed_addr, uptr size) {
// FIXME: is this really "NoReserve"? On Win32 this does not matter much,
// but on Win64 it does.
void *p = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (p == 0)
Report("ERROR: %s failed to "
"allocate %p (%zd) bytes at %p (error code: %d)\n",
SanitizerToolName, size, size, fixed_addr, GetLastError());
return p;
}
void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
return MmapFixedNoReserve(fixed_addr, size);
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
// FIXME: make this really NoReserve?
return MmapOrDie(size, mem_type);
}
void *Mprotect(uptr fixed_addr, uptr size) {
return VirtualAlloc((LPVOID)fixed_addr, size,
MEM_RESERVE | MEM_COMMIT, PAGE_NOACCESS);
}
void FlushUnneededShadowMemory(uptr addr, uptr size) {
// This is almost useless on 32-bits.
// FIXME: add madvice-analog when we move to 64-bits.
}
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
// FIXME: shall we do anything here on Windows?
return true;
}
void *MapFileToMemory(const char *file_name, uptr *buff_size) {
UNIMPLEMENTED();
}
void *MapWritableFileToMemory(void *addr, uptr size, uptr fd, uptr offset) {
UNIMPLEMENTED();
}
static const int kMaxEnvNameLength = 128;
static const DWORD kMaxEnvValueLength = 32767;
namespace {
struct EnvVariable {
char name[kMaxEnvNameLength];
char value[kMaxEnvValueLength];
};
} // namespace
static const int kEnvVariables = 5;
static EnvVariable env_vars[kEnvVariables];
static int num_env_vars;
const char *GetEnv(const char *name) {
// Note: this implementation caches the values of the environment variables
// and limits their quantity.
for (int i = 0; i < num_env_vars; i++) {
if (0 == internal_strcmp(name, env_vars[i].name))
return env_vars[i].value;
}
CHECK_LT(num_env_vars, kEnvVariables);
DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
kMaxEnvValueLength);
if (rv > 0 && rv < kMaxEnvValueLength) {
CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
num_env_vars++;
return env_vars[num_env_vars - 1].value;
}
return 0;
}
const char *GetPwd() {
UNIMPLEMENTED();
}
u32 GetUid() {
UNIMPLEMENTED();
}
void DumpProcessMap() {
UNIMPLEMENTED();
}
void DisableCoreDumper() {
// Do nothing.
}
void ReExec() {
UNIMPLEMENTED();
}
void PrepareForSandboxing(__sanitizer_sandbox_arguments *args) {
(void)args;
// Nothing here for now.
}
bool StackSizeIsUnlimited() {
UNIMPLEMENTED();
}
void SetStackSizeLimitInBytes(uptr limit) {
UNIMPLEMENTED();
}
char *FindPathToBinary(const char *name) {
// Nothing here for now.
return 0;
}
void SleepForSeconds(int seconds) {
Sleep(seconds * 1000);
}
void SleepForMillis(int millis) {
Sleep(millis);
}
u64 NanoTime() {
return 0;
}
void Abort() {
abort();
internal__exit(-1); // abort is not NORETURN on Windows.
}
uptr GetListOfModules(LoadedModule *modules, uptr max_modules,
string_predicate_t filter) {
UNIMPLEMENTED();
};
#ifndef SANITIZER_GO
int Atexit(void (*function)(void)) {
return atexit(function);
}
#endif
// ------------------ sanitizer_libc.h
uptr internal_mmap(void *addr, uptr length, int prot, int flags,
int fd, u64 offset) {
UNIMPLEMENTED();
}
uptr internal_munmap(void *addr, uptr length) {
UNIMPLEMENTED();
}
uptr internal_close(fd_t fd) {
UNIMPLEMENTED();
}
int internal_isatty(fd_t fd) {
return _isatty(fd);
}
uptr internal_open(const char *filename, int flags) {
UNIMPLEMENTED();
}
uptr internal_open(const char *filename, int flags, u32 mode) {
UNIMPLEMENTED();
}
uptr OpenFile(const char *filename, bool write) {
UNIMPLEMENTED();
}
uptr internal_read(fd_t fd, void *buf, uptr count) {
UNIMPLEMENTED();
}
uptr internal_write(fd_t fd, const void *buf, uptr count) {
if (fd != kStderrFd)
UNIMPLEMENTED();
static HANDLE output_stream = 0;
// Abort immediately if we know printing is not possible.
if (output_stream == INVALID_HANDLE_VALUE)
return 0;
// If called for the first time, try to use stderr to output stuff,
// falling back to stdout if anything goes wrong.
bool fallback_to_stdout = false;
if (output_stream == 0) {
output_stream = GetStdHandle(STD_ERROR_HANDLE);
// We don't distinguish "no such handle" from error.
if (output_stream == 0)
output_stream = INVALID_HANDLE_VALUE;
if (output_stream == INVALID_HANDLE_VALUE) {
// Retry with stdout?
output_stream = GetStdHandle(STD_OUTPUT_HANDLE);
if (output_stream == 0)
output_stream = INVALID_HANDLE_VALUE;
if (output_stream == INVALID_HANDLE_VALUE)
return 0;
} else {
// Successfully got an stderr handle. However, if WriteFile() fails,
// we can still try to fallback to stdout.
fallback_to_stdout = true;
}
}
DWORD ret;
if (WriteFile(output_stream, buf, count, &ret, 0))
return ret;
// Re-try with stdout if using a valid stderr handle fails.
if (fallback_to_stdout) {
output_stream = GetStdHandle(STD_OUTPUT_HANDLE);
if (output_stream == 0)
output_stream = INVALID_HANDLE_VALUE;
if (output_stream != INVALID_HANDLE_VALUE)
return internal_write(fd, buf, count);
}
return 0;
}
uptr internal_stat(const char *path, void *buf) {
UNIMPLEMENTED();
}
uptr internal_lstat(const char *path, void *buf) {
UNIMPLEMENTED();
}
uptr internal_fstat(fd_t fd, void *buf) {
UNIMPLEMENTED();
}
uptr internal_filesize(fd_t fd) {
UNIMPLEMENTED();
}
uptr internal_dup2(int oldfd, int newfd) {
UNIMPLEMENTED();
}
uptr internal_readlink(const char *path, char *buf, uptr bufsize) {
UNIMPLEMENTED();
}
uptr internal_sched_yield() {
Sleep(0);
return 0;
}
void internal__exit(int exitcode) {
ExitProcess(exitcode);
}
uptr internal_ftruncate(fd_t fd, uptr size) {
UNIMPLEMENTED();
}
uptr internal_rename(const char *oldpath, const char *newpath) {
UNIMPLEMENTED();
}
// ---------------------- BlockingMutex ---------------- {{{1
const uptr LOCK_UNINITIALIZED = 0;
const uptr LOCK_READY = (uptr)-1;
BlockingMutex::BlockingMutex(LinkerInitialized li) {
// FIXME: see comments in BlockingMutex::Lock() for the details.
CHECK(li == LINKER_INITIALIZED || owner_ == LOCK_UNINITIALIZED);
CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_));
InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
owner_ = LOCK_READY;
}
BlockingMutex::BlockingMutex() {
CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_));
InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
owner_ = LOCK_READY;
}
void BlockingMutex::Lock() {
if (owner_ == LOCK_UNINITIALIZED) {
// FIXME: hm, global BlockingMutex objects are not initialized?!?
// This might be a side effect of the clang+cl+link Frankenbuild...
new(this) BlockingMutex((LinkerInitialized)(LINKER_INITIALIZED + 1));
// FIXME: If it turns out the linker doesn't invoke our
// constructors, we should probably manually Lock/Unlock all the global
// locks while we're starting in one thread to avoid double-init races.
}
EnterCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
CHECK_EQ(owner_, LOCK_READY);
owner_ = GetThreadSelf();
}
void BlockingMutex::Unlock() {
CHECK_EQ(owner_, GetThreadSelf());
owner_ = LOCK_READY;
LeaveCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
}
void BlockingMutex::CheckLocked() {
CHECK_EQ(owner_, GetThreadSelf());
}
uptr GetTlsSize() {
return 0;
}
void InitTlsSize() {
}
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
uptr *tls_addr, uptr *tls_size) {
#ifdef SANITIZER_GO
*stk_addr = 0;
*stk_size = 0;
*tls_addr = 0;
*tls_size = 0;
#else
uptr stack_top, stack_bottom;
GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
*stk_addr = stack_bottom;
*stk_size = stack_top - stack_bottom;
*tls_addr = 0;
*tls_size = 0;
#endif
}
void StackTrace::SlowUnwindStack(uptr pc, uptr max_depth) {
CHECK_GE(max_depth, 2);
// FIXME: CaptureStackBackTrace might be too slow for us.
// FIXME: Compare with StackWalk64.
// FIXME: Look at LLVMUnhandledExceptionFilter in Signals.inc
size = CaptureStackBackTrace(2, Min(max_depth, kStackTraceMax),
(void**)trace, 0);
if (size == 0)
return;
// Skip the RTL frames by searching for the PC in the stacktrace.
uptr pc_location = LocatePcInTrace(pc);
PopStackFrames(pc_location);
}
void StackTrace::SlowUnwindStackWithContext(uptr pc, void *context,
uptr max_depth) {
UNREACHABLE("no signal context on windows");
}
void MaybeOpenReportFile() {
// Windows doesn't have native fork, and we don't support Cygwin or other
// environments that try to fake it, so the initial report_fd will always be
// correct.
}
void RawWrite(const char *buffer) {
uptr length = (uptr)internal_strlen(buffer);
if (length != internal_write(report_fd, buffer, length)) {
// stderr may be closed, but we may be able to print to the debugger
// instead. This is the case when launching a program from Visual Studio,
// and the following routine should write to its console.
OutputDebugStringA(buffer);
}
}
void SetAlternateSignalStack() {
// FIXME: Decide what to do on Windows.
}
void UnsetAlternateSignalStack() {
// FIXME: Decide what to do on Windows.
}
void InstallDeadlySignalHandlers(SignalHandlerType handler) {
(void)handler;
// FIXME: Decide what to do on Windows.
}
bool IsDeadlySignal(int signum) {
// FIXME: Decide what to do on Windows.
return false;
}
} // namespace __sanitizer
#endif // _WIN32