/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Functional rasterization tests.
*//*--------------------------------------------------------------------*/
#include "es3fRasterizationTests.hpp"
#include "glsRasterizationTestUtil.hpp"
#include "tcuSurface.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuStringTemplate.hpp"
#include "tcuTextureUtil.hpp"
#include "gluShaderProgram.hpp"
#include "gluRenderContext.hpp"
#include "gluPixelTransfer.hpp"
#include "gluStrUtil.hpp"
#include "gluTextureUtil.hpp"
#include "deStringUtil.hpp"
#include "deRandom.hpp"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
#include <vector>
namespace deqp
{
namespace gles3
{
namespace Functional
{
namespace
{
using namespace gls::RasterizationTestUtil;
static const char* const s_shaderVertexTemplate = "#version 300 es\n"
"in highp vec4 a_position;\n"
"in highp vec4 a_color;\n"
"${INTERPOLATION}out highp vec4 v_color;\n"
"uniform highp float u_pointSize;\n"
"void main ()\n"
"{\n"
" gl_Position = a_position;\n"
" gl_PointSize = u_pointSize;\n"
" v_color = a_color;\n"
"}\n";
static const char* const s_shaderFragmentTemplate = "#version 300 es\n"
"layout(location = 0) out highp vec4 fragColor;\n"
"${INTERPOLATION}in highp vec4 v_color;\n"
"void main ()\n"
"{\n"
" fragColor = v_color;\n"
"}\n";
enum InterpolationCaseFlags
{
INTERPOLATIONFLAGS_NONE = 0,
INTERPOLATIONFLAGS_PROJECTED = (1 << 1),
INTERPOLATIONFLAGS_FLATSHADE = (1 << 2),
};
enum PrimitiveWideness
{
PRIMITIVEWIDENESS_NARROW = 0,
PRIMITIVEWIDENESS_WIDE,
PRIMITIVEWIDENESS_LAST
};
static tcu::PixelFormat getInternalFormatPixelFormat (glw::GLenum internalFormat)
{
const tcu::IVec4 bitDepth = tcu::getTextureFormatBitDepth(glu::mapGLInternalFormat(internalFormat));
return tcu::PixelFormat(bitDepth.x(), bitDepth.y(), bitDepth.z(), bitDepth.w());
}
class BaseRenderingCase : public TestCase
{
public:
enum RenderTarget
{
RENDERTARGET_DEFAULT = 0,
RENDERTARGET_TEXTURE_2D,
RENDERTARGET_RBO_SINGLESAMPLE,
RENDERTARGET_RBO_MULTISAMPLE,
RENDERTARGET_LAST
};
enum
{
DEFAULT_RENDER_SIZE = 256,
SAMPLE_COUNT_MAX = -2,
};
BaseRenderingCase (Context& context, const char* name, const char* desc, RenderTarget target, int numSamples, int renderSize);
~BaseRenderingCase (void);
virtual void init (void);
void deinit (void);
protected:
void drawPrimitives (tcu::Surface& result, const std::vector<tcu::Vec4>& vertexData, glw::GLenum primitiveType);
void drawPrimitives (tcu::Surface& result, const std::vector<tcu::Vec4>& vertexData, const std::vector<tcu::Vec4>& coloDrata, glw::GLenum primitiveType);
virtual float getLineWidth (void) const;
virtual float getPointSize (void) const;
const tcu::PixelFormat& getPixelFormat (void) const;
const int m_renderSize;
int m_numSamples;
int m_subpixelBits;
bool m_flatshade;
const int m_numRequestedSamples;
private:
const RenderTarget m_renderTarget;
const glw::GLenum m_fboInternalFormat;
const tcu::PixelFormat m_pixelFormat;
glu::ShaderProgram* m_shader;
glw::GLuint m_fbo;
glw::GLuint m_texture;
glw::GLuint m_rbo;
glw::GLuint m_blitDstFbo;
glw::GLuint m_blitDstRbo;
};
BaseRenderingCase::BaseRenderingCase (Context& context, const char* name, const char* desc, RenderTarget target, int numSamples, int renderSize)
: TestCase (context, name, desc)
, m_renderSize (renderSize)
, m_numSamples (-1)
, m_subpixelBits (-1)
, m_flatshade (false)
, m_numRequestedSamples (numSamples)
, m_renderTarget (target)
, m_fboInternalFormat (GL_RGBA8)
, m_pixelFormat ((m_renderTarget == RENDERTARGET_DEFAULT) ? (m_context.getRenderTarget().getPixelFormat()) : (getInternalFormatPixelFormat(m_fboInternalFormat)))
, m_shader (DE_NULL)
, m_fbo (0)
, m_texture (0)
, m_rbo (0)
, m_blitDstFbo (0)
, m_blitDstRbo (0)
{
DE_ASSERT(m_renderTarget < RENDERTARGET_LAST);
DE_ASSERT((m_numRequestedSamples == -1) == (m_renderTarget != RENDERTARGET_RBO_MULTISAMPLE));
}
BaseRenderingCase::~BaseRenderingCase (void)
{
deinit();
}
void BaseRenderingCase::init (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int width = m_context.getRenderTarget().getWidth();
const int height = m_context.getRenderTarget().getHeight();
int msaaTargetSamples = -1;
// Requirements
if (m_renderTarget == RENDERTARGET_DEFAULT && (width < m_renderSize || height < m_renderSize))
throw tcu::NotSupportedError(std::string("Render target size must be at least ") + de::toString(m_renderSize) + "x" + de::toString(m_renderSize));
if (m_renderTarget == RENDERTARGET_RBO_MULTISAMPLE)
{
glw::GLint maxSampleCount = 0;
gl.getInternalformativ(GL_RENDERBUFFER, m_fboInternalFormat, GL_SAMPLES, 1, &maxSampleCount);
if (m_numRequestedSamples == SAMPLE_COUNT_MAX)
msaaTargetSamples = maxSampleCount;
else if (maxSampleCount >= m_numRequestedSamples)
msaaTargetSamples = m_numRequestedSamples;
else
throw tcu::NotSupportedError("Test requires " + de::toString(m_numRequestedSamples) + "x msaa rbo");
}
// Gen shader
{
tcu::StringTemplate vertexSource (s_shaderVertexTemplate);
tcu::StringTemplate fragmentSource (s_shaderFragmentTemplate);
std::map<std::string, std::string> params;
params["INTERPOLATION"] = (m_flatshade) ? ("flat ") : ("");
m_shader = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(vertexSource.specialize(params)) << glu::FragmentSource(fragmentSource.specialize(params)));
if (!m_shader->isOk())
throw tcu::TestError("could not create shader");
}
// Fbo
if (m_renderTarget != RENDERTARGET_DEFAULT)
{
glw::GLenum error;
gl.genFramebuffers(1, &m_fbo);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_fbo);
switch (m_renderTarget)
{
case RENDERTARGET_TEXTURE_2D:
{
gl.genTextures(1, &m_texture);
gl.bindTexture(GL_TEXTURE_2D, m_texture);
gl.texStorage2D(GL_TEXTURE_2D, 1, m_fboInternalFormat, m_renderSize, m_renderSize);
error = gl.getError();
if (error == GL_OUT_OF_MEMORY)
throw tcu::NotSupportedError("could not create target texture, got out of memory");
else if (error != GL_NO_ERROR)
throw tcu::TestError("got " + de::toString(glu::getErrorStr(error)));
gl.framebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_texture, 0);
break;
}
case RENDERTARGET_RBO_SINGLESAMPLE:
case RENDERTARGET_RBO_MULTISAMPLE:
{
gl.genRenderbuffers(1, &m_rbo);
gl.bindRenderbuffer(GL_RENDERBUFFER, m_rbo);
if (m_renderTarget == RENDERTARGET_RBO_SINGLESAMPLE)
gl.renderbufferStorage(GL_RENDERBUFFER, m_fboInternalFormat, m_renderSize, m_renderSize);
else if (m_renderTarget == RENDERTARGET_RBO_MULTISAMPLE)
gl.renderbufferStorageMultisample(GL_RENDERBUFFER, msaaTargetSamples, m_fboInternalFormat, m_renderSize, m_renderSize);
else
DE_ASSERT(false);
error = gl.getError();
if (error == GL_OUT_OF_MEMORY)
throw tcu::NotSupportedError("could not create target texture, got out of memory");
else if (error != GL_NO_ERROR)
throw tcu::TestError("got " + de::toString(glu::getErrorStr(error)));
gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_rbo);
break;
}
default:
DE_ASSERT(false);
}
}
// Resolve (blitFramebuffer) target fbo for MSAA targets
if (m_renderTarget == RENDERTARGET_RBO_MULTISAMPLE)
{
glw::GLenum error;
gl.genFramebuffers(1, &m_blitDstFbo);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_blitDstFbo);
gl.genRenderbuffers(1, &m_blitDstRbo);
gl.bindRenderbuffer(GL_RENDERBUFFER, m_blitDstRbo);
gl.renderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, m_renderSize, m_renderSize);
error = gl.getError();
if (error == GL_OUT_OF_MEMORY)
throw tcu::NotSupportedError("could not create blit target, got out of memory");
else if (error != GL_NO_ERROR)
throw tcu::TestError("got " + de::toString(glu::getErrorStr(error)));
gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_blitDstRbo);
// restore state
gl.bindFramebuffer(GL_FRAMEBUFFER, m_fbo);
}
// Query info
if (m_renderTarget == RENDERTARGET_DEFAULT)
m_numSamples = m_context.getRenderTarget().getNumSamples();
else if (m_renderTarget == RENDERTARGET_RBO_MULTISAMPLE)
{
m_numSamples = -1;
gl.bindRenderbuffer(GL_RENDERBUFFER, m_rbo);
gl.getRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_SAMPLES, &m_numSamples);
GLU_EXPECT_NO_ERROR(gl.getError(), "get RENDERBUFFER_SAMPLES");
}
else
m_numSamples = 0;
gl.getIntegerv(GL_SUBPIXEL_BITS, &m_subpixelBits);
m_testCtx.getLog() << tcu::TestLog::Message << "Sample count = " << m_numSamples << tcu::TestLog::EndMessage;
m_testCtx.getLog() << tcu::TestLog::Message << "SUBPIXEL_BITS = " << m_subpixelBits << tcu::TestLog::EndMessage;
}
void BaseRenderingCase::deinit (void)
{
if (m_shader)
{
delete m_shader;
m_shader = DE_NULL;
}
if (m_fbo)
{
m_context.getRenderContext().getFunctions().deleteFramebuffers(1, &m_fbo);
m_fbo = 0;
}
if (m_rbo)
{
m_context.getRenderContext().getFunctions().deleteRenderbuffers(1, &m_rbo);
m_rbo = 0;
}
if (m_texture)
{
m_context.getRenderContext().getFunctions().deleteTextures(1, &m_texture);
m_texture = 0;
}
if (m_blitDstFbo)
{
m_context.getRenderContext().getFunctions().deleteFramebuffers(1, &m_blitDstFbo);
m_blitDstFbo = 0;
}
if (m_blitDstRbo)
{
m_context.getRenderContext().getFunctions().deleteRenderbuffers(1, &m_blitDstRbo);
m_blitDstRbo = 0;
}
}
void BaseRenderingCase::drawPrimitives (tcu::Surface& result, const std::vector<tcu::Vec4>& vertexData, glw::GLenum primitiveType)
{
// default to color white
const std::vector<tcu::Vec4> colorData(vertexData.size(), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f));
drawPrimitives(result, vertexData, colorData, primitiveType);
}
void BaseRenderingCase::drawPrimitives (tcu::Surface& result, const std::vector<tcu::Vec4>& vertexData, const std::vector<tcu::Vec4>& colorData, glw::GLenum primitiveType)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const glw::GLint positionLoc = gl.getAttribLocation(m_shader->getProgram(), "a_position");
const glw::GLint colorLoc = gl.getAttribLocation(m_shader->getProgram(), "a_color");
const glw::GLint pointSizeLoc = gl.getUniformLocation(m_shader->getProgram(), "u_pointSize");
gl.clearColor (0, 0, 0, 1);
gl.clear (GL_COLOR_BUFFER_BIT);
gl.viewport (0, 0, m_renderSize, m_renderSize);
gl.useProgram (m_shader->getProgram());
gl.enableVertexAttribArray (positionLoc);
gl.vertexAttribPointer (positionLoc, 4, GL_FLOAT, GL_FALSE, 0, &vertexData[0]);
gl.enableVertexAttribArray (colorLoc);
gl.vertexAttribPointer (colorLoc, 4, GL_FLOAT, GL_FALSE, 0, &colorData[0]);
gl.uniform1f (pointSizeLoc, getPointSize());
gl.lineWidth (getLineWidth());
gl.drawArrays (primitiveType, 0, (glw::GLsizei)vertexData.size());
gl.disableVertexAttribArray (colorLoc);
gl.disableVertexAttribArray (positionLoc);
gl.useProgram (0);
gl.finish ();
GLU_EXPECT_NO_ERROR (gl.getError(), "draw primitives");
// read pixels
if (m_renderTarget == RENDERTARGET_RBO_MULTISAMPLE)
{
// resolve msaa
gl.bindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo);
gl.bindFramebuffer(GL_DRAW_FRAMEBUFFER, m_blitDstFbo);
gl.blitFramebuffer(0, 0, m_renderSize, m_renderSize, 0, 0, m_renderSize, m_renderSize, GL_COLOR_BUFFER_BIT, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "blit");
// read resolved
gl.bindFramebuffer(GL_READ_FRAMEBUFFER, m_blitDstFbo);
glu::readPixels(m_context.getRenderContext(), 0, 0, result.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "read pixels");
gl.bindFramebuffer(GL_FRAMEBUFFER, m_fbo);
}
else
{
glu::readPixels(m_context.getRenderContext(), 0, 0, result.getAccess());
GLU_EXPECT_NO_ERROR (gl.getError(), "read pixels");
}
}
float BaseRenderingCase::getLineWidth (void) const
{
return 1.0f;
}
float BaseRenderingCase::getPointSize (void) const
{
return 1.0f;
}
const tcu::PixelFormat& BaseRenderingCase::getPixelFormat (void) const
{
return m_pixelFormat;
}
class BaseTriangleCase : public BaseRenderingCase
{
public:
BaseTriangleCase (Context& context, const char* name, const char* desc, glw::GLenum primitiveDrawType, BaseRenderingCase::RenderTarget renderTarget, int numSamples);
~BaseTriangleCase (void);
IterateResult iterate (void);
private:
virtual void generateTriangles (int iteration, std::vector<tcu::Vec4>& outData, std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles) = DE_NULL;
int m_iteration;
const int m_iterationCount;
const glw::GLenum m_primitiveDrawType;
bool m_allIterationsPassed;
};
BaseTriangleCase::BaseTriangleCase (Context& context, const char* name, const char* desc, glw::GLenum primitiveDrawType, BaseRenderingCase::RenderTarget renderTarget, int numSamples)
: BaseRenderingCase (context, name, desc, renderTarget, numSamples, DEFAULT_RENDER_SIZE)
, m_iteration (0)
, m_iterationCount (3)
, m_primitiveDrawType (primitiveDrawType)
, m_allIterationsPassed (true)
{
}
BaseTriangleCase::~BaseTriangleCase (void)
{
}
BaseTriangleCase::IterateResult BaseTriangleCase::iterate (void)
{
const std::string iterationDescription = "Test iteration " + de::toString(m_iteration+1) + " / " + de::toString(m_iterationCount);
const tcu::ScopedLogSection section (m_testCtx.getLog(), iterationDescription, iterationDescription);
tcu::Surface resultImage (m_renderSize, m_renderSize);
std::vector<tcu::Vec4> drawBuffer;
std::vector<TriangleSceneSpec::SceneTriangle> triangles;
generateTriangles(m_iteration, drawBuffer, triangles);
// draw image
drawPrimitives(resultImage, drawBuffer, m_primitiveDrawType);
// compare
{
bool compareOk;
RasterizationArguments args;
TriangleSceneSpec scene;
args.numSamples = m_numSamples;
args.subpixelBits = m_subpixelBits;
args.redBits = getPixelFormat().redBits;
args.greenBits = getPixelFormat().greenBits;
args.blueBits = getPixelFormat().blueBits;
scene.triangles.swap(triangles);
compareOk = verifyTriangleGroupRasterization(resultImage, scene, args, m_testCtx.getLog());
if (!compareOk)
m_allIterationsPassed = false;
}
// result
if (++m_iteration == m_iterationCount)
{
if (m_allIterationsPassed)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Incorrect rasterization");
return STOP;
}
else
return CONTINUE;
}
class BaseLineCase : public BaseRenderingCase
{
public:
BaseLineCase (Context& context, const char* name, const char* desc, glw::GLenum primitiveDrawType, PrimitiveWideness wideness, BaseRenderingCase::RenderTarget renderTarget, int numSamples);
~BaseLineCase (void);
void init (void);
IterateResult iterate (void);
float getLineWidth (void) const;
private:
virtual void generateLines (int iteration, std::vector<tcu::Vec4>& outData, std::vector<LineSceneSpec::SceneLine>& outLines) = DE_NULL;
int m_iteration;
const int m_iterationCount;
const glw::GLenum m_primitiveDrawType;
const PrimitiveWideness m_primitiveWideness;
bool m_allIterationsPassed;
float m_maxLineWidth;
std::vector<float> m_lineWidths;
};
BaseLineCase::BaseLineCase (Context& context, const char* name, const char* desc, glw::GLenum primitiveDrawType, PrimitiveWideness wideness, BaseRenderingCase::RenderTarget renderTarget, int numSamples)
: BaseRenderingCase (context, name, desc, renderTarget, numSamples, DEFAULT_RENDER_SIZE)
, m_iteration (0)
, m_iterationCount (3)
, m_primitiveDrawType (primitiveDrawType)
, m_primitiveWideness (wideness)
, m_allIterationsPassed (true)
, m_maxLineWidth (1.0f)
{
DE_ASSERT(m_primitiveWideness < PRIMITIVEWIDENESS_LAST);
}
BaseLineCase::~BaseLineCase (void)
{
}
void BaseLineCase::init (void)
{
// create line widths
if (m_primitiveWideness == PRIMITIVEWIDENESS_NARROW)
{
m_lineWidths.resize(m_iterationCount, 1.0f);
}
else if (m_primitiveWideness == PRIMITIVEWIDENESS_WIDE)
{
float range[2] = { 0.0f, 0.0f };
m_context.getRenderContext().getFunctions().getFloatv(GL_ALIASED_LINE_WIDTH_RANGE, range);
m_testCtx.getLog() << tcu::TestLog::Message << "ALIASED_LINE_WIDTH_RANGE = [" << range[0] << ", " << range[1] << "]" << tcu::TestLog::EndMessage;
// no wide line support
if (range[1] <= 1.0f)
throw tcu::NotSupportedError("wide line support required");
// set hand picked sizes
m_lineWidths.push_back(5.0f);
m_lineWidths.push_back(10.0f);
m_lineWidths.push_back(range[1]);
DE_ASSERT((int)m_lineWidths.size() == m_iterationCount);
m_maxLineWidth = range[1];
}
else
DE_ASSERT(false);
// init parent
BaseRenderingCase::init();
}
BaseLineCase::IterateResult BaseLineCase::iterate (void)
{
const std::string iterationDescription = "Test iteration " + de::toString(m_iteration+1) + " / " + de::toString(m_iterationCount);
const tcu::ScopedLogSection section (m_testCtx.getLog(), iterationDescription, iterationDescription);
const float lineWidth = getLineWidth();
tcu::Surface resultImage (m_renderSize, m_renderSize);
std::vector<tcu::Vec4> drawBuffer;
std::vector<LineSceneSpec::SceneLine> lines;
// supported?
if (lineWidth <= m_maxLineWidth)
{
// gen data
generateLines(m_iteration, drawBuffer, lines);
// draw image
drawPrimitives(resultImage, drawBuffer, m_primitiveDrawType);
// compare
{
bool compareOk;
RasterizationArguments args;
LineSceneSpec scene;
args.numSamples = m_numSamples;
args.subpixelBits = m_subpixelBits;
args.redBits = getPixelFormat().redBits;
args.greenBits = getPixelFormat().greenBits;
args.blueBits = getPixelFormat().blueBits;
scene.lines.swap(lines);
scene.lineWidth = lineWidth;
compareOk = verifyLineGroupRasterization(resultImage, scene, args, m_testCtx.getLog());
if (!compareOk)
m_allIterationsPassed = false;
}
}
else
m_testCtx.getLog() << tcu::TestLog::Message << "Line width " << lineWidth << " not supported, skipping iteration." << tcu::TestLog::EndMessage;
// result
if (++m_iteration == m_iterationCount)
{
if (m_allIterationsPassed)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Incorrect rasterization");
return STOP;
}
else
return CONTINUE;
}
float BaseLineCase::getLineWidth (void) const
{
return m_lineWidths[m_iteration];
}
class PointCase : public BaseRenderingCase
{
public:
PointCase (Context& context, const char* name, const char* desc, PrimitiveWideness wideness, BaseRenderingCase::RenderTarget renderTarget = RENDERTARGET_DEFAULT, int numSamples = -1);
~PointCase (void);
void init (void);
IterateResult iterate (void);
protected:
float getPointSize (void) const;
private:
void generatePoints (int iteration, std::vector<tcu::Vec4>& outData, std::vector<PointSceneSpec::ScenePoint>& outPoints);
int m_iteration;
const int m_iterationCount;
const PrimitiveWideness m_primitiveWideness;
bool m_allIterationsPassed;
float m_maxPointSize;
std::vector<float> m_pointSizes;
};
PointCase::PointCase (Context& context, const char* name, const char* desc, PrimitiveWideness wideness, BaseRenderingCase::RenderTarget renderTarget, int numSamples)
: BaseRenderingCase (context, name, desc, renderTarget, numSamples, DEFAULT_RENDER_SIZE)
, m_iteration (0)
, m_iterationCount (3)
, m_primitiveWideness (wideness)
, m_allIterationsPassed (true)
, m_maxPointSize (1.0f)
{
}
PointCase::~PointCase (void)
{
}
void PointCase::init (void)
{
// create point sizes
if (m_primitiveWideness == PRIMITIVEWIDENESS_NARROW)
{
m_pointSizes.resize(m_iterationCount, 1.0f);
}
else if (m_primitiveWideness == PRIMITIVEWIDENESS_WIDE)
{
float range[2] = { 0.0f, 0.0f };
m_context.getRenderContext().getFunctions().getFloatv(GL_ALIASED_POINT_SIZE_RANGE, range);
m_testCtx.getLog() << tcu::TestLog::Message << "GL_ALIASED_POINT_SIZE_RANGE = [" << range[0] << ", " << range[1] << "]" << tcu::TestLog::EndMessage;
// no wide line support
if (range[1] <= 1.0f)
throw tcu::NotSupportedError("wide point support required");
// set hand picked sizes
m_pointSizes.push_back(10.0f);
m_pointSizes.push_back(25.0f);
m_pointSizes.push_back(range[1]);
DE_ASSERT((int)m_pointSizes.size() == m_iterationCount);
m_maxPointSize = range[1];
}
else
DE_ASSERT(false);
// init parent
BaseRenderingCase::init();
}
PointCase::IterateResult PointCase::iterate (void)
{
const std::string iterationDescription = "Test iteration " + de::toString(m_iteration+1) + " / " + de::toString(m_iterationCount);
const tcu::ScopedLogSection section (m_testCtx.getLog(), iterationDescription, iterationDescription);
const float pointSize = getPointSize();
tcu::Surface resultImage (m_renderSize, m_renderSize);
std::vector<tcu::Vec4> drawBuffer;
std::vector<PointSceneSpec::ScenePoint> points;
// supported?
if (pointSize <= m_maxPointSize)
{
// gen data
generatePoints(m_iteration, drawBuffer, points);
// draw image
drawPrimitives(resultImage, drawBuffer, GL_POINTS);
// compare
{
bool compareOk;
RasterizationArguments args;
PointSceneSpec scene;
args.numSamples = m_numSamples;
args.subpixelBits = m_subpixelBits;
args.redBits = getPixelFormat().redBits;
args.greenBits = getPixelFormat().greenBits;
args.blueBits = getPixelFormat().blueBits;
scene.points.swap(points);
compareOk = verifyPointGroupRasterization(resultImage, scene, args, m_testCtx.getLog());
if (!compareOk)
m_allIterationsPassed = false;
}
}
else
m_testCtx.getLog() << tcu::TestLog::Message << "Point size " << pointSize << " not supported, skipping iteration." << tcu::TestLog::EndMessage;
// result
if (++m_iteration == m_iterationCount)
{
if (m_allIterationsPassed)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Incorrect rasterization");
return STOP;
}
else
return CONTINUE;
}
float PointCase::getPointSize (void) const
{
return m_pointSizes[m_iteration];
}
void PointCase::generatePoints (int iteration, std::vector<tcu::Vec4>& outData, std::vector<PointSceneSpec::ScenePoint>& outPoints)
{
outData.resize(6);
switch (iteration)
{
case 0:
// \note: these values are chosen arbitrarily
outData[0] = tcu::Vec4( 0.2f, 0.8f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 0.5f, 0.2f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.5f, 0.3f, 0.0f, 1.0f);
outData[3] = tcu::Vec4(-0.5f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4(-0.2f, -0.4f, 0.0f, 1.0f);
outData[5] = tcu::Vec4(-0.4f, 0.2f, 0.0f, 1.0f);
break;
case 1:
outData[0] = tcu::Vec4(-0.499f, 0.128f, 0.0f, 1.0f);
outData[1] = tcu::Vec4(-0.501f, -0.3f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.11f, -0.2f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 0.88f, 0.9f, 0.0f, 1.0f);
outData[5] = tcu::Vec4( 0.4f, 1.2f, 0.0f, 1.0f);
break;
case 2:
outData[0] = tcu::Vec4( -0.9f, -0.3f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 0.3f, -0.9f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( -0.4f, -0.1f, 0.0f, 1.0f);
outData[3] = tcu::Vec4(-0.11f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 0.88f, 0.7f, 0.0f, 1.0f);
outData[5] = tcu::Vec4( -0.4f, 0.4f, 0.0f, 1.0f);
break;
}
outPoints.resize(outData.size());
for (int pointNdx = 0; pointNdx < (int)outPoints.size(); ++pointNdx)
{
outPoints[pointNdx].position = outData[pointNdx];
outPoints[pointNdx].pointSize = getPointSize();
}
// log
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering " << outPoints.size() << " point(s): (point size = " << getPointSize() << ")" << tcu::TestLog::EndMessage;
for (int pointNdx = 0; pointNdx < (int)outPoints.size(); ++pointNdx)
m_testCtx.getLog() << tcu::TestLog::Message << "Point " << (pointNdx+1) << ":\t" << outPoints[pointNdx].position << tcu::TestLog::EndMessage;
}
class TrianglesCase : public BaseTriangleCase
{
public:
TrianglesCase (Context& context, const char* name, const char* desc, BaseRenderingCase::RenderTarget renderTarget = RENDERTARGET_DEFAULT, int numSamples = -1);
~TrianglesCase (void);
void generateTriangles (int iteration, std::vector<tcu::Vec4>& outData, std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles);
};
TrianglesCase::TrianglesCase (Context& context, const char* name, const char* desc, BaseRenderingCase::RenderTarget renderTarget, int numSamples)
: BaseTriangleCase(context, name, desc, GL_TRIANGLES, renderTarget, numSamples)
{
}
TrianglesCase::~TrianglesCase (void)
{
}
void TrianglesCase::generateTriangles (int iteration, std::vector<tcu::Vec4>& outData, std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles)
{
outData.resize(6);
switch (iteration)
{
case 0:
// \note: these values are chosen arbitrarily
outData[0] = tcu::Vec4( 0.2f, 0.8f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 0.5f, 0.2f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.5f, 0.3f, 0.0f, 1.0f);
outData[3] = tcu::Vec4(-0.5f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4(-1.5f, -0.4f, 0.0f, 1.0f);
outData[5] = tcu::Vec4(-0.4f, 0.2f, 0.0f, 1.0f);
break;
case 1:
outData[0] = tcu::Vec4(-0.499f, 0.128f, 0.0f, 1.0f);
outData[1] = tcu::Vec4(-0.501f, -0.3f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.11f, -0.2f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 0.88f, 0.9f, 0.0f, 1.0f);
outData[5] = tcu::Vec4( 0.4f, 1.2f, 0.0f, 1.0f);
break;
case 2:
outData[0] = tcu::Vec4( -0.9f, -0.3f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 1.1f, -0.9f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( -1.1f, -0.1f, 0.0f, 1.0f);
outData[3] = tcu::Vec4(-0.11f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 0.88f, 0.7f, 0.0f, 1.0f);
outData[5] = tcu::Vec4( -0.4f, 0.4f, 0.0f, 1.0f);
break;
}
outTriangles.resize(2);
outTriangles[0].positions[0] = outData[0]; outTriangles[0].sharedEdge[0] = false;
outTriangles[0].positions[1] = outData[1]; outTriangles[0].sharedEdge[1] = false;
outTriangles[0].positions[2] = outData[2]; outTriangles[0].sharedEdge[2] = false;
outTriangles[1].positions[0] = outData[3]; outTriangles[1].sharedEdge[0] = false;
outTriangles[1].positions[1] = outData[4]; outTriangles[1].sharedEdge[1] = false;
outTriangles[1].positions[2] = outData[5]; outTriangles[1].sharedEdge[2] = false;
// log
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering " << outTriangles.size() << " triangle(s):" << tcu::TestLog::EndMessage;
for (int triangleNdx = 0; triangleNdx < (int)outTriangles.size(); ++triangleNdx)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Triangle " << (triangleNdx+1) << ":"
<< "\n\t" << outTriangles[triangleNdx].positions[0]
<< "\n\t" << outTriangles[triangleNdx].positions[1]
<< "\n\t" << outTriangles[triangleNdx].positions[2]
<< tcu::TestLog::EndMessage;
}
}
class TriangleStripCase : public BaseTriangleCase
{
public:
TriangleStripCase (Context& context, const char* name, const char* desc, BaseRenderingCase::RenderTarget renderTarget = RENDERTARGET_DEFAULT, int numSamples = -1);
void generateTriangles (int iteration, std::vector<tcu::Vec4>& outData, std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles);
};
TriangleStripCase::TriangleStripCase (Context& context, const char* name, const char* desc, BaseRenderingCase::RenderTarget renderTarget, int numSamples)
: BaseTriangleCase(context, name, desc, GL_TRIANGLE_STRIP, renderTarget, numSamples)
{
}
void TriangleStripCase::generateTriangles (int iteration, std::vector<tcu::Vec4>& outData, std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles)
{
outData.resize(5);
switch (iteration)
{
case 0:
// \note: these values are chosen arbitrarily
outData[0] = tcu::Vec4(-0.504f, 0.8f, 0.0f, 1.0f);
outData[1] = tcu::Vec4(-0.2f, -0.2f, 0.0f, 1.0f);
outData[2] = tcu::Vec4(-0.2f, 0.199f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.5f, 0.201f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 1.5f, 0.4f, 0.0f, 1.0f);
break;
case 1:
outData[0] = tcu::Vec4(-0.499f, 0.129f, 0.0f, 1.0f);
outData[1] = tcu::Vec4(-0.501f, -0.3f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.11f, -0.2f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, -0.31f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 0.88f, 0.9f, 0.0f, 1.0f);
break;
case 2:
outData[0] = tcu::Vec4( -0.9f, -0.3f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 1.1f, -0.9f, 0.0f, 1.0f);
outData[2] = tcu::Vec4(-0.87f, -0.1f, 0.0f, 1.0f);
outData[3] = tcu::Vec4(-0.11f, 0.19f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 0.88f, 0.7f, 0.0f, 1.0f);
break;
}
outTriangles.resize(3);
outTriangles[0].positions[0] = outData[0]; outTriangles[0].sharedEdge[0] = false;
outTriangles[0].positions[1] = outData[1]; outTriangles[0].sharedEdge[1] = true;
outTriangles[0].positions[2] = outData[2]; outTriangles[0].sharedEdge[2] = false;
outTriangles[1].positions[0] = outData[2]; outTriangles[1].sharedEdge[0] = true;
outTriangles[1].positions[1] = outData[1]; outTriangles[1].sharedEdge[1] = false;
outTriangles[1].positions[2] = outData[3]; outTriangles[1].sharedEdge[2] = true;
outTriangles[2].positions[0] = outData[2]; outTriangles[2].sharedEdge[0] = true;
outTriangles[2].positions[1] = outData[3]; outTriangles[2].sharedEdge[1] = false;
outTriangles[2].positions[2] = outData[4]; outTriangles[2].sharedEdge[2] = false;
// log
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering triangle strip, " << outData.size() << " vertices." << tcu::TestLog::EndMessage;
for (int vtxNdx = 0; vtxNdx < (int)outData.size(); ++vtxNdx)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "\t" << outData[vtxNdx]
<< tcu::TestLog::EndMessage;
}
}
class TriangleFanCase : public BaseTriangleCase
{
public:
TriangleFanCase (Context& context, const char* name, const char* desc, BaseRenderingCase::RenderTarget renderTarget = RENDERTARGET_DEFAULT, int numSamples = -1);
void generateTriangles (int iteration, std::vector<tcu::Vec4>& outData, std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles);
};
TriangleFanCase::TriangleFanCase (Context& context, const char* name, const char* desc, BaseRenderingCase::RenderTarget renderTarget, int numSamples)
: BaseTriangleCase(context, name, desc, GL_TRIANGLE_FAN, renderTarget, numSamples)
{
}
void TriangleFanCase::generateTriangles (int iteration, std::vector<tcu::Vec4>& outData, std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles)
{
outData.resize(5);
switch (iteration)
{
case 0:
// \note: these values are chosen arbitrarily
outData[0] = tcu::Vec4( 0.01f, 0.0f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 0.5f, 0.2f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.46f, 0.3f, 0.0f, 1.0f);
outData[3] = tcu::Vec4(-0.5f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4(-1.5f, -0.4f, 0.0f, 1.0f);
break;
case 1:
outData[0] = tcu::Vec4(-0.499f, 0.128f, 0.0f, 1.0f);
outData[1] = tcu::Vec4(-0.501f, -0.3f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.11f, -0.2f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 0.88f, 0.9f, 0.0f, 1.0f);
break;
case 2:
outData[0] = tcu::Vec4( -0.9f, -0.3f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 1.1f, -0.9f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.7f, -0.1f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 0.88f, 0.7f, 0.0f, 1.0f);
break;
}
outTriangles.resize(3);
outTriangles[0].positions[0] = outData[0]; outTriangles[0].sharedEdge[0] = false;
outTriangles[0].positions[1] = outData[1]; outTriangles[0].sharedEdge[1] = false;
outTriangles[0].positions[2] = outData[2]; outTriangles[0].sharedEdge[2] = true;
outTriangles[1].positions[0] = outData[0]; outTriangles[1].sharedEdge[0] = true;
outTriangles[1].positions[1] = outData[2]; outTriangles[1].sharedEdge[1] = false;
outTriangles[1].positions[2] = outData[3]; outTriangles[1].sharedEdge[2] = true;
outTriangles[2].positions[0] = outData[0]; outTriangles[2].sharedEdge[0] = true;
outTriangles[2].positions[1] = outData[3]; outTriangles[2].sharedEdge[1] = false;
outTriangles[2].positions[2] = outData[4]; outTriangles[2].sharedEdge[2] = false;
// log
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering triangle fan, " << outData.size() << " vertices." << tcu::TestLog::EndMessage;
for (int vtxNdx = 0; vtxNdx < (int)outData.size(); ++vtxNdx)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "\t" << outData[vtxNdx]
<< tcu::TestLog::EndMessage;
}
}
class LinesCase : public BaseLineCase
{
public:
LinesCase (Context& context, const char* name, const char* desc, PrimitiveWideness wideness, BaseRenderingCase::RenderTarget renderTarget = RENDERTARGET_DEFAULT, int numSamples = -1);
void generateLines (int iteration, std::vector<tcu::Vec4>& outData, std::vector<LineSceneSpec::SceneLine>& outLines);
};
LinesCase::LinesCase (Context& context, const char* name, const char* desc, PrimitiveWideness wideness, BaseRenderingCase::RenderTarget renderTarget, int numSamples)
: BaseLineCase(context, name, desc, GL_LINES, wideness, renderTarget, numSamples)
{
}
void LinesCase::generateLines (int iteration, std::vector<tcu::Vec4>& outData, std::vector<LineSceneSpec::SceneLine>& outLines)
{
outData.resize(6);
switch (iteration)
{
case 0:
// \note: these values are chosen arbitrarily
outData[0] = tcu::Vec4( 0.01f, 0.0f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 0.5f, 0.2f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.46f, 0.3f, 0.0f, 1.0f);
outData[3] = tcu::Vec4(-0.3f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4(-1.5f, -0.4f, 0.0f, 1.0f);
outData[5] = tcu::Vec4( 0.1f, 0.5f, 0.0f, 1.0f);
break;
case 1:
outData[0] = tcu::Vec4(-0.499f, 0.128f, 0.0f, 1.0f);
outData[1] = tcu::Vec4(-0.501f, -0.3f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.11f, -0.2f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 0.88f, 0.9f, 0.0f, 1.0f);
outData[5] = tcu::Vec4( 0.18f, -0.2f, 0.0f, 1.0f);
break;
case 2:
outData[0] = tcu::Vec4( -0.9f, -0.3f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 1.1f, -0.9f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.7f, -0.1f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, 0.2f, 0.0f, 1.0f);
outData[4] = tcu::Vec4( 0.88f, 0.7f, 0.0f, 1.0f);
outData[5] = tcu::Vec4( 0.8f, -0.7f, 0.0f, 1.0f);
break;
}
outLines.resize(3);
outLines[0].positions[0] = outData[0];
outLines[0].positions[1] = outData[1];
outLines[1].positions[0] = outData[2];
outLines[1].positions[1] = outData[3];
outLines[2].positions[0] = outData[4];
outLines[2].positions[1] = outData[5];
// log
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering " << outLines.size() << " lines(s): (width = " << getLineWidth() << ")" << tcu::TestLog::EndMessage;
for (int lineNdx = 0; lineNdx < (int)outLines.size(); ++lineNdx)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Line " << (lineNdx+1) << ":"
<< "\n\t" << outLines[lineNdx].positions[0]
<< "\n\t" << outLines[lineNdx].positions[1]
<< tcu::TestLog::EndMessage;
}
}
class LineStripCase : public BaseLineCase
{
public:
LineStripCase (Context& context, const char* name, const char* desc, PrimitiveWideness wideness, BaseRenderingCase::RenderTarget renderTarget = RENDERTARGET_DEFAULT, int numSamples = -1);
void generateLines (int iteration, std::vector<tcu::Vec4>& outData, std::vector<LineSceneSpec::SceneLine>& outLines);
};
LineStripCase::LineStripCase (Context& context, const char* name, const char* desc, PrimitiveWideness wideness, BaseRenderingCase::RenderTarget renderTarget, int numSamples)
: BaseLineCase(context, name, desc, GL_LINE_STRIP, wideness, renderTarget, numSamples)
{
}
void LineStripCase::generateLines (int iteration, std::vector<tcu::Vec4>& outData, std::vector<LineSceneSpec::SceneLine>& outLines)
{
outData.resize(4);
switch (iteration)
{
case 0:
// \note: these values are chosen arbitrarily
outData[0] = tcu::Vec4( 0.01f, 0.0f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 0.5f, 0.2f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.46f, 0.3f, 0.0f, 1.0f);
outData[3] = tcu::Vec4(-0.5f, 0.2f, 0.0f, 1.0f);
break;
case 1:
outData[0] = tcu::Vec4(-0.499f, 0.128f, 0.0f, 1.0f);
outData[1] = tcu::Vec4(-0.501f, -0.3f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.11f, -0.2f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, 0.2f, 0.0f, 1.0f);
break;
case 2:
outData[0] = tcu::Vec4( -0.9f, -0.3f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 1.1f, -0.9f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.7f, -0.1f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, 0.2f, 0.0f, 1.0f);
break;
}
outLines.resize(3);
outLines[0].positions[0] = outData[0];
outLines[0].positions[1] = outData[1];
outLines[1].positions[0] = outData[1];
outLines[1].positions[1] = outData[2];
outLines[2].positions[0] = outData[2];
outLines[2].positions[1] = outData[3];
// log
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering line strip, width = " << getLineWidth() << ", " << outData.size() << " vertices." << tcu::TestLog::EndMessage;
for (int vtxNdx = 0; vtxNdx < (int)outData.size(); ++vtxNdx)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "\t" << outData[vtxNdx]
<< tcu::TestLog::EndMessage;
}
}
class LineLoopCase : public BaseLineCase
{
public:
LineLoopCase (Context& context, const char* name, const char* desc, PrimitiveWideness wideness, BaseRenderingCase::RenderTarget renderTarget = RENDERTARGET_DEFAULT, int numSamples = -1);
void generateLines (int iteration, std::vector<tcu::Vec4>& outData, std::vector<LineSceneSpec::SceneLine>& outLines);
};
LineLoopCase::LineLoopCase (Context& context, const char* name, const char* desc, PrimitiveWideness wideness, BaseRenderingCase::RenderTarget renderTarget, int numSamples)
: BaseLineCase(context, name, desc, GL_LINE_LOOP, wideness, renderTarget, numSamples)
{
}
void LineLoopCase::generateLines (int iteration, std::vector<tcu::Vec4>& outData, std::vector<LineSceneSpec::SceneLine>& outLines)
{
outData.resize(4);
switch (iteration)
{
case 0:
// \note: these values are chosen arbitrarily
outData[0] = tcu::Vec4( 0.01f, 0.0f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 0.5f, 0.2f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.46f, 0.3f, 0.0f, 1.0f);
outData[3] = tcu::Vec4(-0.5f, 0.2f, 0.0f, 1.0f);
break;
case 1:
outData[0] = tcu::Vec4(-0.499f, 0.128f, 0.0f, 1.0f);
outData[1] = tcu::Vec4(-0.501f, -0.3f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.11f, -0.2f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, 0.2f, 0.0f, 1.0f);
break;
case 2:
outData[0] = tcu::Vec4( -0.9f, -0.3f, 0.0f, 1.0f);
outData[1] = tcu::Vec4( 1.1f, -0.9f, 0.0f, 1.0f);
outData[2] = tcu::Vec4( 0.7f, -0.1f, 0.0f, 1.0f);
outData[3] = tcu::Vec4( 0.11f, 0.2f, 0.0f, 1.0f);
break;
}
outLines.resize(4);
outLines[0].positions[0] = outData[0];
outLines[0].positions[1] = outData[1];
outLines[1].positions[0] = outData[1];
outLines[1].positions[1] = outData[2];
outLines[2].positions[0] = outData[2];
outLines[2].positions[1] = outData[3];
outLines[3].positions[0] = outData[3];
outLines[3].positions[1] = outData[0];
// log
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering line loop, width = " << getLineWidth() << ", " << outData.size() << " vertices." << tcu::TestLog::EndMessage;
for (int vtxNdx = 0; vtxNdx < (int)outData.size(); ++vtxNdx)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "\t" << outData[vtxNdx]
<< tcu::TestLog::EndMessage;
}
}
class FillRuleCase : public BaseRenderingCase
{
public:
enum FillRuleCaseType
{
FILLRULECASE_BASIC = 0,
FILLRULECASE_REVERSED,
FILLRULECASE_CLIPPED_FULL,
FILLRULECASE_CLIPPED_PARTIAL,
FILLRULECASE_PROJECTED,
FILLRULECASE_LAST
};
FillRuleCase (Context& ctx, const char* name, const char* desc, FillRuleCaseType type, RenderTarget renderTarget = RENDERTARGET_DEFAULT, int numSamples = -1);
~FillRuleCase (void);
IterateResult iterate (void);
private:
int getRenderSize (FillRuleCase::FillRuleCaseType type) const;
int getNumIterations (FillRuleCase::FillRuleCaseType type) const;
void generateTriangles (int iteration, std::vector<tcu::Vec4>& outData) const;
const FillRuleCaseType m_caseType;
int m_iteration;
const int m_iterationCount;
bool m_allIterationsPassed;
};
FillRuleCase::FillRuleCase (Context& ctx, const char* name, const char* desc, FillRuleCaseType type, RenderTarget renderTarget, int numSamples)
: BaseRenderingCase (ctx, name, desc, renderTarget, numSamples, getRenderSize(type))
, m_caseType (type)
, m_iteration (0)
, m_iterationCount (getNumIterations(type))
, m_allIterationsPassed (true)
{
DE_ASSERT(type < FILLRULECASE_LAST);
}
FillRuleCase::~FillRuleCase (void)
{
deinit();
}
FillRuleCase::IterateResult FillRuleCase::iterate (void)
{
const std::string iterationDescription = "Test iteration " + de::toString(m_iteration+1) + " / " + de::toString(m_iterationCount);
const tcu::ScopedLogSection section (m_testCtx.getLog(), iterationDescription, iterationDescription);
const int thresholdRed = 1 << (8 - getPixelFormat().redBits);
const int thresholdGreen = 1 << (8 - getPixelFormat().greenBits);
const int thresholdBlue = 1 << (8 - getPixelFormat().blueBits);
tcu::Surface resultImage (m_renderSize, m_renderSize);
std::vector<tcu::Vec4> drawBuffer;
bool imageShown = false;
generateTriangles(m_iteration, drawBuffer);
// draw image
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const std::vector<tcu::Vec4> colorBuffer (drawBuffer.size(), tcu::Vec4(0.5f, 0.5f, 0.5f, 1.0f));
m_testCtx.getLog() << tcu::TestLog::Message << "Drawing gray triangles with shared edges.\nEnabling additive blending to detect overlapping fragments." << tcu::TestLog::EndMessage;
gl.enable(GL_BLEND);
gl.blendEquation(GL_FUNC_ADD);
gl.blendFunc(GL_ONE, GL_ONE);
drawPrimitives(resultImage, drawBuffer, colorBuffer, GL_TRIANGLES);
}
// verify no overdraw
{
const tcu::RGBA triangleColor = tcu::RGBA(127, 127, 127, 255);
bool overdraw = false;
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result." << tcu::TestLog::EndMessage;
for (int y = 0; y < resultImage.getHeight(); ++y)
for (int x = 0; x < resultImage.getWidth(); ++x)
{
const tcu::RGBA color = resultImage.getPixel(x, y);
// color values are greater than triangle color? Allow lower values for multisampled edges and background.
if ((color.getRed() - triangleColor.getRed()) > thresholdRed ||
(color.getGreen() - triangleColor.getGreen()) > thresholdGreen ||
(color.getBlue() - triangleColor.getBlue()) > thresholdBlue)
overdraw = true;
}
// results
if (!overdraw)
m_testCtx.getLog() << tcu::TestLog::Message << "No overlapping fragments detected." << tcu::TestLog::EndMessage;
else
{
m_testCtx.getLog() << tcu::TestLog::Message << "Overlapping fragments detected, image is not valid." << tcu::TestLog::EndMessage;
m_testCtx.getLog() << tcu::TestLog::ImageSet("Result of rendering", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", resultImage)
<< tcu::TestLog::EndImageSet;
imageShown = true;
m_allIterationsPassed = false;
}
}
// verify no missing fragments in the full viewport case
if (m_caseType == FILLRULECASE_CLIPPED_FULL)
{
bool missingFragments = false;
m_testCtx.getLog() << tcu::TestLog::Message << "Searching missing fragments." << tcu::TestLog::EndMessage;
for (int y = 0; y < resultImage.getHeight(); ++y)
for (int x = 0; x < resultImage.getWidth(); ++x)
{
const tcu::RGBA color = resultImage.getPixel(x, y);
// black? (background)
if (color.getRed() <= thresholdRed ||
color.getGreen() <= thresholdGreen ||
color.getBlue() <= thresholdBlue)
missingFragments = true;
}
// results
if (!missingFragments)
m_testCtx.getLog() << tcu::TestLog::Message << "No missing fragments detected." << tcu::TestLog::EndMessage;
else
{
m_testCtx.getLog() << tcu::TestLog::Message << "Missing fragments detected, image is not valid." << tcu::TestLog::EndMessage;
if (!imageShown)
{
m_testCtx.getLog() << tcu::TestLog::ImageSet("Result of rendering", "Result of rendering")
<< tcu::TestLog::Image("Result", "Result", resultImage)
<< tcu::TestLog::EndImageSet;
}
m_allIterationsPassed = false;
}
}
// result
if (++m_iteration == m_iterationCount)
{
if (m_allIterationsPassed)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Found invalid pixels");
return STOP;
}
else
return CONTINUE;
}
int FillRuleCase::getRenderSize (FillRuleCase::FillRuleCaseType type) const
{
if (type == FILLRULECASE_CLIPPED_FULL || type == FILLRULECASE_CLIPPED_PARTIAL)
return DEFAULT_RENDER_SIZE / 4;
else
return DEFAULT_RENDER_SIZE;
}
int FillRuleCase::getNumIterations (FillRuleCase::FillRuleCaseType type) const
{
if (type == FILLRULECASE_CLIPPED_FULL || type == FILLRULECASE_CLIPPED_PARTIAL)
return 15;
else
return 2;
}
void FillRuleCase::generateTriangles (int iteration, std::vector<tcu::Vec4>& outData) const
{
switch (m_caseType)
{
case FILLRULECASE_BASIC:
case FILLRULECASE_REVERSED:
case FILLRULECASE_PROJECTED:
{
const int numRows = 4;
const int numColumns = 4;
const float quadSide = 0.15f;
de::Random rnd (0xabcd);
outData.resize(6 * numRows * numColumns);
for (int col = 0; col < numColumns; ++col)
for (int row = 0; row < numRows; ++row)
{
const tcu::Vec2 center = tcu::Vec2((row + 0.5f) / numRows * 2.0f - 1.0f, (col + 0.5f) / numColumns * 2.0f - 1.0f);
const float rotation = (iteration * numColumns * numRows + col * numRows + row) / (float)(m_iterationCount * numColumns * numRows) * DE_PI / 2.0f;
const tcu::Vec2 sideH = quadSide * tcu::Vec2(deFloatCos(rotation), deFloatSin(rotation));
const tcu::Vec2 sideV = tcu::Vec2(sideH.y(), -sideH.x());
const tcu::Vec2 quad[4] =
{
center + sideH + sideV,
center + sideH - sideV,
center - sideH - sideV,
center - sideH + sideV,
};
if (m_caseType == FILLRULECASE_BASIC)
{
outData[6 * (col * numRows + row) + 0] = tcu::Vec4(quad[0].x(), quad[0].y(), 0.0f, 1.0f);
outData[6 * (col * numRows + row) + 1] = tcu::Vec4(quad[1].x(), quad[1].y(), 0.0f, 1.0f);
outData[6 * (col * numRows + row) + 2] = tcu::Vec4(quad[2].x(), quad[2].y(), 0.0f, 1.0f);
outData[6 * (col * numRows + row) + 3] = tcu::Vec4(quad[2].x(), quad[2].y(), 0.0f, 1.0f);
outData[6 * (col * numRows + row) + 4] = tcu::Vec4(quad[0].x(), quad[0].y(), 0.0f, 1.0f);
outData[6 * (col * numRows + row) + 5] = tcu::Vec4(quad[3].x(), quad[3].y(), 0.0f, 1.0f);
}
else if (m_caseType == FILLRULECASE_REVERSED)
{
outData[6 * (col * numRows + row) + 0] = tcu::Vec4(quad[0].x(), quad[0].y(), 0.0f, 1.0f);
outData[6 * (col * numRows + row) + 1] = tcu::Vec4(quad[1].x(), quad[1].y(), 0.0f, 1.0f);
outData[6 * (col * numRows + row) + 2] = tcu::Vec4(quad[2].x(), quad[2].y(), 0.0f, 1.0f);
outData[6 * (col * numRows + row) + 3] = tcu::Vec4(quad[0].x(), quad[0].y(), 0.0f, 1.0f);
outData[6 * (col * numRows + row) + 4] = tcu::Vec4(quad[2].x(), quad[2].y(), 0.0f, 1.0f);
outData[6 * (col * numRows + row) + 5] = tcu::Vec4(quad[3].x(), quad[3].y(), 0.0f, 1.0f);
}
else if (m_caseType == FILLRULECASE_PROJECTED)
{
const float w0 = rnd.getFloat(0.1f, 4.0f);
const float w1 = rnd.getFloat(0.1f, 4.0f);
const float w2 = rnd.getFloat(0.1f, 4.0f);
const float w3 = rnd.getFloat(0.1f, 4.0f);
outData[6 * (col * numRows + row) + 0] = tcu::Vec4(quad[0].x() * w0, quad[0].y() * w0, 0.0f, w0);
outData[6 * (col * numRows + row) + 1] = tcu::Vec4(quad[1].x() * w1, quad[1].y() * w1, 0.0f, w1);
outData[6 * (col * numRows + row) + 2] = tcu::Vec4(quad[2].x() * w2, quad[2].y() * w2, 0.0f, w2);
outData[6 * (col * numRows + row) + 3] = tcu::Vec4(quad[2].x() * w2, quad[2].y() * w2, 0.0f, w2);
outData[6 * (col * numRows + row) + 4] = tcu::Vec4(quad[0].x() * w0, quad[0].y() * w0, 0.0f, w0);
outData[6 * (col * numRows + row) + 5] = tcu::Vec4(quad[3].x() * w3, quad[3].y() * w3, 0.0f, w3);
}
else
DE_ASSERT(DE_FALSE);
}
break;
}
case FILLRULECASE_CLIPPED_PARTIAL:
case FILLRULECASE_CLIPPED_FULL:
{
const float quadSide = (m_caseType == FILLRULECASE_CLIPPED_PARTIAL) ? (1.0f) : (2.0f);
const tcu::Vec2 center = (m_caseType == FILLRULECASE_CLIPPED_PARTIAL) ? (tcu::Vec2(0.5f, 0.5f)) : (tcu::Vec2(0.0f, 0.0f));
const float rotation = (iteration) / (float)(m_iterationCount - 1) * DE_PI / 2.0f;
const tcu::Vec2 sideH = quadSide * tcu::Vec2(deFloatCos(rotation), deFloatSin(rotation));
const tcu::Vec2 sideV = tcu::Vec2(sideH.y(), -sideH.x());
const tcu::Vec2 quad[4] =
{
center + sideH + sideV,
center + sideH - sideV,
center - sideH - sideV,
center - sideH + sideV,
};
outData.resize(6);
outData[0] = tcu::Vec4(quad[0].x(), quad[0].y(), 0.0f, 1.0f);
outData[1] = tcu::Vec4(quad[1].x(), quad[1].y(), 0.0f, 1.0f);
outData[2] = tcu::Vec4(quad[2].x(), quad[2].y(), 0.0f, 1.0f);
outData[3] = tcu::Vec4(quad[2].x(), quad[2].y(), 0.0f, 1.0f);
outData[4] = tcu::Vec4(quad[0].x(), quad[0].y(), 0.0f, 1.0f);
outData[5] = tcu::Vec4(quad[3].x(), quad[3].y(), 0.0f, 1.0f);
break;
}
default:
DE_ASSERT(DE_FALSE);
}
}
class CullingTest : public BaseRenderingCase
{
public:
CullingTest (Context& ctx, const char* name, const char* desc, glw::GLenum cullMode, glw::GLenum primitive, glw::GLenum faceOrder);
~CullingTest (void);
IterateResult iterate (void);
private:
void generateVertices (std::vector<tcu::Vec4>& outData) const;
void extractTriangles (std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles, const std::vector<tcu::Vec4>& vertices) const;
bool triangleOrder (const tcu::Vec4& v0, const tcu::Vec4& v1, const tcu::Vec4& v2) const;
const glw::GLenum m_cullMode;
const glw::GLenum m_primitive;
const glw::GLenum m_faceOrder;
};
CullingTest::CullingTest (Context& ctx, const char* name, const char* desc, glw::GLenum cullMode, glw::GLenum primitive, glw::GLenum faceOrder)
: BaseRenderingCase (ctx, name, desc, RENDERTARGET_DEFAULT, -1, DEFAULT_RENDER_SIZE)
, m_cullMode (cullMode)
, m_primitive (primitive)
, m_faceOrder (faceOrder)
{
}
CullingTest::~CullingTest (void)
{
}
CullingTest::IterateResult CullingTest::iterate (void)
{
tcu::Surface resultImage(m_renderSize, m_renderSize);
std::vector<tcu::Vec4> drawBuffer;
std::vector<TriangleSceneSpec::SceneTriangle> triangles;
// generate scene
generateVertices(drawBuffer);
extractTriangles(triangles, drawBuffer);
// draw image
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
gl.enable(GL_CULL_FACE);
gl.cullFace(m_cullMode);
gl.frontFace(m_faceOrder);
m_testCtx.getLog() << tcu::TestLog::Message << "Setting front face to " << glu::getWindingName(m_faceOrder) << tcu::TestLog::EndMessage;
m_testCtx.getLog() << tcu::TestLog::Message << "Setting cull face to " << glu::getFaceName(m_cullMode) << tcu::TestLog::EndMessage;
m_testCtx.getLog() << tcu::TestLog::Message << "Drawing test pattern (" << glu::getPrimitiveTypeName(m_primitive) << ")" << tcu::TestLog::EndMessage;
drawPrimitives(resultImage, drawBuffer, m_primitive);
}
// compare
{
RasterizationArguments args;
TriangleSceneSpec scene;
args.numSamples = m_numSamples;
args.subpixelBits = m_subpixelBits;
args.redBits = getPixelFormat().redBits;
args.greenBits = getPixelFormat().greenBits;
args.blueBits = getPixelFormat().blueBits;
scene.triangles.swap(triangles);
if (verifyTriangleGroupRasterization(resultImage, scene, args, m_testCtx.getLog(), VERIFICATIONMODE_WEAK))
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Incorrect rendering");
}
return STOP;
}
void CullingTest::generateVertices (std::vector<tcu::Vec4>& outData) const
{
de::Random rnd(543210);
outData.resize(6);
for (int vtxNdx = 0; vtxNdx < (int)outData.size(); ++vtxNdx)
{
outData[vtxNdx].x() = rnd.getFloat(-0.9f, 0.9f);
outData[vtxNdx].y() = rnd.getFloat(-0.9f, 0.9f);
outData[vtxNdx].z() = 0.0f;
outData[vtxNdx].w() = 1.0f;
}
}
void CullingTest::extractTriangles (std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles, const std::vector<tcu::Vec4>& vertices) const
{
const bool cullDirection = (m_cullMode == GL_FRONT) ^ (m_faceOrder == GL_CCW);
// No triangles
if (m_cullMode == GL_FRONT_AND_BACK)
return;
switch (m_primitive)
{
case GL_TRIANGLES:
{
for (int vtxNdx = 0; vtxNdx < (int)vertices.size() - 2; vtxNdx += 3)
{
const tcu::Vec4& v0 = vertices[vtxNdx + 0];
const tcu::Vec4& v1 = vertices[vtxNdx + 1];
const tcu::Vec4& v2 = vertices[vtxNdx + 2];
if (triangleOrder(v0, v1, v2) != cullDirection)
{
TriangleSceneSpec::SceneTriangle tri;
tri.positions[0] = v0; tri.sharedEdge[0] = false;
tri.positions[1] = v1; tri.sharedEdge[1] = false;
tri.positions[2] = v2; tri.sharedEdge[2] = false;
outTriangles.push_back(tri);
}
}
break;
}
case GL_TRIANGLE_STRIP:
{
for (int vtxNdx = 0; vtxNdx < (int)vertices.size() - 2; ++vtxNdx)
{
const tcu::Vec4& v0 = vertices[vtxNdx + 0];
const tcu::Vec4& v1 = vertices[vtxNdx + 1];
const tcu::Vec4& v2 = vertices[vtxNdx + 2];
if (triangleOrder(v0, v1, v2) != (cullDirection ^ (vtxNdx % 2 != 0)))
{
TriangleSceneSpec::SceneTriangle tri;
tri.positions[0] = v0; tri.sharedEdge[0] = false;
tri.positions[1] = v1; tri.sharedEdge[1] = false;
tri.positions[2] = v2; tri.sharedEdge[2] = false;
outTriangles.push_back(tri);
}
}
break;
}
case GL_TRIANGLE_FAN:
{
for (int vtxNdx = 1; vtxNdx < (int)vertices.size() - 1; ++vtxNdx)
{
const tcu::Vec4& v0 = vertices[0];
const tcu::Vec4& v1 = vertices[vtxNdx + 0];
const tcu::Vec4& v2 = vertices[vtxNdx + 1];
if (triangleOrder(v0, v1, v2) != cullDirection)
{
TriangleSceneSpec::SceneTriangle tri;
tri.positions[0] = v0; tri.sharedEdge[0] = false;
tri.positions[1] = v1; tri.sharedEdge[1] = false;
tri.positions[2] = v2; tri.sharedEdge[2] = false;
outTriangles.push_back(tri);
}
}
break;
}
default:
DE_ASSERT(false);
}
}
bool CullingTest::triangleOrder (const tcu::Vec4& v0, const tcu::Vec4& v1, const tcu::Vec4& v2) const
{
const tcu::Vec2 s0 = v0.swizzle(0, 1) / v0.w();
const tcu::Vec2 s1 = v1.swizzle(0, 1) / v1.w();
const tcu::Vec2 s2 = v2.swizzle(0, 1) / v2.w();
// cross
return ((s1.x() - s0.x()) * (s2.y() - s0.y()) - (s2.x() - s0.x()) * (s1.y() - s0.y())) < 0;
}
class TriangleInterpolationTest : public BaseRenderingCase
{
public:
TriangleInterpolationTest (Context& ctx, const char* name, const char* desc, glw::GLenum primitive, int flags, RenderTarget renderTarget = RENDERTARGET_DEFAULT, int numSamples = -1);
~TriangleInterpolationTest (void);
IterateResult iterate (void);
private:
void generateVertices (int iteration, std::vector<tcu::Vec4>& outVertices, std::vector<tcu::Vec4>& outColors) const;
void extractTriangles (std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles, const std::vector<tcu::Vec4>& vertices, const std::vector<tcu::Vec4>& colors) const;
const glw::GLenum m_primitive;
const bool m_projective;
const int m_iterationCount;
int m_iteration;
bool m_allIterationsPassed;
};
TriangleInterpolationTest::TriangleInterpolationTest (Context& ctx, const char* name, const char* desc, glw::GLenum primitive, int flags, RenderTarget renderTarget, int numSamples)
: BaseRenderingCase (ctx, name, desc, renderTarget, numSamples, DEFAULT_RENDER_SIZE)
, m_primitive (primitive)
, m_projective ((flags & INTERPOLATIONFLAGS_PROJECTED) != 0)
, m_iterationCount (3)
, m_iteration (0)
, m_allIterationsPassed (true)
{
m_flatshade = ((flags & INTERPOLATIONFLAGS_FLATSHADE) != 0);
}
TriangleInterpolationTest::~TriangleInterpolationTest (void)
{
deinit();
}
TriangleInterpolationTest::IterateResult TriangleInterpolationTest::iterate (void)
{
const std::string iterationDescription = "Test iteration " + de::toString(m_iteration+1) + " / " + de::toString(m_iterationCount);
const tcu::ScopedLogSection section (m_testCtx.getLog(), "Iteration" + de::toString(m_iteration+1), iterationDescription);
tcu::Surface resultImage (m_renderSize, m_renderSize);
std::vector<tcu::Vec4> drawBuffer;
std::vector<tcu::Vec4> colorBuffer;
std::vector<TriangleSceneSpec::SceneTriangle> triangles;
// generate scene
generateVertices(m_iteration, drawBuffer, colorBuffer);
extractTriangles(triangles, drawBuffer, colorBuffer);
// log
{
m_testCtx.getLog() << tcu::TestLog::Message << "Generated vertices:" << tcu::TestLog::EndMessage;
for (int vtxNdx = 0; vtxNdx < (int)drawBuffer.size(); ++vtxNdx)
m_testCtx.getLog() << tcu::TestLog::Message << "\t" << drawBuffer[vtxNdx] << ",\tcolor= " << colorBuffer[vtxNdx] << tcu::TestLog::EndMessage;
}
// draw image
drawPrimitives(resultImage, drawBuffer, colorBuffer, m_primitive);
// compare
{
RasterizationArguments args;
TriangleSceneSpec scene;
args.numSamples = m_numSamples;
args.subpixelBits = m_subpixelBits;
args.redBits = getPixelFormat().redBits;
args.greenBits = getPixelFormat().greenBits;
args.blueBits = getPixelFormat().blueBits;
scene.triangles.swap(triangles);
if (!verifyTriangleGroupInterpolation(resultImage, scene, args, m_testCtx.getLog()))
m_allIterationsPassed = false;
}
// result
if (++m_iteration == m_iterationCount)
{
if (m_allIterationsPassed)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Found invalid pixel values");
return STOP;
}
else
return CONTINUE;
}
void TriangleInterpolationTest::generateVertices (int iteration, std::vector<tcu::Vec4>& outVertices, std::vector<tcu::Vec4>& outColors) const
{
// use only red, green and blue
const tcu::Vec4 colors[] =
{
tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f),
tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f),
tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f),
};
de::Random rnd(123 + iteration * 1000 + (int)m_primitive);
outVertices.resize(6);
outColors.resize(6);
for (int vtxNdx = 0; vtxNdx < (int)outVertices.size(); ++vtxNdx)
{
outVertices[vtxNdx].x() = rnd.getFloat(-0.9f, 0.9f);
outVertices[vtxNdx].y() = rnd.getFloat(-0.9f, 0.9f);
outVertices[vtxNdx].z() = 0.0f;
if (!m_projective)
outVertices[vtxNdx].w() = 1.0f;
else
{
const float w = rnd.getFloat(0.2f, 4.0f);
outVertices[vtxNdx].x() *= w;
outVertices[vtxNdx].y() *= w;
outVertices[vtxNdx].z() *= w;
outVertices[vtxNdx].w() = w;
}
outColors[vtxNdx] = colors[vtxNdx % DE_LENGTH_OF_ARRAY(colors)];
}
}
void TriangleInterpolationTest::extractTriangles (std::vector<TriangleSceneSpec::SceneTriangle>& outTriangles, const std::vector<tcu::Vec4>& vertices, const std::vector<tcu::Vec4>& colors) const
{
switch (m_primitive)
{
case GL_TRIANGLES:
{
for (int vtxNdx = 0; vtxNdx < (int)vertices.size() - 2; vtxNdx += 3)
{
TriangleSceneSpec::SceneTriangle tri;
tri.positions[0] = vertices[vtxNdx + 0];
tri.positions[1] = vertices[vtxNdx + 1];
tri.positions[2] = vertices[vtxNdx + 2];
tri.sharedEdge[0] = false;
tri.sharedEdge[1] = false;
tri.sharedEdge[2] = false;
if (m_flatshade)
{
tri.colors[0] = colors[vtxNdx + 2];
tri.colors[1] = colors[vtxNdx + 2];
tri.colors[2] = colors[vtxNdx + 2];
}
else
{
tri.colors[0] = colors[vtxNdx + 0];
tri.colors[1] = colors[vtxNdx + 1];
tri.colors[2] = colors[vtxNdx + 2];
}
outTriangles.push_back(tri);
}
break;
}
case GL_TRIANGLE_STRIP:
{
for (int vtxNdx = 0; vtxNdx < (int)vertices.size() - 2; ++vtxNdx)
{
TriangleSceneSpec::SceneTriangle tri;
tri.positions[0] = vertices[vtxNdx + 0];
tri.positions[1] = vertices[vtxNdx + 1];
tri.positions[2] = vertices[vtxNdx + 2];
tri.sharedEdge[0] = false;
tri.sharedEdge[1] = false;
tri.sharedEdge[2] = false;
if (m_flatshade)
{
tri.colors[0] = colors[vtxNdx + 2];
tri.colors[1] = colors[vtxNdx + 2];
tri.colors[2] = colors[vtxNdx + 2];
}
else
{
tri.colors[0] = colors[vtxNdx + 0];
tri.colors[1] = colors[vtxNdx + 1];
tri.colors[2] = colors[vtxNdx + 2];
}
outTriangles.push_back(tri);
}
break;
}
case GL_TRIANGLE_FAN:
{
for (int vtxNdx = 1; vtxNdx < (int)vertices.size() - 1; ++vtxNdx)
{
TriangleSceneSpec::SceneTriangle tri;
tri.positions[0] = vertices[0];
tri.positions[1] = vertices[vtxNdx + 0];
tri.positions[2] = vertices[vtxNdx + 1];
tri.sharedEdge[0] = false;
tri.sharedEdge[1] = false;
tri.sharedEdge[2] = false;
if (m_flatshade)
{
tri.colors[0] = colors[vtxNdx + 1];
tri.colors[1] = colors[vtxNdx + 1];
tri.colors[2] = colors[vtxNdx + 1];
}
else
{
tri.colors[0] = colors[0];
tri.colors[1] = colors[vtxNdx + 0];
tri.colors[2] = colors[vtxNdx + 1];
}
outTriangles.push_back(tri);
}
break;
}
default:
DE_ASSERT(false);
}
}
class LineInterpolationTest : public BaseRenderingCase
{
public:
LineInterpolationTest (Context& ctx, const char* name, const char* desc, glw::GLenum primitive, int flags, PrimitiveWideness wideness, RenderTarget renderTarget = RENDERTARGET_DEFAULT, int numSamples = -1);
~LineInterpolationTest (void);
void init (void);
IterateResult iterate (void);
private:
void generateVertices (int iteration, std::vector<tcu::Vec4>& outVertices, std::vector<tcu::Vec4>& outColors) const;
void extractLines (std::vector<LineSceneSpec::SceneLine>& outLines, const std::vector<tcu::Vec4>& vertices, const std::vector<tcu::Vec4>& colors) const;
float getLineWidth (void) const;
const glw::GLenum m_primitive;
const bool m_projective;
const int m_iterationCount;
const PrimitiveWideness m_primitiveWideness;
int m_iteration;
bool m_allIterationsPassed;
float m_maxLineWidth;
std::vector<float> m_lineWidths;
};
LineInterpolationTest::LineInterpolationTest (Context& ctx, const char* name, const char* desc, glw::GLenum primitive, int flags, PrimitiveWideness wideness, RenderTarget renderTarget, int numSamples)
: BaseRenderingCase (ctx, name, desc, renderTarget, numSamples, DEFAULT_RENDER_SIZE)
, m_primitive (primitive)
, m_projective ((flags & INTERPOLATIONFLAGS_PROJECTED) != 0)
, m_iterationCount (3)
, m_primitiveWideness (wideness)
, m_iteration (0)
, m_allIterationsPassed (true)
, m_maxLineWidth (1.0f)
{
m_flatshade = ((flags & INTERPOLATIONFLAGS_FLATSHADE) != 0);
}
LineInterpolationTest::~LineInterpolationTest (void)
{
deinit();
}
void LineInterpolationTest::init (void)
{
// create line widths
if (m_primitiveWideness == PRIMITIVEWIDENESS_NARROW)
{
m_lineWidths.resize(m_iterationCount, 1.0f);
}
else if (m_primitiveWideness == PRIMITIVEWIDENESS_WIDE)
{
float range[2] = { 0.0f, 0.0f };
m_context.getRenderContext().getFunctions().getFloatv(GL_ALIASED_LINE_WIDTH_RANGE, range);
m_testCtx.getLog() << tcu::TestLog::Message << "ALIASED_LINE_WIDTH_RANGE = [" << range[0] << ", " << range[1] << "]" << tcu::TestLog::EndMessage;
// no wide line support
if (range[1] <= 1.0f)
throw tcu::NotSupportedError("wide line support required");
// set hand picked sizes
m_lineWidths.push_back(5.0f);
m_lineWidths.push_back(10.0f);
m_lineWidths.push_back(range[1]);
DE_ASSERT((int)m_lineWidths.size() == m_iterationCount);
m_maxLineWidth = range[1];
}
else
DE_ASSERT(false);
// init parent
BaseRenderingCase::init();
}
LineInterpolationTest::IterateResult LineInterpolationTest::iterate (void)
{
const std::string iterationDescription = "Test iteration " + de::toString(m_iteration+1) + " / " + de::toString(m_iterationCount);
const tcu::ScopedLogSection section (m_testCtx.getLog(), "Iteration" + de::toString(m_iteration+1), iterationDescription);
const float lineWidth = getLineWidth();
tcu::Surface resultImage (m_renderSize, m_renderSize);
std::vector<tcu::Vec4> drawBuffer;
std::vector<tcu::Vec4> colorBuffer;
std::vector<LineSceneSpec::SceneLine> lines;
// supported?
if (lineWidth <= m_maxLineWidth)
{
// generate scene
generateVertices(m_iteration, drawBuffer, colorBuffer);
extractLines(lines, drawBuffer, colorBuffer);
// log
{
m_testCtx.getLog() << tcu::TestLog::Message << "Generated vertices:" << tcu::TestLog::EndMessage;
for (int vtxNdx = 0; vtxNdx < (int)drawBuffer.size(); ++vtxNdx)
m_testCtx.getLog() << tcu::TestLog::Message << "\t" << drawBuffer[vtxNdx] << ",\tcolor= " << colorBuffer[vtxNdx] << tcu::TestLog::EndMessage;
}
// draw image
drawPrimitives(resultImage, drawBuffer, colorBuffer, m_primitive);
// compare
{
RasterizationArguments args;
LineSceneSpec scene;
args.numSamples = m_numSamples;
args.subpixelBits = m_subpixelBits;
args.redBits = getPixelFormat().redBits;
args.greenBits = getPixelFormat().greenBits;
args.blueBits = getPixelFormat().blueBits;
scene.lines.swap(lines);
scene.lineWidth = getLineWidth();
if (!verifyLineGroupInterpolation(resultImage, scene, args, m_testCtx.getLog()))
m_allIterationsPassed = false;
}
}
else
m_testCtx.getLog() << tcu::TestLog::Message << "Line width " << lineWidth << " not supported, skipping iteration." << tcu::TestLog::EndMessage;
// result
if (++m_iteration == m_iterationCount)
{
if (m_allIterationsPassed)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Found invalid pixel values");
return STOP;
}
else
return CONTINUE;
}
void LineInterpolationTest::generateVertices (int iteration, std::vector<tcu::Vec4>& outVertices, std::vector<tcu::Vec4>& outColors) const
{
// use only red, green and blue
const tcu::Vec4 colors[] =
{
tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f),
tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f),
tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f),
};
de::Random rnd(123 + iteration * 1000 + (int)m_primitive);
outVertices.resize(6);
outColors.resize(6);
for (int vtxNdx = 0; vtxNdx < (int)outVertices.size(); ++vtxNdx)
{
outVertices[vtxNdx].x() = rnd.getFloat(-0.9f, 0.9f);
outVertices[vtxNdx].y() = rnd.getFloat(-0.9f, 0.9f);
outVertices[vtxNdx].z() = 0.0f;
if (!m_projective)
outVertices[vtxNdx].w() = 1.0f;
else
{
const float w = rnd.getFloat(0.2f, 4.0f);
outVertices[vtxNdx].x() *= w;
outVertices[vtxNdx].y() *= w;
outVertices[vtxNdx].z() *= w;
outVertices[vtxNdx].w() = w;
}
outColors[vtxNdx] = colors[vtxNdx % DE_LENGTH_OF_ARRAY(colors)];
}
}
void LineInterpolationTest::extractLines (std::vector<LineSceneSpec::SceneLine>& outLines, const std::vector<tcu::Vec4>& vertices, const std::vector<tcu::Vec4>& colors) const
{
switch (m_primitive)
{
case GL_LINES:
{
for (int vtxNdx = 0; vtxNdx < (int)vertices.size() - 1; vtxNdx += 2)
{
LineSceneSpec::SceneLine line;
line.positions[0] = vertices[vtxNdx + 0];
line.positions[1] = vertices[vtxNdx + 1];
if (m_flatshade)
{
line.colors[0] = colors[vtxNdx + 1];
line.colors[1] = colors[vtxNdx + 1];
}
else
{
line.colors[0] = colors[vtxNdx + 0];
line.colors[1] = colors[vtxNdx + 1];
}
outLines.push_back(line);
}
break;
}
case GL_LINE_STRIP:
{
for (int vtxNdx = 0; vtxNdx < (int)vertices.size() - 1; ++vtxNdx)
{
LineSceneSpec::SceneLine line;
line.positions[0] = vertices[vtxNdx + 0];
line.positions[1] = vertices[vtxNdx + 1];
if (m_flatshade)
{
line.colors[0] = colors[vtxNdx + 1];
line.colors[1] = colors[vtxNdx + 1];
}
else
{
line.colors[0] = colors[vtxNdx + 0];
line.colors[1] = colors[vtxNdx + 1];
}
outLines.push_back(line);
}
break;
}
case GL_LINE_LOOP:
{
for (int vtxNdx = 0; vtxNdx < (int)vertices.size(); ++vtxNdx)
{
LineSceneSpec::SceneLine line;
line.positions[0] = vertices[(vtxNdx + 0) % (int)vertices.size()];
line.positions[1] = vertices[(vtxNdx + 1) % (int)vertices.size()];
if (m_flatshade)
{
line.colors[0] = colors[(vtxNdx + 1) % (int)vertices.size()];
line.colors[1] = colors[(vtxNdx + 1) % (int)vertices.size()];
}
else
{
line.colors[0] = colors[(vtxNdx + 0) % (int)vertices.size()];
line.colors[1] = colors[(vtxNdx + 1) % (int)vertices.size()];
}
outLines.push_back(line);
}
break;
}
default:
DE_ASSERT(false);
}
}
float LineInterpolationTest::getLineWidth (void) const
{
return m_lineWidths[m_iteration];
}
} // anonymous
RasterizationTests::RasterizationTests (Context& context)
: TestCaseGroup(context, "rasterization", "Rasterization Tests")
{
}
RasterizationTests::~RasterizationTests (void)
{
}
void RasterizationTests::init (void)
{
// .primitives
{
tcu::TestCaseGroup* const primitives = new tcu::TestCaseGroup(m_testCtx, "primitives", "Primitive rasterization");
addChild(primitives);
primitives->addChild(new TrianglesCase (m_context, "triangles", "Render primitives as GL_TRIANGLES, verify rasterization result"));
primitives->addChild(new TriangleStripCase (m_context, "triangle_strip", "Render primitives as GL_TRIANGLE_STRIP, verify rasterization result"));
primitives->addChild(new TriangleFanCase (m_context, "triangle_fan", "Render primitives as GL_TRIANGLE_FAN, verify rasterization result"));
primitives->addChild(new LinesCase (m_context, "lines", "Render primitives as GL_LINES, verify rasterization result", PRIMITIVEWIDENESS_NARROW));
primitives->addChild(new LineStripCase (m_context, "line_strip", "Render primitives as GL_LINE_STRIP, verify rasterization result", PRIMITIVEWIDENESS_NARROW));
primitives->addChild(new LineLoopCase (m_context, "line_loop", "Render primitives as GL_LINE_LOOP, verify rasterization result", PRIMITIVEWIDENESS_NARROW));
primitives->addChild(new LinesCase (m_context, "lines_wide", "Render primitives as GL_LINES with wide lines, verify rasterization result", PRIMITIVEWIDENESS_WIDE));
primitives->addChild(new LineStripCase (m_context, "line_strip_wide", "Render primitives as GL_LINE_STRIP with wide lines, verify rasterization result", PRIMITIVEWIDENESS_WIDE));
primitives->addChild(new LineLoopCase (m_context, "line_loop_wide", "Render primitives as GL_LINE_LOOP with wide lines, verify rasterization result", PRIMITIVEWIDENESS_WIDE));
primitives->addChild(new PointCase (m_context, "points", "Render primitives as GL_POINTS, verify rasterization result", PRIMITIVEWIDENESS_WIDE));
}
// .fill_rules
{
tcu::TestCaseGroup* const fillRules = new tcu::TestCaseGroup(m_testCtx, "fill_rules", "Primitive fill rules");
addChild(fillRules);
fillRules->addChild(new FillRuleCase(m_context, "basic_quad", "Verify fill rules", FillRuleCase::FILLRULECASE_BASIC));
fillRules->addChild(new FillRuleCase(m_context, "basic_quad_reverse", "Verify fill rules", FillRuleCase::FILLRULECASE_REVERSED));
fillRules->addChild(new FillRuleCase(m_context, "clipped_full", "Verify fill rules", FillRuleCase::FILLRULECASE_CLIPPED_FULL));
fillRules->addChild(new FillRuleCase(m_context, "clipped_partly", "Verify fill rules", FillRuleCase::FILLRULECASE_CLIPPED_PARTIAL));
fillRules->addChild(new FillRuleCase(m_context, "projected", "Verify fill rules", FillRuleCase::FILLRULECASE_PROJECTED));
}
// .culling
{
static const struct CullMode
{
glw::GLenum mode;
const char* prefix;
} cullModes[] =
{
{ GL_FRONT, "front_" },
{ GL_BACK, "back_" },
{ GL_FRONT_AND_BACK, "both_" },
};
static const struct PrimitiveType
{
glw::GLenum type;
const char* name;
} primitiveTypes[] =
{
{ GL_TRIANGLES, "triangles" },
{ GL_TRIANGLE_STRIP, "triangle_strip" },
{ GL_TRIANGLE_FAN, "triangle_fan" },
};
static const struct FrontFaceOrder
{
glw::GLenum mode;
const char* postfix;
} frontOrders[] =
{
{ GL_CCW, "" },
{ GL_CW, "_reverse" },
};
tcu::TestCaseGroup* const culling = new tcu::TestCaseGroup(m_testCtx, "culling", "Culling");
addChild(culling);
for (int cullModeNdx = 0; cullModeNdx < DE_LENGTH_OF_ARRAY(cullModes); ++cullModeNdx)
for (int primitiveNdx = 0; primitiveNdx < DE_LENGTH_OF_ARRAY(primitiveTypes); ++primitiveNdx)
for (int frontOrderNdx = 0; frontOrderNdx < DE_LENGTH_OF_ARRAY(frontOrders); ++frontOrderNdx)
{
const std::string name = std::string(cullModes[cullModeNdx].prefix) + primitiveTypes[primitiveNdx].name + frontOrders[frontOrderNdx].postfix;
culling->addChild(new CullingTest(m_context, name.c_str(), "Test primitive culling.", cullModes[cullModeNdx].mode, primitiveTypes[primitiveNdx].type, frontOrders[frontOrderNdx].mode));
}
}
// .interpolation
{
tcu::TestCaseGroup* const interpolation = new tcu::TestCaseGroup(m_testCtx, "interpolation", "Test interpolation");
addChild(interpolation);
// .basic
{
tcu::TestCaseGroup* const basic = new tcu::TestCaseGroup(m_testCtx, "basic", "Non-projective interpolation");
interpolation->addChild(basic);
basic->addChild(new TriangleInterpolationTest (m_context, "triangles", "Verify triangle interpolation", GL_TRIANGLES, INTERPOLATIONFLAGS_NONE));
basic->addChild(new TriangleInterpolationTest (m_context, "triangle_strip", "Verify triangle strip interpolation", GL_TRIANGLE_STRIP, INTERPOLATIONFLAGS_NONE));
basic->addChild(new TriangleInterpolationTest (m_context, "triangle_fan", "Verify triangle fan interpolation", GL_TRIANGLE_FAN, INTERPOLATIONFLAGS_NONE));
basic->addChild(new LineInterpolationTest (m_context, "lines", "Verify line interpolation", GL_LINES, INTERPOLATIONFLAGS_NONE, PRIMITIVEWIDENESS_NARROW));
basic->addChild(new LineInterpolationTest (m_context, "line_strip", "Verify line strip interpolation", GL_LINE_STRIP, INTERPOLATIONFLAGS_NONE, PRIMITIVEWIDENESS_NARROW));
basic->addChild(new LineInterpolationTest (m_context, "line_loop", "Verify line loop interpolation", GL_LINE_LOOP, INTERPOLATIONFLAGS_NONE, PRIMITIVEWIDENESS_NARROW));
basic->addChild(new LineInterpolationTest (m_context, "lines_wide", "Verify wide line interpolation", GL_LINES, INTERPOLATIONFLAGS_NONE, PRIMITIVEWIDENESS_WIDE));
basic->addChild(new LineInterpolationTest (m_context, "line_strip_wide", "Verify wide line strip interpolation", GL_LINE_STRIP, INTERPOLATIONFLAGS_NONE, PRIMITIVEWIDENESS_WIDE));
basic->addChild(new LineInterpolationTest (m_context, "line_loop_wide", "Verify wide line loop interpolation", GL_LINE_LOOP, INTERPOLATIONFLAGS_NONE, PRIMITIVEWIDENESS_WIDE));
}
// .projected
{
tcu::TestCaseGroup* const projected = new tcu::TestCaseGroup(m_testCtx, "projected", "Projective interpolation");
interpolation->addChild(projected);
projected->addChild(new TriangleInterpolationTest (m_context, "triangles", "Verify triangle interpolation", GL_TRIANGLES, INTERPOLATIONFLAGS_PROJECTED));
projected->addChild(new TriangleInterpolationTest (m_context, "triangle_strip", "Verify triangle strip interpolation", GL_TRIANGLE_STRIP, INTERPOLATIONFLAGS_PROJECTED));
projected->addChild(new TriangleInterpolationTest (m_context, "triangle_fan", "Verify triangle fan interpolation", GL_TRIANGLE_FAN, INTERPOLATIONFLAGS_PROJECTED));
projected->addChild(new LineInterpolationTest (m_context, "lines", "Verify line interpolation", GL_LINES, INTERPOLATIONFLAGS_PROJECTED, PRIMITIVEWIDENESS_NARROW));
projected->addChild(new LineInterpolationTest (m_context, "line_strip", "Verify line strip interpolation", GL_LINE_STRIP, INTERPOLATIONFLAGS_PROJECTED, PRIMITIVEWIDENESS_NARROW));
projected->addChild(new LineInterpolationTest (m_context, "line_loop", "Verify line loop interpolation", GL_LINE_LOOP, INTERPOLATIONFLAGS_PROJECTED, PRIMITIVEWIDENESS_NARROW));
projected->addChild(new LineInterpolationTest (m_context, "lines_wide", "Verify wide line interpolation", GL_LINES, INTERPOLATIONFLAGS_PROJECTED, PRIMITIVEWIDENESS_WIDE));
projected->addChild(new LineInterpolationTest (m_context, "line_strip_wide", "Verify wide line strip interpolation", GL_LINE_STRIP, INTERPOLATIONFLAGS_PROJECTED, PRIMITIVEWIDENESS_WIDE));
projected->addChild(new LineInterpolationTest (m_context, "line_loop_wide", "Verify wide line loop interpolation", GL_LINE_LOOP, INTERPOLATIONFLAGS_PROJECTED, PRIMITIVEWIDENESS_WIDE));
}
}
// .flatshading
{
tcu::TestCaseGroup* const flatshading = new tcu::TestCaseGroup(m_testCtx, "flatshading", "Test flatshading");
addChild(flatshading);
flatshading->addChild(new TriangleInterpolationTest (m_context, "triangles", "Verify triangle flatshading", GL_TRIANGLES, INTERPOLATIONFLAGS_FLATSHADE));
flatshading->addChild(new TriangleInterpolationTest (m_context, "triangle_strip", "Verify triangle strip flatshading", GL_TRIANGLE_STRIP, INTERPOLATIONFLAGS_FLATSHADE));
flatshading->addChild(new TriangleInterpolationTest (m_context, "triangle_fan", "Verify triangle fan flatshading", GL_TRIANGLE_FAN, INTERPOLATIONFLAGS_FLATSHADE));
flatshading->addChild(new LineInterpolationTest (m_context, "lines", "Verify line flatshading", GL_LINES, INTERPOLATIONFLAGS_FLATSHADE, PRIMITIVEWIDENESS_NARROW));
flatshading->addChild(new LineInterpolationTest (m_context, "line_strip", "Verify line strip flatshading", GL_LINE_STRIP, INTERPOLATIONFLAGS_FLATSHADE, PRIMITIVEWIDENESS_NARROW));
flatshading->addChild(new LineInterpolationTest (m_context, "line_loop", "Verify line loop flatshading", GL_LINE_LOOP, INTERPOLATIONFLAGS_FLATSHADE, PRIMITIVEWIDENESS_NARROW));
flatshading->addChild(new LineInterpolationTest (m_context, "lines_wide", "Verify wide line flatshading", GL_LINES, INTERPOLATIONFLAGS_FLATSHADE, PRIMITIVEWIDENESS_WIDE));
flatshading->addChild(new LineInterpolationTest (m_context, "line_strip_wide", "Verify wide line strip flatshading", GL_LINE_STRIP, INTERPOLATIONFLAGS_FLATSHADE, PRIMITIVEWIDENESS_WIDE));
flatshading->addChild(new LineInterpolationTest (m_context, "line_loop_wide", "Verify wide line loop flatshading", GL_LINE_LOOP, INTERPOLATIONFLAGS_FLATSHADE, PRIMITIVEWIDENESS_WIDE));
}
// .fbo
{
static const struct
{
const char* name;
BaseRenderingCase::RenderTarget target;
int numSamples;
} renderTargets[] =
{
{ "texture_2d", BaseRenderingCase::RENDERTARGET_TEXTURE_2D, -1 },
{ "rbo_singlesample", BaseRenderingCase::RENDERTARGET_RBO_SINGLESAMPLE, -1 },
{ "rbo_multisample_4", BaseRenderingCase::RENDERTARGET_RBO_MULTISAMPLE, 4 },
{ "rbo_multisample_max", BaseRenderingCase::RENDERTARGET_RBO_MULTISAMPLE, BaseRenderingCase::SAMPLE_COUNT_MAX },
};
tcu::TestCaseGroup* const fboGroup = new tcu::TestCaseGroup(m_testCtx, "fbo", "Test using framebuffer objects");
addChild(fboGroup);
// .texture_2d
// .rbo_singlesample
// .rbo_multisample_4
// .rbo_multisample_max
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(renderTargets); ++targetNdx)
{
tcu::TestCaseGroup* const colorAttachmentGroup = new tcu::TestCaseGroup(m_testCtx, renderTargets[targetNdx].name, ("Test using " + std::string(renderTargets[targetNdx].name) + " color attachment").c_str());
fboGroup->addChild(colorAttachmentGroup);
// .primitives
{
tcu::TestCaseGroup* const primitiveGroup = new tcu::TestCaseGroup(m_testCtx, "primitives", "Primitive rasterization");
colorAttachmentGroup->addChild(primitiveGroup);
primitiveGroup->addChild(new TrianglesCase (m_context, "triangles", "Render primitives as GL_TRIANGLES, verify rasterization result", renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
primitiveGroup->addChild(new LinesCase (m_context, "lines", "Render primitives as GL_LINES, verify rasterization result", PRIMITIVEWIDENESS_NARROW, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
primitiveGroup->addChild(new LinesCase (m_context, "lines_wide", "Render primitives as GL_LINES with wide lines, verify rasterization result", PRIMITIVEWIDENESS_WIDE, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
primitiveGroup->addChild(new PointCase (m_context, "points", "Render primitives as GL_POINTS, verify rasterization result", PRIMITIVEWIDENESS_WIDE, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
}
// .fill_rules
{
tcu::TestCaseGroup* const fillRules = new tcu::TestCaseGroup(m_testCtx, "fill_rules", "Primitive fill rules");
colorAttachmentGroup->addChild(fillRules);
fillRules->addChild(new FillRuleCase(m_context, "basic_quad", "Verify fill rules", FillRuleCase::FILLRULECASE_BASIC, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
fillRules->addChild(new FillRuleCase(m_context, "basic_quad_reverse", "Verify fill rules", FillRuleCase::FILLRULECASE_REVERSED, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
fillRules->addChild(new FillRuleCase(m_context, "clipped_full", "Verify fill rules", FillRuleCase::FILLRULECASE_CLIPPED_FULL, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
fillRules->addChild(new FillRuleCase(m_context, "clipped_partly", "Verify fill rules", FillRuleCase::FILLRULECASE_CLIPPED_PARTIAL, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
fillRules->addChild(new FillRuleCase(m_context, "projected", "Verify fill rules", FillRuleCase::FILLRULECASE_PROJECTED, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
}
// .interpolation
{
tcu::TestCaseGroup* const interpolation = new tcu::TestCaseGroup(m_testCtx, "interpolation", "Non-projective interpolation");
colorAttachmentGroup->addChild(interpolation);
interpolation->addChild(new TriangleInterpolationTest (m_context, "triangles", "Verify triangle interpolation", GL_TRIANGLES, INTERPOLATIONFLAGS_NONE, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
interpolation->addChild(new LineInterpolationTest (m_context, "lines", "Verify line interpolation", GL_LINES, INTERPOLATIONFLAGS_NONE, PRIMITIVEWIDENESS_NARROW, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
interpolation->addChild(new LineInterpolationTest (m_context, "lines_wide", "Verify wide line interpolation", GL_LINES, INTERPOLATIONFLAGS_NONE, PRIMITIVEWIDENESS_WIDE, renderTargets[targetNdx].target, renderTargets[targetNdx].numSamples));
}
}
}
}
} // Functional
} // gles3
} // deqp