//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for load, store and alloca.
//
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
#define DEBUG_TYPE "instcombine"
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
/// some part of a constant global variable. This intentionally only accepts
/// constant expressions because we can't rewrite arbitrary instructions.
static bool pointsToConstantGlobal(Value *V) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return GV->isConstant();
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->getOpcode() == Instruction::BitCast ||
CE->getOpcode() == Instruction::AddrSpaceCast ||
CE->getOpcode() == Instruction::GetElementPtr)
return pointsToConstantGlobal(CE->getOperand(0));
}
return false;
}
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
/// pointer to an alloca. Ignore any reads of the pointer, return false if we
/// see any stores or other unknown uses. If we see pointer arithmetic, keep
/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
/// the alloca, and if the source pointer is a pointer to a constant global, we
/// can optimize this.
static bool
isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
SmallVectorImpl<Instruction *> &ToDelete) {
// We track lifetime intrinsics as we encounter them. If we decide to go
// ahead and replace the value with the global, this lets the caller quickly
// eliminate the markers.
SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
ValuesToInspect.push_back(std::make_pair(V, false));
while (!ValuesToInspect.empty()) {
auto ValuePair = ValuesToInspect.pop_back_val();
const bool IsOffset = ValuePair.second;
for (auto &U : ValuePair.first->uses()) {
Instruction *I = cast<Instruction>(U.getUser());
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
// Ignore non-volatile loads, they are always ok.
if (!LI->isSimple()) return false;
continue;
}
if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
// If uses of the bitcast are ok, we are ok.
ValuesToInspect.push_back(std::make_pair(I, IsOffset));
continue;
}
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
// If the GEP has all zero indices, it doesn't offset the pointer. If it
// doesn't, it does.
ValuesToInspect.push_back(
std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
continue;
}
if (CallSite CS = I) {
// If this is the function being called then we treat it like a load and
// ignore it.
if (CS.isCallee(&U))
continue;
// Inalloca arguments are clobbered by the call.
unsigned ArgNo = CS.getArgumentNo(&U);
if (CS.isInAllocaArgument(ArgNo))
return false;
// If this is a readonly/readnone call site, then we know it is just a
// load (but one that potentially returns the value itself), so we can
// ignore it if we know that the value isn't captured.
if (CS.onlyReadsMemory() &&
(CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
continue;
// If this is being passed as a byval argument, the caller is making a
// copy, so it is only a read of the alloca.
if (CS.isByValArgument(ArgNo))
continue;
}
// Lifetime intrinsics can be handled by the caller.
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end) {
assert(II->use_empty() && "Lifetime markers have no result to use!");
ToDelete.push_back(II);
continue;
}
}
// If this is isn't our memcpy/memmove, reject it as something we can't
// handle.
MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
if (!MI)
return false;
// If the transfer is using the alloca as a source of the transfer, then
// ignore it since it is a load (unless the transfer is volatile).
if (U.getOperandNo() == 1) {
if (MI->isVolatile()) return false;
continue;
}
// If we already have seen a copy, reject the second one.
if (TheCopy) return false;
// If the pointer has been offset from the start of the alloca, we can't
// safely handle this.
if (IsOffset) return false;
// If the memintrinsic isn't using the alloca as the dest, reject it.
if (U.getOperandNo() != 0) return false;
// If the source of the memcpy/move is not a constant global, reject it.
if (!pointsToConstantGlobal(MI->getSource()))
return false;
// Otherwise, the transform is safe. Remember the copy instruction.
TheCopy = MI;
}
}
return true;
}
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
/// modified by a copy from a constant global. If we can prove this, we can
/// replace any uses of the alloca with uses of the global directly.
static MemTransferInst *
isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
SmallVectorImpl<Instruction *> &ToDelete) {
MemTransferInst *TheCopy = nullptr;
if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
return TheCopy;
return nullptr;
}
Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// Ensure that the alloca array size argument has type intptr_t, so that
// any casting is exposed early.
if (DL) {
Type *IntPtrTy = DL->getIntPtrType(AI.getType());
if (AI.getArraySize()->getType() != IntPtrTy) {
Value *V = Builder->CreateIntCast(AI.getArraySize(),
IntPtrTy, false);
AI.setOperand(0, V);
return &AI;
}
}
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
if (AI.isArrayAllocation()) { // Check C != 1
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
Type *NewTy =
ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
AllocaInst *New = Builder->CreateAlloca(NewTy, nullptr, AI.getName());
New->setAlignment(AI.getAlignment());
// Scan to the end of the allocation instructions, to skip over a block of
// allocas if possible...also skip interleaved debug info
//
BasicBlock::iterator It = New;
while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
// Now that I is pointing to the first non-allocation-inst in the block,
// insert our getelementptr instruction...
//
Type *IdxTy = DL
? DL->getIntPtrType(AI.getType())
: Type::getInt64Ty(AI.getContext());
Value *NullIdx = Constant::getNullValue(IdxTy);
Value *Idx[2] = { NullIdx, NullIdx };
Instruction *GEP =
GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
InsertNewInstBefore(GEP, *It);
// Now make everything use the getelementptr instead of the original
// allocation.
return ReplaceInstUsesWith(AI, GEP);
} else if (isa<UndefValue>(AI.getArraySize())) {
return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
}
}
if (DL && AI.getAllocatedType()->isSized()) {
// If the alignment is 0 (unspecified), assign it the preferred alignment.
if (AI.getAlignment() == 0)
AI.setAlignment(DL->getPrefTypeAlignment(AI.getAllocatedType()));
// Move all alloca's of zero byte objects to the entry block and merge them
// together. Note that we only do this for alloca's, because malloc should
// allocate and return a unique pointer, even for a zero byte allocation.
if (DL->getTypeAllocSize(AI.getAllocatedType()) == 0) {
// For a zero sized alloca there is no point in doing an array allocation.
// This is helpful if the array size is a complicated expression not used
// elsewhere.
if (AI.isArrayAllocation()) {
AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
return &AI;
}
// Get the first instruction in the entry block.
BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
if (FirstInst != &AI) {
// If the entry block doesn't start with a zero-size alloca then move
// this one to the start of the entry block. There is no problem with
// dominance as the array size was forced to a constant earlier already.
AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
DL->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
AI.moveBefore(FirstInst);
return &AI;
}
// If the alignment of the entry block alloca is 0 (unspecified),
// assign it the preferred alignment.
if (EntryAI->getAlignment() == 0)
EntryAI->setAlignment(
DL->getPrefTypeAlignment(EntryAI->getAllocatedType()));
// Replace this zero-sized alloca with the one at the start of the entry
// block after ensuring that the address will be aligned enough for both
// types.
unsigned MaxAlign = std::max(EntryAI->getAlignment(),
AI.getAlignment());
EntryAI->setAlignment(MaxAlign);
if (AI.getType() != EntryAI->getType())
return new BitCastInst(EntryAI, AI.getType());
return ReplaceInstUsesWith(AI, EntryAI);
}
}
}
if (AI.getAlignment()) {
// Check to see if this allocation is only modified by a memcpy/memmove from
// a constant global whose alignment is equal to or exceeds that of the
// allocation. If this is the case, we can change all users to use
// the constant global instead. This is commonly produced by the CFE by
// constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
// is only subsequently read.
SmallVector<Instruction *, 4> ToDelete;
if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
AI.getAlignment(), DL);
if (AI.getAlignment() <= SourceAlign) {
DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
EraseInstFromFunction(*ToDelete[i]);
Constant *TheSrc = cast<Constant>(Copy->getSource());
Constant *Cast
= ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
EraseInstFromFunction(*Copy);
++NumGlobalCopies;
return NewI;
}
}
}
// At last, use the generic allocation site handler to aggressively remove
// unused allocas.
return visitAllocSite(AI);
}
/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
const DataLayout *DL) {
User *CI = cast<User>(LI.getOperand(0));
Value *CastOp = CI->getOperand(0);
PointerType *DestTy = cast<PointerType>(CI->getType());
Type *DestPTy = DestTy->getElementType();
if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
// If the address spaces don't match, don't eliminate the cast.
if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
return nullptr;
Type *SrcPTy = SrcTy->getElementType();
if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
DestPTy->isVectorTy()) {
// If the source is an array, the code below will not succeed. Check to
// see if a trivial 'gep P, 0, 0' will help matters. Only do this for
// constants.
if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
if (Constant *CSrc = dyn_cast<Constant>(CastOp))
if (ASrcTy->getNumElements() != 0) {
Type *IdxTy = DL
? DL->getIntPtrType(SrcTy)
: Type::getInt64Ty(SrcTy->getContext());
Value *Idx = Constant::getNullValue(IdxTy);
Value *Idxs[2] = { Idx, Idx };
CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
SrcTy = cast<PointerType>(CastOp->getType());
SrcPTy = SrcTy->getElementType();
}
if (IC.getDataLayout() &&
(SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
SrcPTy->isVectorTy()) &&
// Do not allow turning this into a load of an integer, which is then
// casted to a pointer, this pessimizes pointer analysis a lot.
(SrcPTy->isPtrOrPtrVectorTy() ==
LI.getType()->isPtrOrPtrVectorTy()) &&
IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
// Okay, we are casting from one integer or pointer type to another of
// the same size. Instead of casting the pointer before the load, cast
// the result of the loaded value.
LoadInst *NewLoad =
IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
NewLoad->setAlignment(LI.getAlignment());
NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
// Now cast the result of the load.
PointerType *OldTy = dyn_cast<PointerType>(NewLoad->getType());
PointerType *NewTy = dyn_cast<PointerType>(LI.getType());
if (OldTy && NewTy &&
OldTy->getAddressSpace() != NewTy->getAddressSpace()) {
return new AddrSpaceCastInst(NewLoad, LI.getType());
}
return new BitCastInst(NewLoad, LI.getType());
}
}
}
return nullptr;
}
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
// Attempt to improve the alignment.
if (DL) {
unsigned KnownAlign =
getOrEnforceKnownAlignment(Op, DL->getPrefTypeAlignment(LI.getType()),DL);
unsigned LoadAlign = LI.getAlignment();
unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
DL->getABITypeAlignment(LI.getType());
if (KnownAlign > EffectiveLoadAlign)
LI.setAlignment(KnownAlign);
else if (LoadAlign == 0)
LI.setAlignment(EffectiveLoadAlign);
}
// load (cast X) --> cast (load X) iff safe.
if (isa<CastInst>(Op))
if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
return Res;
// None of the following transforms are legal for volatile/atomic loads.
// FIXME: Some of it is okay for atomic loads; needs refactoring.
if (!LI.isSimple()) return nullptr;
// Do really simple store-to-load forwarding and load CSE, to catch cases
// where there are several consecutive memory accesses to the same location,
// separated by a few arithmetic operations.
BasicBlock::iterator BBI = &LI;
if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
return ReplaceInstUsesWith(LI, AvailableVal);
// load(gep null, ...) -> unreachable
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
const Value *GEPI0 = GEPI->getOperand(0);
// TODO: Consider a target hook for valid address spaces for this xform.
if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
// Insert a new store to null instruction before the load to indicate
// that this code is not reachable. We do this instead of inserting
// an unreachable instruction directly because we cannot modify the
// CFG.
new StoreInst(UndefValue::get(LI.getType()),
Constant::getNullValue(Op->getType()), &LI);
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
}
// load null/undef -> unreachable
// TODO: Consider a target hook for valid address spaces for this xform.
if (isa<UndefValue>(Op) ||
(isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
// Insert a new store to null instruction before the load to indicate that
// this code is not reachable. We do this instead of inserting an
// unreachable instruction directly because we cannot modify the CFG.
new StoreInst(UndefValue::get(LI.getType()),
Constant::getNullValue(Op->getType()), &LI);
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
// Instcombine load (constantexpr_cast global) -> cast (load global)
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
if (CE->isCast())
if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
return Res;
if (Op->hasOneUse()) {
// Change select and PHI nodes to select values instead of addresses: this
// helps alias analysis out a lot, allows many others simplifications, and
// exposes redundancy in the code.
//
// Note that we cannot do the transformation unless we know that the
// introduced loads cannot trap! Something like this is valid as long as
// the condition is always false: load (select bool %C, int* null, int* %G),
// but it would not be valid if we transformed it to load from null
// unconditionally.
//
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
unsigned Align = LI.getAlignment();
if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, DL) &&
isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, DL)) {
LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
SI->getOperand(1)->getName()+".val");
LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
SI->getOperand(2)->getName()+".val");
V1->setAlignment(Align);
V2->setAlignment(Align);
return SelectInst::Create(SI->getCondition(), V1, V2);
}
// load (select (cond, null, P)) -> load P
if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
if (C->isNullValue()) {
LI.setOperand(0, SI->getOperand(2));
return &LI;
}
// load (select (cond, P, null)) -> load P
if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
if (C->isNullValue()) {
LI.setOperand(0, SI->getOperand(1));
return &LI;
}
}
}
return nullptr;
}
/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
/// when possible. This makes it generally easy to do alias analysis and/or
/// SROA/mem2reg of the memory object.
static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
User *CI = cast<User>(SI.getOperand(1));
Value *CastOp = CI->getOperand(0);
Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
if (!SrcTy) return nullptr;
Type *SrcPTy = SrcTy->getElementType();
if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
return nullptr;
/// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
/// to its first element. This allows us to handle things like:
/// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
/// on 32-bit hosts.
SmallVector<Value*, 4> NewGEPIndices;
// If the source is an array, the code below will not succeed. Check to
// see if a trivial 'gep P, 0, 0' will help matters. Only do this for
// constants.
if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
// Index through pointer.
Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
NewGEPIndices.push_back(Zero);
while (1) {
if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
if (!STy->getNumElements()) /* Struct can be empty {} */
break;
NewGEPIndices.push_back(Zero);
SrcPTy = STy->getElementType(0);
} else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
NewGEPIndices.push_back(Zero);
SrcPTy = ATy->getElementType();
} else {
break;
}
}
SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
}
if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
return nullptr;
// If the pointers point into different address spaces don't do the
// transformation.
if (SrcTy->getAddressSpace() !=
cast<PointerType>(CI->getType())->getAddressSpace())
return nullptr;
// If the pointers point to values of different sizes don't do the
// transformation.
if (!IC.getDataLayout() ||
IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
IC.getDataLayout()->getTypeSizeInBits(DestPTy))
return nullptr;
// If the pointers point to pointers to different address spaces don't do the
// transformation. It is not safe to introduce an addrspacecast instruction in
// this case since, depending on the target, addrspacecast may not be a no-op
// cast.
if (SrcPTy->isPointerTy() && DestPTy->isPointerTy() &&
SrcPTy->getPointerAddressSpace() != DestPTy->getPointerAddressSpace())
return nullptr;
// Okay, we are casting from one integer or pointer type to another of
// the same size. Instead of casting the pointer before
// the store, cast the value to be stored.
Value *NewCast;
Instruction::CastOps opcode = Instruction::BitCast;
Type* CastSrcTy = DestPTy;
Type* CastDstTy = SrcPTy;
if (CastDstTy->isPointerTy()) {
if (CastSrcTy->isIntegerTy())
opcode = Instruction::IntToPtr;
} else if (CastDstTy->isIntegerTy()) {
if (CastSrcTy->isPointerTy())
opcode = Instruction::PtrToInt;
}
// SIOp0 is a pointer to aggregate and this is a store to the first field,
// emit a GEP to index into its first field.
if (!NewGEPIndices.empty())
CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
Value *SIOp0 = SI.getOperand(0);
NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
SIOp0->getName()+".c");
SI.setOperand(0, NewCast);
SI.setOperand(1, CastOp);
return &SI;
}
/// equivalentAddressValues - Test if A and B will obviously have the same
/// value. This includes recognizing that %t0 and %t1 will have the same
/// value in code like this:
/// %t0 = getelementptr \@a, 0, 3
/// store i32 0, i32* %t0
/// %t1 = getelementptr \@a, 0, 3
/// %t2 = load i32* %t1
///
static bool equivalentAddressValues(Value *A, Value *B) {
// Test if the values are trivially equivalent.
if (A == B) return true;
// Test if the values come form identical arithmetic instructions.
// This uses isIdenticalToWhenDefined instead of isIdenticalTo because
// its only used to compare two uses within the same basic block, which
// means that they'll always either have the same value or one of them
// will have an undefined value.
if (isa<BinaryOperator>(A) ||
isa<CastInst>(A) ||
isa<PHINode>(A) ||
isa<GetElementPtrInst>(A))
if (Instruction *BI = dyn_cast<Instruction>(B))
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
return true;
// Otherwise they may not be equivalent.
return false;
}
Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
Value *Val = SI.getOperand(0);
Value *Ptr = SI.getOperand(1);
// Attempt to improve the alignment.
if (DL) {
unsigned KnownAlign =
getOrEnforceKnownAlignment(Ptr, DL->getPrefTypeAlignment(Val->getType()),
DL);
unsigned StoreAlign = SI.getAlignment();
unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
DL->getABITypeAlignment(Val->getType());
if (KnownAlign > EffectiveStoreAlign)
SI.setAlignment(KnownAlign);
else if (StoreAlign == 0)
SI.setAlignment(EffectiveStoreAlign);
}
// Don't hack volatile/atomic stores.
// FIXME: Some bits are legal for atomic stores; needs refactoring.
if (!SI.isSimple()) return nullptr;
// If the RHS is an alloca with a single use, zapify the store, making the
// alloca dead.
if (Ptr->hasOneUse()) {
if (isa<AllocaInst>(Ptr))
return EraseInstFromFunction(SI);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
if (isa<AllocaInst>(GEP->getOperand(0))) {
if (GEP->getOperand(0)->hasOneUse())
return EraseInstFromFunction(SI);
}
}
}
// Do really simple DSE, to catch cases where there are several consecutive
// stores to the same location, separated by a few arithmetic operations. This
// situation often occurs with bitfield accesses.
BasicBlock::iterator BBI = &SI;
for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
--ScanInsts) {
--BBI;
// Don't count debug info directives, lest they affect codegen,
// and we skip pointer-to-pointer bitcasts, which are NOPs.
if (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
ScanInsts++;
continue;
}
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
// Prev store isn't volatile, and stores to the same location?
if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
SI.getOperand(1))) {
++NumDeadStore;
++BBI;
EraseInstFromFunction(*PrevSI);
continue;
}
break;
}
// If this is a load, we have to stop. However, if the loaded value is from
// the pointer we're loading and is producing the pointer we're storing,
// then *this* store is dead (X = load P; store X -> P).
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
LI->isSimple())
return EraseInstFromFunction(SI);
// Otherwise, this is a load from some other location. Stores before it
// may not be dead.
break;
}
// Don't skip over loads or things that can modify memory.
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
break;
}
// store X, null -> turns into 'unreachable' in SimplifyCFG
if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
if (!isa<UndefValue>(Val)) {
SI.setOperand(0, UndefValue::get(Val->getType()));
if (Instruction *U = dyn_cast<Instruction>(Val))
Worklist.Add(U); // Dropped a use.
}
return nullptr; // Do not modify these!
}
// store undef, Ptr -> noop
if (isa<UndefValue>(Val))
return EraseInstFromFunction(SI);
// If the pointer destination is a cast, see if we can fold the cast into the
// source instead.
if (isa<CastInst>(Ptr))
if (Instruction *Res = InstCombineStoreToCast(*this, SI))
return Res;
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
if (CE->isCast())
if (Instruction *Res = InstCombineStoreToCast(*this, SI))
return Res;
// If this store is the last instruction in the basic block (possibly
// excepting debug info instructions), and if the block ends with an
// unconditional branch, try to move it to the successor block.
BBI = &SI;
do {
++BBI;
} while (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
if (BI->isUnconditional())
if (SimplifyStoreAtEndOfBlock(SI))
return nullptr; // xform done!
return nullptr;
}
/// SimplifyStoreAtEndOfBlock - Turn things like:
/// if () { *P = v1; } else { *P = v2 }
/// into a phi node with a store in the successor.
///
/// Simplify things like:
/// *P = v1; if () { *P = v2; }
/// into a phi node with a store in the successor.
///
bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
BasicBlock *StoreBB = SI.getParent();
// Check to see if the successor block has exactly two incoming edges. If
// so, see if the other predecessor contains a store to the same location.
// if so, insert a PHI node (if needed) and move the stores down.
BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
// Determine whether Dest has exactly two predecessors and, if so, compute
// the other predecessor.
pred_iterator PI = pred_begin(DestBB);
BasicBlock *P = *PI;
BasicBlock *OtherBB = nullptr;
if (P != StoreBB)
OtherBB = P;
if (++PI == pred_end(DestBB))
return false;
P = *PI;
if (P != StoreBB) {
if (OtherBB)
return false;
OtherBB = P;
}
if (++PI != pred_end(DestBB))
return false;
// Bail out if all the relevant blocks aren't distinct (this can happen,
// for example, if SI is in an infinite loop)
if (StoreBB == DestBB || OtherBB == DestBB)
return false;
// Verify that the other block ends in a branch and is not otherwise empty.
BasicBlock::iterator BBI = OtherBB->getTerminator();
BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
if (!OtherBr || BBI == OtherBB->begin())
return false;
// If the other block ends in an unconditional branch, check for the 'if then
// else' case. there is an instruction before the branch.
StoreInst *OtherStore = nullptr;
if (OtherBr->isUnconditional()) {
--BBI;
// Skip over debugging info.
while (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
if (BBI==OtherBB->begin())
return false;
--BBI;
}
// If this isn't a store, isn't a store to the same location, or is not the
// right kind of store, bail out.
OtherStore = dyn_cast<StoreInst>(BBI);
if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
!SI.isSameOperationAs(OtherStore))
return false;
} else {
// Otherwise, the other block ended with a conditional branch. If one of the
// destinations is StoreBB, then we have the if/then case.
if (OtherBr->getSuccessor(0) != StoreBB &&
OtherBr->getSuccessor(1) != StoreBB)
return false;
// Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
// if/then triangle. See if there is a store to the same ptr as SI that
// lives in OtherBB.
for (;; --BBI) {
// Check to see if we find the matching store.
if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
if (OtherStore->getOperand(1) != SI.getOperand(1) ||
!SI.isSameOperationAs(OtherStore))
return false;
break;
}
// If we find something that may be using or overwriting the stored
// value, or if we run out of instructions, we can't do the xform.
if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
BBI == OtherBB->begin())
return false;
}
// In order to eliminate the store in OtherBr, we have to
// make sure nothing reads or overwrites the stored value in
// StoreBB.
for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
// FIXME: This should really be AA driven.
if (I->mayReadFromMemory() || I->mayWriteToMemory())
return false;
}
}
// Insert a PHI node now if we need it.
Value *MergedVal = OtherStore->getOperand(0);
if (MergedVal != SI.getOperand(0)) {
PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
PN->addIncoming(SI.getOperand(0), SI.getParent());
PN->addIncoming(OtherStore->getOperand(0), OtherBB);
MergedVal = InsertNewInstBefore(PN, DestBB->front());
}
// Advance to a place where it is safe to insert the new store and
// insert it.
BBI = DestBB->getFirstInsertionPt();
StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
SI.isVolatile(),
SI.getAlignment(),
SI.getOrdering(),
SI.getSynchScope());
InsertNewInstBefore(NewSI, *BBI);
NewSI->setDebugLoc(OtherStore->getDebugLoc());
// If the two stores had the same TBAA tag, preserve it.
if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
OtherStore->getMetadata(LLVMContext::MD_tbaa))))
NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
// Nuke the old stores.
EraseInstFromFunction(SI);
EraseInstFromFunction(*OtherStore);
return true;
}