#include "rs_types.rsh"
extern float2 __attribute__((overloadable)) convert_float2(int2 c);
extern float3 __attribute__((overloadable)) convert_float3(int3 c);
extern float4 __attribute__((overloadable)) convert_float4(int4 c);
extern int2 __attribute__((overloadable)) convert_int2(float2 c);
extern int3 __attribute__((overloadable)) convert_int3(float3 c);
extern int4 __attribute__((overloadable)) convert_int4(float4 c);
extern float __attribute__((overloadable)) fmin(float v, float v2);
extern float2 __attribute__((overloadable)) fmin(float2 v, float v2);
extern float3 __attribute__((overloadable)) fmin(float3 v, float v2);
extern float4 __attribute__((overloadable)) fmin(float4 v, float v2);
extern float __attribute__((overloadable)) fmax(float v, float v2);
extern float2 __attribute__((overloadable)) fmax(float2 v, float v2);
extern float3 __attribute__((overloadable)) fmax(float3 v, float v2);
extern float4 __attribute__((overloadable)) fmax(float4 v, float v2);
// Float ops, 6.11.2
#define FN_FUNC_FN(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v) { \
float2 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v) { \
float3 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v) { \
float4 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
r.w = fnc(v.w); \
return r; \
}
#define IN_FUNC_FN(fnc) \
extern int2 __attribute__((overloadable)) fnc(float2 v) { \
int2 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
return r; \
} \
extern int3 __attribute__((overloadable)) fnc(float3 v) { \
int3 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
return r; \
} \
extern int4 __attribute__((overloadable)) fnc(float4 v) { \
int4 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
r.w = fnc(v.w); \
return r; \
}
#define FN_FUNC_FN_FN(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v1, float2 v2) { \
float2 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v1, float3 v2) { \
float3 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v1, float4 v2) { \
float4 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
r.w = fnc(v1.w, v2.w); \
return r; \
}
#define FN_FUNC_FN_F(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v1, float v2) { \
float2 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v1, float v2) { \
float3 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
r.z = fnc(v1.z, v2); \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v1, float v2) { \
float4 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
r.z = fnc(v1.z, v2); \
r.w = fnc(v1.w, v2); \
return r; \
}
#define FN_FUNC_FN_IN(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 v2) { \
float2 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 v2) { \
float3 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 v2) { \
float4 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
r.w = fnc(v1.w, v2.w); \
return r; \
}
#define FN_FUNC_FN_I(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v1, int v2) { \
float2 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v1, int v2) { \
float3 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
r.z = fnc(v1.z, v2); \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v1, int v2) { \
float4 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
r.z = fnc(v1.z, v2); \
r.w = fnc(v1.w, v2); \
return r; \
}
#define FN_FUNC_FN_PFN(fnc) \
extern float2 __attribute__((overloadable)) \
fnc(float2 v1, float2 *v2) { \
float2 r; \
float t[2]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
v2->x = t[0]; \
v2->y = t[1]; \
return r; \
} \
extern float3 __attribute__((overloadable)) \
fnc(float3 v1, float3 *v2) { \
float3 r; \
float t[3]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
r.z = fnc(v1.z, &t[2]); \
v2->x = t[0]; \
v2->y = t[1]; \
v2->z = t[2]; \
return r; \
} \
extern float4 __attribute__((overloadable)) \
fnc(float4 v1, float4 *v2) { \
float4 r; \
float t[4]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
r.z = fnc(v1.z, &t[2]); \
r.w = fnc(v1.w, &t[3]); \
v2->x = t[0]; \
v2->y = t[1]; \
v2->z = t[2]; \
v2->w = t[3]; \
return r; \
}
#define FN_FUNC_FN_PIN(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 *v2) { \
float2 r; \
int t[2]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
v2->x = t[0]; \
v2->y = t[1]; \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 *v2) { \
float3 r; \
int t[3]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
r.z = fnc(v1.z, &t[2]); \
v2->x = t[0]; \
v2->y = t[1]; \
v2->z = t[2]; \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 *v2) { \
float4 r; \
int t[4]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
r.z = fnc(v1.z, &t[2]); \
r.w = fnc(v1.w, &t[3]); \
v2->x = t[0]; \
v2->y = t[1]; \
v2->z = t[2]; \
v2->w = t[3]; \
return r; \
}
#define FN_FUNC_FN_FN_FN(fnc) \
extern float2 __attribute__((overloadable)) \
fnc(float2 v1, float2 v2, float2 v3) { \
float2 r; \
r.x = fnc(v1.x, v2.x, v3.x); \
r.y = fnc(v1.y, v2.y, v3.y); \
return r; \
} \
extern float3 __attribute__((overloadable)) \
fnc(float3 v1, float3 v2, float3 v3) { \
float3 r; \
r.x = fnc(v1.x, v2.x, v3.x); \
r.y = fnc(v1.y, v2.y, v3.y); \
r.z = fnc(v1.z, v2.z, v3.z); \
return r; \
} \
extern float4 __attribute__((overloadable)) \
fnc(float4 v1, float4 v2, float4 v3) { \
float4 r; \
r.x = fnc(v1.x, v2.x, v3.x); \
r.y = fnc(v1.y, v2.y, v3.y); \
r.z = fnc(v1.z, v2.z, v3.z); \
r.w = fnc(v1.w, v2.w, v3.w); \
return r; \
}
#define FN_FUNC_FN_FN_PIN(fnc) \
extern float2 __attribute__((overloadable)) \
fnc(float2 v1, float2 v2, int2 *v3) { \
float2 r; \
int t[2]; \
r.x = fnc(v1.x, v2.x, &t[0]); \
r.y = fnc(v1.y, v2.y, &t[1]); \
v3->x = t[0]; \
v3->y = t[1]; \
return r; \
} \
extern float3 __attribute__((overloadable)) \
fnc(float3 v1, float3 v2, int3 *v3) { \
float3 r; \
int t[3]; \
r.x = fnc(v1.x, v2.x, &t[0]); \
r.y = fnc(v1.y, v2.y, &t[1]); \
r.z = fnc(v1.z, v2.z, &t[2]); \
v3->x = t[0]; \
v3->y = t[1]; \
v3->z = t[2]; \
return r; \
} \
extern float4 __attribute__((overloadable)) \
fnc(float4 v1, float4 v2, int4 *v3) { \
float4 r; \
int t[4]; \
r.x = fnc(v1.x, v2.x, &t[0]); \
r.y = fnc(v1.y, v2.y, &t[1]); \
r.z = fnc(v1.z, v2.z, &t[2]); \
r.w = fnc(v1.w, v2.w, &t[3]); \
v3->x = t[0]; \
v3->y = t[1]; \
v3->z = t[2]; \
v3->w = t[3]; \
return r; \
}
static const int iposinf = 0x7f800000;
static const int ineginf = 0xff800000;
static const float posinf() {
float f = *((float*)&iposinf);
return f;
}
static const float neginf() {
float f = *((float*)&ineginf);
return f;
}
static bool isinf(float f) {
int i = *((int*)(void*)&f);
return (i == iposinf) || (i == ineginf);
}
static bool isnan(float f) {
int i = *((int*)(void*)&f);
return (((i & 0x7f800000) == 0x7f800000) && (i & 0x007fffff));
}
static bool isposzero(float f) {
int i = *((int*)(void*)&f);
return (i == 0x00000000);
}
static bool isnegzero(float f) {
int i = *((int*)(void*)&f);
return (i == 0x80000000);
}
static bool iszero(float f) {
return isposzero(f) || isnegzero(f);
}
extern float __attribute__((overloadable)) acos(float);
FN_FUNC_FN(acos)
extern float __attribute__((overloadable)) acosh(float);
FN_FUNC_FN(acosh)
extern float __attribute__((overloadable)) acospi(float v) {
return acos(v) / M_PI;
}
FN_FUNC_FN(acospi)
extern float __attribute__((overloadable)) asin(float);
FN_FUNC_FN(asin)
extern float __attribute__((overloadable)) asinh(float);
FN_FUNC_FN(asinh)
extern float __attribute__((overloadable)) asinpi(float v) {
return asin(v) / M_PI;
}
FN_FUNC_FN(asinpi)
extern float __attribute__((overloadable)) atan(float);
FN_FUNC_FN(atan)
extern float __attribute__((overloadable)) atan2(float, float);
FN_FUNC_FN_FN(atan2)
extern float __attribute__((overloadable)) atanh(float);
FN_FUNC_FN(atanh)
extern float __attribute__((overloadable)) atanpi(float v) {
return atan(v) / M_PI;
}
FN_FUNC_FN(atanpi)
extern float __attribute__((overloadable)) atan2pi(float y, float x) {
return atan2(y, x) / M_PI;
}
FN_FUNC_FN_FN(atan2pi)
extern float __attribute__((overloadable)) cbrt(float);
FN_FUNC_FN(cbrt)
extern float __attribute__((overloadable)) ceil(float);
FN_FUNC_FN(ceil)
extern float __attribute__((overloadable)) copysign(float, float);
FN_FUNC_FN_FN(copysign)
extern float __attribute__((overloadable)) cos(float);
FN_FUNC_FN(cos)
extern float __attribute__((overloadable)) cosh(float);
FN_FUNC_FN(cosh)
extern float __attribute__((overloadable)) cospi(float v) {
return cos(v * M_PI);
}
FN_FUNC_FN(cospi)
extern float __attribute__((overloadable)) erfc(float);
FN_FUNC_FN(erfc)
extern float __attribute__((overloadable)) erf(float);
FN_FUNC_FN(erf)
extern float __attribute__((overloadable)) exp(float);
FN_FUNC_FN(exp)
extern float __attribute__((overloadable)) exp2(float);
FN_FUNC_FN(exp2)
extern float __attribute__((overloadable)) pow(float, float);
extern float __attribute__((overloadable)) exp10(float v) {
return exp2(v * 3.321928095f);
}
FN_FUNC_FN(exp10)
extern float __attribute__((overloadable)) expm1(float);
FN_FUNC_FN(expm1)
extern float __attribute__((overloadable)) fabs(float v) {
int i = *((int*)(void*)&v) & 0x7fffffff;
return *((float*)(void*)&i);
}
FN_FUNC_FN(fabs)
extern float __attribute__((overloadable)) fdim(float, float);
FN_FUNC_FN_FN(fdim)
extern float __attribute__((overloadable)) floor(float);
FN_FUNC_FN(floor)
extern float __attribute__((overloadable)) fma(float, float, float);
FN_FUNC_FN_FN_FN(fma)
extern float __attribute__((overloadable)) fmin(float, float);
extern float __attribute__((overloadable)) fmod(float, float);
FN_FUNC_FN_FN(fmod)
extern float __attribute__((overloadable)) fract(float v, float *iptr) {
int i = (int)floor(v);
if (iptr) {
iptr[0] = i;
}
return fmin(v - i, 0x1.fffffep-1f);
}
FN_FUNC_FN_PFN(fract)
extern float __attribute__((overloadable)) frexp(float, int *);
FN_FUNC_FN_PIN(frexp)
extern float __attribute__((overloadable)) hypot(float, float);
FN_FUNC_FN_FN(hypot)
extern int __attribute__((overloadable)) ilogb(float);
IN_FUNC_FN(ilogb)
extern float __attribute__((overloadable)) ldexp(float, int);
FN_FUNC_FN_IN(ldexp)
FN_FUNC_FN_I(ldexp)
extern float __attribute__((overloadable)) lgamma(float);
FN_FUNC_FN(lgamma)
extern float __attribute__((overloadable)) lgamma(float, int*);
FN_FUNC_FN_PIN(lgamma)
extern float __attribute__((overloadable)) log(float);
FN_FUNC_FN(log)
extern float __attribute__((overloadable)) log10(float);
FN_FUNC_FN(log10)
extern float __attribute__((overloadable)) log2(float v) {
return log10(v) * 3.321928095f;
}
FN_FUNC_FN(log2)
extern float __attribute__((overloadable)) log1p(float);
FN_FUNC_FN(log1p)
extern float __attribute__((overloadable)) logb(float);
FN_FUNC_FN(logb)
extern float __attribute__((overloadable)) mad(float a, float b, float c) {
return a * b + c;
}
extern float2 __attribute__((overloadable)) mad(float2 a, float2 b, float2 c) {
return a * b + c;
}
extern float3 __attribute__((overloadable)) mad(float3 a, float3 b, float3 c) {
return a * b + c;
}
extern float4 __attribute__((overloadable)) mad(float4 a, float4 b, float4 c) {
return a * b + c;
}
extern float __attribute__((overloadable)) modf(float, float *);
FN_FUNC_FN_PFN(modf);
extern float __attribute__((overloadable)) nan(uint v) {
float f[1];
uint32_t *ip = (uint32_t *)f;
*ip = v | 0x7fc00000;
return f[0];
}
extern float __attribute__((overloadable)) nextafter(float, float);
FN_FUNC_FN_FN(nextafter)
FN_FUNC_FN_FN(pow)
extern float __attribute__((overloadable)) pown(float v, int p) {
/* The mantissa of a float has fewer bits than an int (24 effective vs. 31).
* For very large ints, we'll lose whether the exponent is even or odd, making
* the selection of a correct sign incorrect. We correct this. Use copysign
* to handle the negative zero case.
*/
float sign = (p & 0x1) ? copysign(1.f, v) : 1.f;
float f = pow(v, (float)p);
return copysign(f, sign);
}
FN_FUNC_FN_IN(pown)
extern float __attribute__((overloadable)) powr(float v, float p) {
return pow(v, p);
}
extern float2 __attribute__((overloadable)) powr(float2 v, float2 p) {
return pow(v, p);
}
extern float3 __attribute__((overloadable)) powr(float3 v, float3 p) {
return pow(v, p);
}
extern float4 __attribute__((overloadable)) powr(float4 v, float4 p) {
return pow(v, p);
}
extern float __attribute__((overloadable)) remainder(float, float);
FN_FUNC_FN_FN(remainder)
extern float __attribute__((overloadable)) remquo(float, float, int *);
FN_FUNC_FN_FN_PIN(remquo)
extern float __attribute__((overloadable)) rint(float);
FN_FUNC_FN(rint)
extern float __attribute__((overloadable)) rootn(float v, int r) {
if (r == 0) {
return posinf(0);
}
if (iszero(v)) {
if (r < 0) {
if (r & 1) {
return copysign(posinf(), v);
} else {
return posinf();
}
} else {
if (r & 1) {
return copysign(0.f, v);
} else {
return 0.f;
}
}
}
if (!isinf(v) && !isnan(v) && (v < 0.f)) {
if (r & 1) {
return (-1.f * pow(-1.f * v, 1.f / r));
} else {
return nan(0);
}
}
return pow(v, 1.f / r);
}
FN_FUNC_FN_IN(rootn);
extern float __attribute__((overloadable)) round(float);
FN_FUNC_FN(round)
extern float __attribute__((overloadable)) sqrt(float);
extern float __attribute__((overloadable)) rsqrt(float v) {
return 1.f / sqrt(v);
}
#if !defined(__i386__) && !defined(__x86_64__)
FN_FUNC_FN(sqrt)
#else
extern float2 __attribute__((overloadable)) sqrt(float2);
extern float3 __attribute__((overloadable)) sqrt(float3);
extern float4 __attribute__((overloadable)) sqrt(float4);
#endif // !defined(__i386__) && !defined(__x86_64__)
FN_FUNC_FN(rsqrt)
extern float __attribute__((overloadable)) sin(float);
FN_FUNC_FN(sin)
extern float __attribute__((overloadable)) sincos(float v, float *cosptr) {
*cosptr = cos(v);
return sin(v);
}
extern float2 __attribute__((overloadable)) sincos(float2 v, float2 *cosptr) {
*cosptr = cos(v);
return sin(v);
}
extern float3 __attribute__((overloadable)) sincos(float3 v, float3 *cosptr) {
*cosptr = cos(v);
return sin(v);
}
extern float4 __attribute__((overloadable)) sincos(float4 v, float4 *cosptr) {
*cosptr = cos(v);
return sin(v);
}
extern float __attribute__((overloadable)) sinh(float);
FN_FUNC_FN(sinh)
extern float __attribute__((overloadable)) sinpi(float v) {
return sin(v * M_PI);
}
FN_FUNC_FN(sinpi)
extern float __attribute__((overloadable)) tan(float);
FN_FUNC_FN(tan)
extern float __attribute__((overloadable)) tanh(float);
FN_FUNC_FN(tanh)
extern float __attribute__((overloadable)) tanpi(float v) {
return tan(v * M_PI);
}
FN_FUNC_FN(tanpi)
extern float __attribute__((overloadable)) tgamma(float);
FN_FUNC_FN(tgamma)
extern float __attribute__((overloadable)) trunc(float);
FN_FUNC_FN(trunc)
// Int ops (partial), 6.11.3
#define XN_FUNC_YN(typeout, fnc, typein) \
extern typeout __attribute__((overloadable)) fnc(typein); \
extern typeout##2 __attribute__((overloadable)) fnc(typein##2 v) { \
typeout##2 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
return r; \
} \
extern typeout##3 __attribute__((overloadable)) fnc(typein##3 v) { \
typeout##3 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
return r; \
} \
extern typeout##4 __attribute__((overloadable)) fnc(typein##4 v) { \
typeout##4 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
r.w = fnc(v.w); \
return r; \
}
#define UIN_FUNC_IN(fnc) \
XN_FUNC_YN(uchar, fnc, char) \
XN_FUNC_YN(ushort, fnc, short) \
XN_FUNC_YN(uint, fnc, int)
#define IN_FUNC_IN(fnc) \
XN_FUNC_YN(uchar, fnc, uchar) \
XN_FUNC_YN(char, fnc, char) \
XN_FUNC_YN(ushort, fnc, ushort) \
XN_FUNC_YN(short, fnc, short) \
XN_FUNC_YN(uint, fnc, uint) \
XN_FUNC_YN(int, fnc, int)
#define XN_FUNC_XN_XN_BODY(type, fnc, body) \
extern type __attribute__((overloadable)) \
fnc(type v1, type v2) { \
return body; \
} \
extern type##2 __attribute__((overloadable)) \
fnc(type##2 v1, type##2 v2) { \
type##2 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
return r; \
} \
extern type##3 __attribute__((overloadable)) \
fnc(type##3 v1, type##3 v2) { \
type##3 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
return r; \
} \
extern type##4 __attribute__((overloadable)) \
fnc(type##4 v1, type##4 v2) { \
type##4 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
r.w = fnc(v1.w, v2.w); \
return r; \
}
#define IN_FUNC_IN_IN_BODY(fnc, body) \
XN_FUNC_XN_XN_BODY(uchar, fnc, body) \
XN_FUNC_XN_XN_BODY(char, fnc, body) \
XN_FUNC_XN_XN_BODY(ushort, fnc, body) \
XN_FUNC_XN_XN_BODY(short, fnc, body) \
XN_FUNC_XN_XN_BODY(uint, fnc, body) \
XN_FUNC_XN_XN_BODY(int, fnc, body) \
XN_FUNC_XN_XN_BODY(float, fnc, body)
/**
* abs
*/
extern uint32_t __attribute__((overloadable)) abs(int32_t v) {
if (v < 0)
return -v;
return v;
}
extern uint16_t __attribute__((overloadable)) abs(int16_t v) {
if (v < 0)
return -v;
return v;
}
extern uint8_t __attribute__((overloadable)) abs(int8_t v) {
if (v < 0)
return -v;
return v;
}
/**
* clz
* __builtin_clz only accepts a 32-bit unsigned int, so every input will be
* expanded to 32 bits. For our smaller data types, we need to subtract off
* these unused top bits (that will be always be composed of zeros).
*/
extern uint32_t __attribute__((overloadable)) clz(uint32_t v) {
return __builtin_clz(v);
}
extern uint16_t __attribute__((overloadable)) clz(uint16_t v) {
return __builtin_clz(v) - 16;
}
extern uint8_t __attribute__((overloadable)) clz(uint8_t v) {
return __builtin_clz(v) - 24;
}
extern int32_t __attribute__((overloadable)) clz(int32_t v) {
return __builtin_clz(v);
}
extern int16_t __attribute__((overloadable)) clz(int16_t v) {
return __builtin_clz(((uint32_t)v) & 0x0000ffff) - 16;
}
extern int8_t __attribute__((overloadable)) clz(int8_t v) {
return __builtin_clz(((uint32_t)v) & 0x000000ff) - 24;
}
UIN_FUNC_IN(abs)
IN_FUNC_IN(clz)
// 6.11.4
extern float __attribute__((overloadable)) degrees(float radians) {
return radians * (180.f / M_PI);
}
extern float2 __attribute__((overloadable)) degrees(float2 radians) {
return radians * (180.f / M_PI);
}
extern float3 __attribute__((overloadable)) degrees(float3 radians) {
return radians * (180.f / M_PI);
}
extern float4 __attribute__((overloadable)) degrees(float4 radians) {
return radians * (180.f / M_PI);
}
extern float __attribute__((overloadable)) mix(float start, float stop, float amount) {
return start + (stop - start) * amount;
}
extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float2 amount) {
return start + (stop - start) * amount;
}
extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float3 amount) {
return start + (stop - start) * amount;
}
extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float4 amount) {
return start + (stop - start) * amount;
}
extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float amount) {
return start + (stop - start) * amount;
}
extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float amount) {
return start + (stop - start) * amount;
}
extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float amount) {
return start + (stop - start) * amount;
}
extern float __attribute__((overloadable)) radians(float degrees) {
return degrees * (M_PI / 180.f);
}
extern float2 __attribute__((overloadable)) radians(float2 degrees) {
return degrees * (M_PI / 180.f);
}
extern float3 __attribute__((overloadable)) radians(float3 degrees) {
return degrees * (M_PI / 180.f);
}
extern float4 __attribute__((overloadable)) radians(float4 degrees) {
return degrees * (M_PI / 180.f);
}
extern float __attribute__((overloadable)) step(float edge, float v) {
return (v < edge) ? 0.f : 1.f;
}
extern float2 __attribute__((overloadable)) step(float2 edge, float2 v) {
float2 r;
r.x = (v.x < edge.x) ? 0.f : 1.f;
r.y = (v.y < edge.y) ? 0.f : 1.f;
return r;
}
extern float3 __attribute__((overloadable)) step(float3 edge, float3 v) {
float3 r;
r.x = (v.x < edge.x) ? 0.f : 1.f;
r.y = (v.y < edge.y) ? 0.f : 1.f;
r.z = (v.z < edge.z) ? 0.f : 1.f;
return r;
}
extern float4 __attribute__((overloadable)) step(float4 edge, float4 v) {
float4 r;
r.x = (v.x < edge.x) ? 0.f : 1.f;
r.y = (v.y < edge.y) ? 0.f : 1.f;
r.z = (v.z < edge.z) ? 0.f : 1.f;
r.w = (v.w < edge.w) ? 0.f : 1.f;
return r;
}
extern float2 __attribute__((overloadable)) step(float2 edge, float v) {
float2 r;
r.x = (v < edge.x) ? 0.f : 1.f;
r.y = (v < edge.y) ? 0.f : 1.f;
return r;
}
extern float3 __attribute__((overloadable)) step(float3 edge, float v) {
float3 r;
r.x = (v < edge.x) ? 0.f : 1.f;
r.y = (v < edge.y) ? 0.f : 1.f;
r.z = (v < edge.z) ? 0.f : 1.f;
return r;
}
extern float4 __attribute__((overloadable)) step(float4 edge, float v) {
float4 r;
r.x = (v < edge.x) ? 0.f : 1.f;
r.y = (v < edge.y) ? 0.f : 1.f;
r.z = (v < edge.z) ? 0.f : 1.f;
r.w = (v < edge.w) ? 0.f : 1.f;
return r;
}
extern float2 __attribute__((overloadable)) step(float edge, float2 v) {
float2 r;
r.x = (v.x < edge) ? 0.f : 1.f;
r.y = (v.y < edge) ? 0.f : 1.f;
return r;
}
extern float3 __attribute__((overloadable)) step(float edge, float3 v) {
float3 r;
r.x = (v.x < edge) ? 0.f : 1.f;
r.y = (v.y < edge) ? 0.f : 1.f;
r.z = (v.z < edge) ? 0.f : 1.f;
return r;
}
extern float4 __attribute__((overloadable)) step(float edge, float4 v) {
float4 r;
r.x = (v.x < edge) ? 0.f : 1.f;
r.y = (v.y < edge) ? 0.f : 1.f;
r.z = (v.z < edge) ? 0.f : 1.f;
r.w = (v.w < edge) ? 0.f : 1.f;
return r;
}
extern float __attribute__((overloadable)) smoothstep(float, float, float);
extern float2 __attribute__((overloadable)) smoothstep(float2, float2, float2);
extern float3 __attribute__((overloadable)) smoothstep(float3, float3, float3);
extern float4 __attribute__((overloadable)) smoothstep(float4, float4, float4);
extern float2 __attribute__((overloadable)) smoothstep(float, float, float2);
extern float3 __attribute__((overloadable)) smoothstep(float, float, float3);
extern float4 __attribute__((overloadable)) smoothstep(float, float, float4);
extern float __attribute__((overloadable)) sign(float v) {
if (v > 0) return 1.f;
if (v < 0) return -1.f;
return v;
}
FN_FUNC_FN(sign)
// 6.11.5
extern float3 __attribute__((overloadable)) cross(float3 lhs, float3 rhs) {
float3 r;
r.x = lhs.y * rhs.z - lhs.z * rhs.y;
r.y = lhs.z * rhs.x - lhs.x * rhs.z;
r.z = lhs.x * rhs.y - lhs.y * rhs.x;
return r;
}
extern float4 __attribute__((overloadable)) cross(float4 lhs, float4 rhs) {
float4 r;
r.x = lhs.y * rhs.z - lhs.z * rhs.y;
r.y = lhs.z * rhs.x - lhs.x * rhs.z;
r.z = lhs.x * rhs.y - lhs.y * rhs.x;
r.w = 0.f;
return r;
}
#if !defined(__i386__) && !defined(__x86_64__)
extern float __attribute__((overloadable)) dot(float lhs, float rhs) {
return lhs * rhs;
}
extern float __attribute__((overloadable)) dot(float2 lhs, float2 rhs) {
return lhs.x*rhs.x + lhs.y*rhs.y;
}
extern float __attribute__((overloadable)) dot(float3 lhs, float3 rhs) {
return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z;
}
extern float __attribute__((overloadable)) dot(float4 lhs, float4 rhs) {
return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z + lhs.w*rhs.w;
}
extern float __attribute__((overloadable)) length(float v) {
return fabs(v);
}
extern float __attribute__((overloadable)) length(float2 v) {
return sqrt(v.x*v.x + v.y*v.y);
}
extern float __attribute__((overloadable)) length(float3 v) {
return sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
}
extern float __attribute__((overloadable)) length(float4 v) {
return sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w);
}
#else
extern float __attribute__((overloadable)) length(float v);
extern float __attribute__((overloadable)) length(float2 v);
extern float __attribute__((overloadable)) length(float3 v);
extern float __attribute__((overloadable)) length(float4 v);
#endif // !defined(__i386__) && !defined(__x86_64__)
extern float __attribute__((overloadable)) distance(float lhs, float rhs) {
return length(lhs - rhs);
}
extern float __attribute__((overloadable)) distance(float2 lhs, float2 rhs) {
return length(lhs - rhs);
}
extern float __attribute__((overloadable)) distance(float3 lhs, float3 rhs) {
return length(lhs - rhs);
}
extern float __attribute__((overloadable)) distance(float4 lhs, float4 rhs) {
return length(lhs - rhs);
}
/* For the normalization functions, vectors of length 0 should simply be
* returned (i.e. all the components of that vector are 0).
*/
extern float __attribute__((overloadable)) normalize(float v) {
if (v == 0.0f) {
return 0.0f;
} else if (v < 0.0f) {
return -1.0f;
} else {
return 1.0f;
}
}
extern float2 __attribute__((overloadable)) normalize(float2 v) {
float l = length(v);
return l == 0.0f ? v : v / l;
}
extern float3 __attribute__((overloadable)) normalize(float3 v) {
float l = length(v);
return l == 0.0f ? v : v / l;
}
extern float4 __attribute__((overloadable)) normalize(float4 v) {
float l = length(v);
return l == 0.0f ? v : v / l;
}
extern float __attribute__((overloadable)) half_sqrt(float v) {
return sqrt(v);
}
FN_FUNC_FN(half_sqrt)
extern float __attribute__((overloadable)) fast_length(float v) {
return fabs(v);
}
extern float __attribute__((overloadable)) fast_length(float2 v) {
return half_sqrt(v.x*v.x + v.y*v.y);
}
extern float __attribute__((overloadable)) fast_length(float3 v) {
return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
}
extern float __attribute__((overloadable)) fast_length(float4 v) {
return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w);
}
extern float __attribute__((overloadable)) fast_distance(float lhs, float rhs) {
return fast_length(lhs - rhs);
}
extern float __attribute__((overloadable)) fast_distance(float2 lhs, float2 rhs) {
return fast_length(lhs - rhs);
}
extern float __attribute__((overloadable)) fast_distance(float3 lhs, float3 rhs) {
return fast_length(lhs - rhs);
}
extern float __attribute__((overloadable)) fast_distance(float4 lhs, float4 rhs) {
return fast_length(lhs - rhs);
}
extern float __attribute__((overloadable)) half_rsqrt(float);
/* For the normalization functions, vectors of length 0 should simply be
* returned (i.e. all the components of that vector are 0).
*/
extern float __attribute__((overloadable)) fast_normalize(float v) {
if (v == 0.0f) {
return 0.0f;
} else if (v < 0.0f) {
return -1.0f;
} else {
return 1.0f;
}
}
// If the length is 0, then rlength should be NaN.
extern float2 __attribute__((overloadable)) fast_normalize(float2 v) {
float rlength = half_rsqrt(v.x*v.x + v.y*v.y);
return (rlength == rlength) ? v * rlength : v;
}
extern float3 __attribute__((overloadable)) fast_normalize(float3 v) {
float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z);
return (rlength == rlength) ? v * rlength : v;
}
extern float4 __attribute__((overloadable)) fast_normalize(float4 v) {
float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w);
return (rlength == rlength) ? v * rlength : v;
}
extern float __attribute__((overloadable)) half_recip(float v) {
return 1.f / v;
}
/*
extern float __attribute__((overloadable)) approx_atan(float x) {
if (x == 0.f)
return 0.f;
if (x < 0.f)
return -1.f * approx_atan(-1.f * x);
if (x > 1.f)
return M_PI_2 - approx_atan(approx_recip(x));
return x * approx_recip(1.f + 0.28f * x*x);
}
FN_FUNC_FN(approx_atan)
*/
typedef union
{
float fv;
int32_t iv;
} ieee_float_shape_type;
/* Get a 32 bit int from a float. */
#define GET_FLOAT_WORD(i,d) \
do { \
ieee_float_shape_type gf_u; \
gf_u.fv = (d); \
(i) = gf_u.iv; \
} while (0)
/* Set a float from a 32 bit int. */
#define SET_FLOAT_WORD(d,i) \
do { \
ieee_float_shape_type sf_u; \
sf_u.iv = (i); \
(d) = sf_u.fv; \
} while (0)
// Valid -125 to 125
extern float __attribute__((overloadable)) native_exp2(float v) {
int32_t iv = (int)v;
int32_t x = iv + (iv >> 31); // ~floor(v)
float r = (v - x);
float fo;
SET_FLOAT_WORD(fo, (x + 127) << 23);
r *= 0.694f; // ~ log(e) / log(2)
float r2 = r*r;
float adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f);
return fo * adj;
}
extern float2 __attribute__((overloadable)) native_exp2(float2 v) {
int2 iv = convert_int2(v);
int2 x = iv + (iv >> (int2)31);//floor(v);
float2 r = (v - convert_float2(x));
x += 127;
float2 fo = (float2)(x << (int2)23);
r *= 0.694f; // ~ log(e) / log(2)
float2 r2 = r*r;
float2 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f);
return fo * adj;
}
extern float4 __attribute__((overloadable)) native_exp2(float4 v) {
int4 iv = convert_int4(v);
int4 x = iv + (iv >> (int4)31);//floor(v);
float4 r = (v - convert_float4(x));
x += 127;
float4 fo = (float4)(x << (int4)23);
r *= 0.694f; // ~ log(e) / log(2)
float4 r2 = r*r;
float4 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f);
return fo * adj;
}
extern float3 __attribute__((overloadable)) native_exp2(float3 v) {
float4 t = 1.f;
t.xyz = v;
return native_exp2(t).xyz;
}
extern float __attribute__((overloadable)) native_exp(float v) {
return native_exp2(v * 1.442695041f);
}
extern float2 __attribute__((overloadable)) native_exp(float2 v) {
return native_exp2(v * 1.442695041f);
}
extern float3 __attribute__((overloadable)) native_exp(float3 v) {
return native_exp2(v * 1.442695041f);
}
extern float4 __attribute__((overloadable)) native_exp(float4 v) {
return native_exp2(v * 1.442695041f);
}
extern float __attribute__((overloadable)) native_exp10(float v) {
return native_exp2(v * 3.321928095f);
}
extern float2 __attribute__((overloadable)) native_exp10(float2 v) {
return native_exp2(v * 3.321928095f);
}
extern float3 __attribute__((overloadable)) native_exp10(float3 v) {
return native_exp2(v * 3.321928095f);
}
extern float4 __attribute__((overloadable)) native_exp10(float4 v) {
return native_exp2(v * 3.321928095f);
}
extern float __attribute__((overloadable)) native_log2(float v) {
int32_t ibits;
GET_FLOAT_WORD(ibits, v);
int32_t e = (ibits >> 23) & 0xff;
ibits &= 0x7fffff;
ibits |= 127 << 23;
float ir;
SET_FLOAT_WORD(ir, ibits);
ir -= 1.5f;
float ir2 = ir*ir;
float adj2 = (0.405465108f / 0.693147181f) +
((0.666666667f / 0.693147181f) * ir) -
((0.222222222f / 0.693147181f) * ir2) +
((0.098765432f / 0.693147181f) * ir*ir2) -
((0.049382716f / 0.693147181f) * ir2*ir2) +
((0.026337449f / 0.693147181f) * ir*ir2*ir2) -
((0.014631916f / 0.693147181f) * ir2*ir2*ir2);
return (float)(e - 127) + adj2;
}
extern float2 __attribute__((overloadable)) native_log2(float2 v) {
float2 v2 = {native_log2(v.x), native_log2(v.y)};
return v2;
}
extern float3 __attribute__((overloadable)) native_log2(float3 v) {
float3 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z)};
return v2;
}
extern float4 __attribute__((overloadable)) native_log2(float4 v) {
float4 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z), native_log2(v.w)};
return v2;
}
extern float __attribute__((overloadable)) native_log(float v) {
return native_log2(v) * (1.f / 1.442695041f);
}
extern float2 __attribute__((overloadable)) native_log(float2 v) {
return native_log2(v) * (1.f / 1.442695041f);
}
extern float3 __attribute__((overloadable)) native_log(float3 v) {
return native_log2(v) * (1.f / 1.442695041f);
}
extern float4 __attribute__((overloadable)) native_log(float4 v) {
return native_log2(v) * (1.f / 1.442695041f);
}
extern float __attribute__((overloadable)) native_log10(float v) {
return native_log2(v) * (1.f / 3.321928095f);
}
extern float2 __attribute__((overloadable)) native_log10(float2 v) {
return native_log2(v) * (1.f / 3.321928095f);
}
extern float3 __attribute__((overloadable)) native_log10(float3 v) {
return native_log2(v) * (1.f / 3.321928095f);
}
extern float4 __attribute__((overloadable)) native_log10(float4 v) {
return native_log2(v) * (1.f / 3.321928095f);
}
extern float __attribute__((overloadable)) native_powr(float v, float y) {
float v2 = native_log2(v);
v2 = fmax(v2 * y, -125.f);
return native_exp2(v2);
}
extern float2 __attribute__((overloadable)) native_powr(float2 v, float2 y) {
float2 v2 = native_log2(v);
v2 = fmax(v2 * y, -125.f);
return native_exp2(v2);
}
extern float3 __attribute__((overloadable)) native_powr(float3 v, float3 y) {
float3 v2 = native_log2(v);
v2 = fmax(v2 * y, -125.f);
return native_exp2(v2);
}
extern float4 __attribute__((overloadable)) native_powr(float4 v, float4 y) {
float4 v2 = native_log2(v);
v2 = fmax(v2 * y, -125.f);
return native_exp2(v2);
}
extern double __attribute__((overloadable)) min(double v1, double v2) {
return v1 < v2 ? v1 : v2;
}
extern double2 __attribute__((overloadable)) min(double2 v1, double2 v2) {
double2 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
return r;
}
extern double3 __attribute__((overloadable)) min(double3 v1, double3 v2) {
double3 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
return r;
}
extern double4 __attribute__((overloadable)) min(double4 v1, double4 v2) {
double4 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
r.w = v1.w < v2.w ? v1.w : v2.w;
return r;
}
extern long __attribute__((overloadable)) min(long v1, long v2) {
return v1 < v2 ? v1 : v2;
}
extern long2 __attribute__((overloadable)) min(long2 v1, long2 v2) {
long2 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
return r;
}
extern long3 __attribute__((overloadable)) min(long3 v1, long3 v2) {
long3 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
return r;
}
extern long4 __attribute__((overloadable)) min(long4 v1, long4 v2) {
long4 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
r.w = v1.w < v2.w ? v1.w : v2.w;
return r;
}
extern ulong __attribute__((overloadable)) min(ulong v1, ulong v2) {
return v1 < v2 ? v1 : v2;
}
extern ulong2 __attribute__((overloadable)) min(ulong2 v1, ulong2 v2) {
ulong2 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
return r;
}
extern ulong3 __attribute__((overloadable)) min(ulong3 v1, ulong3 v2) {
ulong3 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
return r;
}
extern ulong4 __attribute__((overloadable)) min(ulong4 v1, ulong4 v2) {
ulong4 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
r.w = v1.w < v2.w ? v1.w : v2.w;
return r;
}
extern double __attribute__((overloadable)) max(double v1, double v2) {
return v1 > v2 ? v1 : v2;
}
extern double2 __attribute__((overloadable)) max(double2 v1, double2 v2) {
double2 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
return r;
}
extern double3 __attribute__((overloadable)) max(double3 v1, double3 v2) {
double3 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
return r;
}
extern double4 __attribute__((overloadable)) max(double4 v1, double4 v2) {
double4 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
r.w = v1.w > v2.w ? v1.w : v2.w;
return r;
}
extern long __attribute__((overloadable)) max(long v1, long v2) {
return v1 > v2 ? v1 : v2;
}
extern long2 __attribute__((overloadable)) max(long2 v1, long2 v2) {
long2 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
return r;
}
extern long3 __attribute__((overloadable)) max(long3 v1, long3 v2) {
long3 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
return r;
}
extern long4 __attribute__((overloadable)) max(long4 v1, long4 v2) {
long4 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
r.w = v1.w > v2.w ? v1.w : v2.w;
return r;
}
extern ulong __attribute__((overloadable)) max(ulong v1, ulong v2) {
return v1 > v2 ? v1 : v2;
}
extern ulong2 __attribute__((overloadable)) max(ulong2 v1, ulong2 v2) {
ulong2 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
return r;
}
extern ulong3 __attribute__((overloadable)) max(ulong3 v1, ulong3 v2) {
ulong3 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
return r;
}
extern ulong4 __attribute__((overloadable)) max(ulong4 v1, ulong4 v2) {
ulong4 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
r.w = v1.w > v2.w ? v1.w : v2.w;
return r;
}
#define THUNK_NATIVE_F(fn) \
float __attribute__((overloadable)) native_##fn(float v) { return fn(v);} \
float2 __attribute__((overloadable)) native_##fn(float2 v) { return fn(v);} \
float3 __attribute__((overloadable)) native_##fn(float3 v) { return fn(v);} \
float4 __attribute__((overloadable)) native_##fn(float4 v) { return fn(v);}
#define THUNK_NATIVE_F_F(fn) \
float __attribute__((overloadable)) native_##fn(float v1, float v2) { return fn(v1, v2);} \
float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 v2) { return fn(v1, v2);} \
float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 v2) { return fn(v1, v2);} \
float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 v2) { return fn(v1, v2);}
#define THUNK_NATIVE_F_FP(fn) \
float __attribute__((overloadable)) native_##fn(float v1, float *v2) { return fn(v1, v2);} \
float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 *v2) { return fn(v1, v2);} \
float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 *v2) { return fn(v1, v2);} \
float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 *v2) { return fn(v1, v2);}
#define THUNK_NATIVE_F_I(fn) \
float __attribute__((overloadable)) native_##fn(float v1, int v2) { return fn(v1, v2);} \
float2 __attribute__((overloadable)) native_##fn(float2 v1, int2 v2) { return fn(v1, v2);} \
float3 __attribute__((overloadable)) native_##fn(float3 v1, int3 v2) { return fn(v1, v2);} \
float4 __attribute__((overloadable)) native_##fn(float4 v1, int4 v2) { return fn(v1, v2);}
THUNK_NATIVE_F(acos)
THUNK_NATIVE_F(acosh)
THUNK_NATIVE_F(acospi)
THUNK_NATIVE_F(asin)
THUNK_NATIVE_F(asinh)
THUNK_NATIVE_F(asinpi)
THUNK_NATIVE_F(atan)
THUNK_NATIVE_F_F(atan2)
THUNK_NATIVE_F(atanh)
THUNK_NATIVE_F(atanpi)
THUNK_NATIVE_F_F(atan2pi)
THUNK_NATIVE_F(cbrt)
THUNK_NATIVE_F(cos)
THUNK_NATIVE_F(cosh)
THUNK_NATIVE_F(cospi)
THUNK_NATIVE_F(expm1)
THUNK_NATIVE_F_F(hypot)
THUNK_NATIVE_F(log1p)
THUNK_NATIVE_F_I(rootn)
THUNK_NATIVE_F(rsqrt)
THUNK_NATIVE_F(sqrt)
THUNK_NATIVE_F(sin)
THUNK_NATIVE_F_FP(sincos)
THUNK_NATIVE_F(sinh)
THUNK_NATIVE_F(sinpi)
THUNK_NATIVE_F(tan)
THUNK_NATIVE_F(tanh)
THUNK_NATIVE_F(tanpi)
#undef THUNK_NATIVE_F
#undef THUNK_NATIVE_F_F
#undef THUNK_NATIVE_F_I
#undef THUNK_NATIVE_F_FP
float __attribute__((overloadable)) native_normalize(float v) { return fast_normalize(v);}
float2 __attribute__((overloadable)) native_normalize(float2 v) { return fast_normalize(v);}
float3 __attribute__((overloadable)) native_normalize(float3 v) { return fast_normalize(v);}
float4 __attribute__((overloadable)) native_normalize(float4 v) { return fast_normalize(v);}
float __attribute__((overloadable)) native_distance(float v1, float v2) { return fast_distance(v1, v2);}
float __attribute__((overloadable)) native_distance(float2 v1, float2 v2) { return fast_distance(v1, v2);}
float __attribute__((overloadable)) native_distance(float3 v1, float3 v2) { return fast_distance(v1, v2);}
float __attribute__((overloadable)) native_distance(float4 v1, float4 v2) { return fast_distance(v1, v2);}
float __attribute__((overloadable)) native_length(float v) { return fast_length(v);}
float __attribute__((overloadable)) native_length(float2 v) { return fast_length(v);}
float __attribute__((overloadable)) native_length(float3 v) { return fast_length(v);}
float __attribute__((overloadable)) native_length(float4 v) { return fast_length(v);}
float __attribute__((overloadable)) native_divide(float v1, float v2) { return v1 / v2;}
float2 __attribute__((overloadable)) native_divide(float2 v1, float2 v2) { return v1 / v2;}
float3 __attribute__((overloadable)) native_divide(float3 v1, float3 v2) { return v1 / v2;}
float4 __attribute__((overloadable)) native_divide(float4 v1, float4 v2) { return v1 / v2;}
float __attribute__((overloadable)) native_recip(float v) { return 1.f / v;}
float2 __attribute__((overloadable)) native_recip(float2 v) { return ((float2)1.f) / v;}
float3 __attribute__((overloadable)) native_recip(float3 v) { return ((float3)1.f) / v;}
float4 __attribute__((overloadable)) native_recip(float4 v) { return ((float4)1.f) / v;}
#undef FN_FUNC_FN
#undef IN_FUNC_FN
#undef FN_FUNC_FN_FN
#undef FN_FUNC_FN_F
#undef FN_FUNC_FN_IN
#undef FN_FUNC_FN_I
#undef FN_FUNC_FN_PFN
#undef FN_FUNC_FN_PIN
#undef FN_FUNC_FN_FN_FN
#undef FN_FUNC_FN_FN_PIN
#undef XN_FUNC_YN
#undef UIN_FUNC_IN
#undef IN_FUNC_IN
#undef XN_FUNC_XN_XN_BODY
#undef IN_FUNC_IN_IN_BODY