// Copyright (C) 2012 The Android Open Source Project
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. Neither the name of the project nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
#include <limits.h>
#include <sys/mman.h>
#include <cassert>
#include <cstdio>
#include <cstdlib>
#include <exception>
#include <pthread.h>
#include "cxxabi_defines.h"
#include "helper_func_internal.h"
namespace {
using namespace __cxxabiv1;
bool isOurCxxException(uint64_t exc) {
// Compatible with GNU
return exc == __gxx_exception_class;
}
void defaultExceptionCleanupFunc(_Unwind_Reason_Code reason,
_Unwind_Exception* exc) {
__cxa_free_exception(exc+1);
}
// Helper class used to ensure a lock is acquire immediately, and released
// on scope exit. Usage example:
//
// {
// AutoLock lock(some_mutex); // acquires the mutex.
// ... do stuff
// if (error)
// return; // releases mutex before returning.
// ... do other stuff.
// } // releases mutex before exiting scope.
//
class AutoLock {
public:
AutoLock(pthread_mutex_t& lock) : lock_(lock) {
pthread_mutex_lock(&lock_);
}
~AutoLock(void) {
pthread_mutex_unlock(&lock_);
}
private:
pthread_mutex_t& lock_;
AutoLock(const AutoLock&);
AutoLock& operator=(const AutoLock&);
};
// MMap-based memory allocator for fixed-sized items.
//
// IMPORTANT: This must be POD-struct compatible, which means:
// - No constructor or destructor.
// - No virtual methods.
//
// This allocates large blocks of memory, called 'slabs' that can contain
// several items of the same size. A slab contains an array of item slots,
// followed by a pointer, used to put all slabs in a single linked list.
class PageBasedAllocator {
public:
// Used to initialize this allocator to hold items of type |T|.
template <typename T>
void Init() {
InitExplicit(sizeof(T), __alignof__(T));
}
// Used to initialize this instance to hold items of |item_size| bytes,
// with alignment |align_size|.
void InitExplicit(size_t item_size, size_t align_size) {
const size_t ptr_size = sizeof(void*);
if (align_size < ptr_size)
align_size = ptr_size;
item_size_ = (item_size + align_size - 1) & ~(align_size - 1);
slab_next_offset_ = kSlabSize - ptr_size;
item_slab_count_ = slab_next_offset_ / item_size_;
pthread_mutex_init(&lock_, NULL);
free_items_ = NULL;
slab_list_ = NULL;
}
// Call this to deallocate this instance. This releases all pages directly.
// Ensure that all items are freed first, or bad things could happen.
void Deinit() {
pthread_mutex_lock(&lock_);
while (slab_list_) {
void* slab = slab_list_;
void* next_slab = *(void**)((char*)slab + slab_next_offset_);
slab_list_ = next_slab;
::munmap(slab, PAGE_SIZE);
}
pthread_mutex_unlock(&lock_);
pthread_mutex_destroy(&lock_);
}
// Allocate a new item, or NULL in case of failure.
void* Alloc() {
AutoLock lock(lock_);
if (!free_items_ && !AllocateSlab())
return NULL;
FreeItem* item = free_items_;
free_items_ = item->next;
::memset(item, 0, item_size_);
return item;
}
void Release(void* obj) {
if (!obj)
return;
AutoLock lock(lock_);
FreeItem* item = reinterpret_cast<FreeItem*>(obj);
item->next = free_items_;
free_items_ = item;
}
private:
static const size_t kSlabSize = PAGE_SIZE;
bool AllocateSlab() {
// No more free items, allocate a new slab with mmap().
void* new_slab = mmap(NULL, kSlabSize, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (new_slab == MAP_FAILED)
return false;
// Prepend to the slab list.
*((void**)((char*)new_slab + slab_next_offset_)) = slab_list_;
slab_list_ = new_slab;
// Put all item slots in the new slab into the free item list.
FreeItem** pparent = &free_items_;
FreeItem* item = reinterpret_cast<FreeItem*>(new_slab);
for (size_t n = 0; n < item_slab_count_; ++n) {
*pparent = item;
pparent = &item->next;
item = reinterpret_cast<FreeItem*>((char*)item + item_size_);
}
*pparent = NULL;
// Done.
return true;
}
struct FreeItem {
FreeItem* next;
};
size_t item_size_; // size of each item in bytes.
size_t item_slab_count_; // number of items in each slab.
size_t slab_next_offset_; // offset of pointer to next slab in list.
pthread_mutex_t lock_; // mutex synchronizing access to data below.
void* slab_list_; // Linked list of slabs.
FreeItem* free_items_; // Linked list of free items.
};
// Technical note:
// Use a pthread_key_t to hold the key used to store our thread-specific
// __cxa_eh_globals objects. The key is created and destroyed through
// a static C++ object.
//
// Due to a bug in the dynamic linker that was only fixed in Froyo, the
// static C++ destructor may be called with a value of NULL for the
// 'this' pointer. As such, any attempt to access any field in the
// object there will result in a crash. To work-around this, store
// the members of CxaThreadKey as static variables outside of the
// C++ object.
static pthread_key_t __cxa_thread_key;
static PageBasedAllocator __cxa_eh_globals_allocator;
class CxaThreadKey {
public:
// Called at program initialization time, or when the shared library
// is loaded through dlopen().
CxaThreadKey() {
if (pthread_key_create(&__cxa_thread_key, freeObject) != 0)
__gabixx::__fatal_error("Can't allocate C++ runtime pthread_key_t");
__cxa_eh_globals_allocator.Init<__cxa_eh_globals>();
}
// Called at program exit time, or when the shared library is
// unloaded through dlclose(). See note above.
~CxaThreadKey() {
__cxa_eh_globals_allocator.Deinit();
pthread_key_delete(__cxa_thread_key);
}
static __cxa_eh_globals* getFast() {
void* obj = pthread_getspecific(__cxa_thread_key);
return reinterpret_cast<__cxa_eh_globals*>(obj);
}
static __cxa_eh_globals* getSlow() {
void* obj = pthread_getspecific(__cxa_thread_key);
if (obj == NULL) {
// malloc() cannot be used here because this method is sometimes
// called from malloc() on Android, and this would dead-lock.
//
// More specifically, if the libc.debug.malloc system property is not 0
// on a userdebug or eng build of the platform, malloc() will call
// backtrace() to record stack traces of allocation. On ARM, this
// forces an unwinding operation which will call this function at
// some point.
obj = __cxa_eh_globals_allocator.Alloc();
if (!obj) {
// Shouldn't happen, but better be safe than sorry.
__gabixx::__fatal_error(
"Can't allocate thread-specific C++ runtime info block.");
}
pthread_setspecific(__cxa_thread_key, obj);
}
return reinterpret_cast<__cxa_eh_globals*>(obj);
}
private:
// Called when a thread is destroyed.
static void freeObject(void* obj) {
__cxa_eh_globals_allocator.Release(obj);
}
};
// The single static instance, this forces the compiler to register
// a constructor and destructor for this object in the final library
// file. They handle the pthread_key_t allocation/deallocation.
static CxaThreadKey instance;
_GABIXX_NORETURN void throwException(__cxa_exception *header) {
__cxa_eh_globals* globals = __cxa_get_globals();
header->unexpectedHandler = std::get_unexpected();
header->terminateHandler = std::get_terminate();
globals->uncaughtExceptions += 1;
_Unwind_RaiseException(&header->unwindHeader);
// Should not be here
call_terminate(&header->unwindHeader);
}
} // anonymous namespace
namespace __cxxabiv1 {
__shim_type_info::~__shim_type_info() {
} // namespace __cxxabiv1
extern "C" void __cxa_pure_virtual() {
__gabixx::__fatal_error("Pure virtual function called!");
}
extern "C" void __cxa_deleted_virtual() {
__gabixx::__fatal_error("Deleted virtual function called!");
}
extern "C" __cxa_eh_globals* __cxa_get_globals() _GABIXX_NOEXCEPT {
return CxaThreadKey::getSlow();
}
extern "C" __cxa_eh_globals* __cxa_get_globals_fast() _GABIXX_NOEXCEPT {
return CxaThreadKey::getFast();
}
extern "C" void *__cxa_allocate_exception(size_t thrown_size) _GABIXX_NOEXCEPT {
size_t size = thrown_size + sizeof(__cxa_exception);
__cxa_exception *buffer = static_cast<__cxa_exception*>(malloc(size));
if (!buffer) {
// Since Android uses memory-overcommit, we enter here only when
// the exception object is VERY large. This will propably never happen.
// Therefore, we decide to use no emergency spaces.
__gabixx::__fatal_error("Not enough memory to allocate exception!");
}
::memset(buffer, 0, sizeof(__cxa_exception));
return buffer + 1;
}
extern "C" void __cxa_free_exception(void* thrown_exception) _GABIXX_NOEXCEPT {
__cxa_exception *exc = static_cast<__cxa_exception*>(thrown_exception)-1;
if (exc->exceptionDestructor) {
try {
exc->exceptionDestructor(thrown_exception);
} catch (...) {
__gabixx::__fatal_error("Exception destructor has thrown!");
}
}
free(exc);
}
extern "C" void __cxa_throw(void* thrown_exc,
std::type_info* tinfo,
void (*dest)(void*)) {
__cxa_exception* header = static_cast<__cxa_exception*>(thrown_exc)-1;
header->exceptionType = tinfo;
header->exceptionDestructor = dest;
header->unwindHeader.exception_class = __gxx_exception_class;
header->unwindHeader.exception_cleanup = defaultExceptionCleanupFunc;
throwException(header);
}
extern "C" void __cxa_rethrow() {
__cxa_eh_globals *globals = __cxa_get_globals();
__cxa_exception* header = globals->caughtExceptions;
_Unwind_Exception* exception = &header->unwindHeader;
if (!header) {
__gabixx::__fatal_error(
"Attempting to rethrow an exception that doesn't exist!");
}
if (isOurCxxException(exception->exception_class)) {
header->handlerCount = -header->handlerCount; // Set rethrow flag
} else {
globals->caughtExceptions = 0;
}
throwException(header);
}
extern "C" void* __cxa_begin_catch(void* exc) _GABIXX_NOEXCEPT {
_Unwind_Exception *exception = static_cast<_Unwind_Exception*>(exc);
__cxa_exception* header = reinterpret_cast<__cxa_exception*>(exception+1)-1;
__cxa_eh_globals* globals = __cxa_get_globals();
if (!isOurCxxException(exception->exception_class)) {
if (globals->caughtExceptions) {
__gabixx::__fatal_error("Can't handle non-C++ exception!");
}
}
// Check rethrow flag
header->handlerCount = (header->handlerCount < 0) ?
(-header->handlerCount+1) : (header->handlerCount+1);
if (header != globals->caughtExceptions) {
header->nextException = globals->caughtExceptions;
globals->caughtExceptions = header;
}
globals->uncaughtExceptions -= 1;
return header->adjustedPtr;
}
extern "C" void __cxa_end_catch() _GABIXX_NOEXCEPT {
__cxa_eh_globals *globals = __cxa_get_globals_fast();
__cxa_exception *header = globals->caughtExceptions;
_Unwind_Exception* exception = &header->unwindHeader;
if (!header) {
return;
}
if (!isOurCxxException(exception->exception_class)) {
globals->caughtExceptions = 0;
_Unwind_DeleteException(exception);
return;
}
int count = header->handlerCount;
if (count < 0) { // Rethrow
if (++count == 0) {
globals->caughtExceptions = header->nextException;
}
} else if (--count == 0) {
globals->caughtExceptions = header->nextException;
__cxa_free_exception(header+1);
return;
} else if (count < 0) {
__gabixx::__fatal_error("Internal error during exception handling!");
}
header->handlerCount = count;
}
extern "C" void* __cxa_get_exception_ptr(void* exceptionObject) _GABIXX_NOEXCEPT {
__cxa_exception* header =
reinterpret_cast<__cxa_exception*>(
reinterpret_cast<_Unwind_Exception *>(exceptionObject)+1)-1;
return header->adjustedPtr;
}
extern "C" bool __cxa_uncaught_exception() _GABIXX_NOEXCEPT {
__cxa_eh_globals* globals = __cxa_get_globals();
if (globals == NULL)
return false;
return globals->uncaughtExceptions == 0;
}
extern "C" void __cxa_decrement_exception_refcount(void* exceptionObject)
_GABIXX_NOEXCEPT {
if (exceptionObject != NULL)
{
__cxa_exception* header =
reinterpret_cast<__cxa_exception*>(exceptionObject)-1;
if (__sync_sub_and_fetch(&header->referenceCount, 1) == 0)
__cxa_free_exception(exceptionObject);
}
}
extern "C" void __cxa_increment_exception_refcount(void* exceptionObject)
_GABIXX_NOEXCEPT {
if (exceptionObject != NULL)
{
__cxa_exception* header =
reinterpret_cast<__cxa_exception*>(exceptionObject)-1;
__sync_add_and_fetch(&header->referenceCount, 1);
}
}
extern "C" void __cxa_rethrow_primary_exception(void* primary_exception) {
#if defined(LIBCXXABI)
// Only warn if we're building for libcxx since other libraries do not use
// this.
#warning "not implemented."
#endif /* defined(LIBCXXABI) */
}
extern "C" void* __cxa_current_primary_exception() _GABIXX_NOEXCEPT {
#if defined(LIBCXXABI)
// Only warn if we're building for libcxx since other libraries do not use
// this.
#warning "not implemented."
#endif /* defined(LIBCXXABI) */
return NULL;
}
} // namespace __cxxabiv1