/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bit_vector.h" #include <limits> #include <sstream> #include "allocator.h" #include "bit_vector-inl.h" namespace art { BitVector::BitVector(bool expandable, Allocator* allocator, uint32_t storage_size, uint32_t* storage) : storage_(storage), storage_size_(storage_size), allocator_(allocator), expandable_(expandable) { DCHECK(storage_ != nullptr); static_assert(sizeof(*storage_) == kWordBytes, "word bytes"); static_assert(sizeof(*storage_) * 8u == kWordBits, "word bits"); } BitVector::BitVector(uint32_t start_bits, bool expandable, Allocator* allocator) : BitVector(expandable, allocator, BitsToWords(start_bits), static_cast<uint32_t*>(allocator->Alloc(BitsToWords(start_bits) * kWordBytes))) { } BitVector::BitVector(const BitVector& src, bool expandable, Allocator* allocator) : BitVector(expandable, allocator, src.storage_size_, static_cast<uint32_t*>(allocator->Alloc(src.storage_size_ * kWordBytes))) { // Direct memcpy would be faster, but this should be fine too and is cleaner. Copy(&src); } BitVector::~BitVector() { allocator_->Free(storage_); } bool BitVector::SameBitsSet(const BitVector *src) const { int our_highest = GetHighestBitSet(); int src_highest = src->GetHighestBitSet(); // If the highest bit set is different, we are different. if (our_highest != src_highest) { return false; } // If the highest bit set is -1, both are cleared, we are the same. // If the highest bit set is 0, both have a unique bit set, we are the same. if (our_highest <= 0) { return true; } // Get the highest bit set's cell's index // No need of highest + 1 here because it can't be 0 so BitsToWords will work here. int our_highest_index = BitsToWords(our_highest); // This memcmp is enough: we know that the highest bit set is the same for both: // - Therefore, min_size goes up to at least that, we are thus comparing at least what we need to, but not less. // ie. we are comparing all storage cells that could have difference, if both vectors have cells above our_highest_index, // they are automatically at 0. return (memcmp(storage_, src->GetRawStorage(), our_highest_index * kWordBytes) == 0); } bool BitVector::IsSubsetOf(const BitVector *other) const { int this_highest = GetHighestBitSet(); int other_highest = other->GetHighestBitSet(); // If the highest bit set is -1, this is empty and a trivial subset. if (this_highest < 0) { return true; } // If the highest bit set is higher, this cannot be a subset. if (this_highest > other_highest) { return false; } // Compare each 32-bit word. size_t this_highest_index = BitsToWords(this_highest + 1); for (size_t i = 0; i < this_highest_index; ++i) { uint32_t this_storage = storage_[i]; uint32_t other_storage = other->storage_[i]; if ((this_storage | other_storage) != other_storage) { return false; } } return true; } void BitVector::Intersect(const BitVector* src) { uint32_t src_storage_size = src->storage_size_; // Get the minimum size between us and source. uint32_t min_size = (storage_size_ < src_storage_size) ? storage_size_ : src_storage_size; uint32_t idx; for (idx = 0; idx < min_size; idx++) { storage_[idx] &= src->GetRawStorageWord(idx); } // Now, due to this being an intersection, there are two possibilities: // - Either src was larger than us: we don't care, all upper bits would thus be 0. // - Either we are larger than src: we don't care, all upper bits would have been 0 too. // So all we need to do is set all remaining bits to 0. for (; idx < storage_size_; idx++) { storage_[idx] = 0; } } bool BitVector::Union(const BitVector* src) { // Get the highest bit to determine how much we need to expand. int highest_bit = src->GetHighestBitSet(); bool changed = false; // If src has no bit set, we are done: there is no need for a union with src. if (highest_bit == -1) { return changed; } // Update src_size to how many cells we actually care about: where the bit is + 1. uint32_t src_size = BitsToWords(highest_bit + 1); // Is the storage size smaller than src's? if (storage_size_ < src_size) { changed = true; EnsureSize(highest_bit); // Paranoid: storage size should be big enough to hold this bit now. DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits); } for (uint32_t idx = 0; idx < src_size; idx++) { uint32_t existing = storage_[idx]; uint32_t update = existing | src->GetRawStorageWord(idx); if (existing != update) { changed = true; storage_[idx] = update; } } return changed; } bool BitVector::UnionIfNotIn(const BitVector* union_with, const BitVector* not_in) { // Get the highest bit to determine how much we need to expand. int highest_bit = union_with->GetHighestBitSet(); bool changed = false; // If src has no bit set, we are done: there is no need for a union with src. if (highest_bit == -1) { return changed; } // Update union_with_size to how many cells we actually care about: where the bit is + 1. uint32_t union_with_size = BitsToWords(highest_bit + 1); // Is the storage size smaller than src's? if (storage_size_ < union_with_size) { EnsureSize(highest_bit); // Paranoid: storage size should be big enough to hold this bit now. DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits); } uint32_t not_in_size = not_in->GetStorageSize(); uint32_t idx = 0; for (; idx < std::min(not_in_size, union_with_size); idx++) { uint32_t existing = storage_[idx]; uint32_t update = existing | (union_with->GetRawStorageWord(idx) & ~not_in->GetRawStorageWord(idx)); if (existing != update) { changed = true; storage_[idx] = update; } } for (; idx < union_with_size; idx++) { uint32_t existing = storage_[idx]; uint32_t update = existing | union_with->GetRawStorageWord(idx); if (existing != update) { changed = true; storage_[idx] = update; } } return changed; } void BitVector::Subtract(const BitVector *src) { uint32_t src_size = src->storage_size_; // We only need to operate on bytes up to the smaller of the sizes of the two operands. unsigned int min_size = (storage_size_ > src_size) ? src_size : storage_size_; // Difference until max, we know both accept it: // There is no need to do more: // If we are bigger than src, the upper bits are unchanged. // If we are smaller than src, the non-existant upper bits are 0 and thus can't get subtracted. for (uint32_t idx = 0; idx < min_size; idx++) { storage_[idx] &= (~(src->GetRawStorageWord(idx))); } } uint32_t BitVector::NumSetBits() const { uint32_t count = 0; for (uint32_t word = 0; word < storage_size_; word++) { count += POPCOUNT(storage_[word]); } return count; } uint32_t BitVector::NumSetBits(uint32_t end) const { DCHECK_LE(end, storage_size_ * kWordBits); return NumSetBits(storage_, end); } void BitVector::SetInitialBits(uint32_t num_bits) { // If num_bits is 0, clear everything. if (num_bits == 0) { ClearAllBits(); return; } // Set the highest bit we want to set to get the BitVector allocated if need be. SetBit(num_bits - 1); uint32_t idx; // We can set every storage element with -1. for (idx = 0; idx < WordIndex(num_bits); idx++) { storage_[idx] = std::numeric_limits<uint32_t>::max(); } // Handle the potentially last few bits. uint32_t rem_num_bits = num_bits & 0x1f; if (rem_num_bits != 0) { storage_[idx] = (1U << rem_num_bits) - 1; ++idx; } // Now set the upper ones to 0. for (; idx < storage_size_; idx++) { storage_[idx] = 0; } } int BitVector::GetHighestBitSet() const { unsigned int max = storage_size_; for (int idx = max - 1; idx >= 0; idx--) { // If not 0, we have more work: check the bits. uint32_t value = storage_[idx]; if (value != 0) { // Return highest bit set in value plus bits from previous storage indexes. return 31 - CLZ(value) + (idx * kWordBits); } } // All zero, therefore return -1. return -1; } void BitVector::Copy(const BitVector *src) { // Get highest bit set, we only need to copy till then. int highest_bit = src->GetHighestBitSet(); // If nothing is set, clear everything. if (highest_bit == -1) { ClearAllBits(); return; } // Set upper bit to ensure right size before copy. SetBit(highest_bit); // Now set until highest bit's storage. uint32_t size = 1 + (highest_bit / kWordBits); memcpy(storage_, src->GetRawStorage(), kWordBytes * size); // Set upper bits to 0. uint32_t left = storage_size_ - size; if (left > 0) { memset(storage_ + size, 0, kWordBytes * left); } } #if defined(__clang__) && defined(__ARM_64BIT_STATE) // b/19180814 When POPCOUNT is inlined, boot up failed on arm64 devices. __attribute__((optnone)) #endif uint32_t BitVector::NumSetBits(const uint32_t* storage, uint32_t end) { uint32_t word_end = WordIndex(end); uint32_t partial_word_bits = end & 0x1f; uint32_t count = 0u; for (uint32_t word = 0u; word < word_end; word++) { count += POPCOUNT(storage[word]); } if (partial_word_bits != 0u) { count += POPCOUNT(storage[word_end] & ~(0xffffffffu << partial_word_bits)); } return count; } void BitVector::Dump(std::ostream& os, const char *prefix) const { std::ostringstream buffer; DumpHelper(prefix, buffer); os << buffer.str() << std::endl; } void BitVector::DumpHelper(const char* prefix, std::ostringstream& buffer) const { // Initialize it. if (prefix != nullptr) { buffer << prefix; } buffer << '('; for (size_t i = 0; i < storage_size_ * kWordBits; i++) { buffer << IsBitSet(i); } buffer << ')'; } void BitVector::EnsureSize(uint32_t idx) { if (idx >= storage_size_ * kWordBits) { DCHECK(expandable_) << "Attempted to expand a non-expandable bitmap to position " << idx; /* Round up to word boundaries for "idx+1" bits */ uint32_t new_size = BitsToWords(idx + 1); DCHECK_GT(new_size, storage_size_); uint32_t *new_storage = static_cast<uint32_t*>(allocator_->Alloc(new_size * kWordBytes)); memcpy(new_storage, storage_, storage_size_ * kWordBytes); // Zero out the new storage words. memset(&new_storage[storage_size_], 0, (new_size - storage_size_) * kWordBytes); // TODO: collect stats on space wasted because of resize. // Free old storage. allocator_->Free(storage_); // Set fields. storage_ = new_storage; storage_size_ = new_size; } } Allocator* BitVector::GetAllocator() const { return allocator_; } } // namespace art