/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_DALVIK #include <stdio.h> #include <cutils/trace.h> #include "timing_logger.h" #include "base/logging.h" #include "base/stl_util.h" #include "base/histogram-inl.h" #include "base/time_utils.h" #include "thread-inl.h" #include <cmath> #include <iomanip> namespace art { constexpr size_t CumulativeLogger::kLowMemoryBucketCount; constexpr size_t CumulativeLogger::kDefaultBucketCount; constexpr size_t TimingLogger::kIndexNotFound; CumulativeLogger::CumulativeLogger(const std::string& name) : name_(name), lock_name_("CumulativeLoggerLock" + name), lock_(lock_name_.c_str(), kDefaultMutexLevel, true) { Reset(); } CumulativeLogger::~CumulativeLogger() { STLDeleteElements(&histograms_); } void CumulativeLogger::SetName(const std::string& name) { MutexLock mu(Thread::Current(), lock_); name_.assign(name); } void CumulativeLogger::Start() { } void CumulativeLogger::End() { MutexLock mu(Thread::Current(), lock_); ++iterations_; } void CumulativeLogger::Reset() { MutexLock mu(Thread::Current(), lock_); iterations_ = 0; total_time_ = 0; STLDeleteElements(&histograms_); } void CumulativeLogger::AddLogger(const TimingLogger &logger) { MutexLock mu(Thread::Current(), lock_); TimingLogger::TimingData timing_data(logger.CalculateTimingData()); const std::vector<TimingLogger::Timing>& timings = logger.GetTimings(); for (size_t i = 0; i < timings.size(); ++i) { if (timings[i].IsStartTiming()) { AddPair(timings[i].GetName(), timing_data.GetExclusiveTime(i)); } } ++iterations_; } size_t CumulativeLogger::GetIterations() const { MutexLock mu(Thread::Current(), lock_); return iterations_; } void CumulativeLogger::Dump(std::ostream &os) const { MutexLock mu(Thread::Current(), lock_); DumpHistogram(os); } void CumulativeLogger::AddPair(const std::string& label, uint64_t delta_time) { // Convert delta time to microseconds so that we don't overflow our counters. delta_time /= kAdjust; total_time_ += delta_time; Histogram<uint64_t>* histogram; Histogram<uint64_t> dummy(label.c_str()); auto it = histograms_.find(&dummy); if (it == histograms_.end()) { const size_t max_buckets = Runtime::Current()->GetHeap()->IsLowMemoryMode() ? kLowMemoryBucketCount : kDefaultBucketCount; histogram = new Histogram<uint64_t>(label.c_str(), kInitialBucketSize, max_buckets); histograms_.insert(histogram); } else { histogram = *it; } histogram->AddValue(delta_time); } class CompareHistorgramByTimeSpentDeclining { public: bool operator()(const Histogram<uint64_t>* a, const Histogram<uint64_t>* b) const { return a->Sum() > b->Sum(); } }; void CumulativeLogger::DumpHistogram(std::ostream &os) const { os << "Start Dumping histograms for " << iterations_ << " iterations" << " for " << name_ << "\n"; std::set<Histogram<uint64_t>*, CompareHistorgramByTimeSpentDeclining> sorted_histograms(histograms_.begin(), histograms_.end()); for (Histogram<uint64_t>* histogram : sorted_histograms) { Histogram<uint64_t>::CumulativeData cumulative_data; // We don't expect DumpHistogram to be called often, so it is not performance critical. histogram->CreateHistogram(&cumulative_data); histogram->PrintConfidenceIntervals(os, 0.99, cumulative_data); } os << "Done Dumping histograms \n"; } TimingLogger::TimingLogger(const char* name, bool precise, bool verbose) : name_(name), precise_(precise), verbose_(verbose) { } void TimingLogger::Reset() { timings_.clear(); } void TimingLogger::StartTiming(const char* label) { DCHECK(label != nullptr); timings_.push_back(Timing(NanoTime(), label)); ATRACE_BEGIN(label); } void TimingLogger::EndTiming() { timings_.push_back(Timing(NanoTime(), nullptr)); ATRACE_END(); } uint64_t TimingLogger::GetTotalNs() const { if (timings_.size() < 2) { return 0; } return timings_.back().GetTime() - timings_.front().GetTime(); } size_t TimingLogger::FindTimingIndex(const char* name, size_t start_idx) const { DCHECK_LT(start_idx, timings_.size()); for (size_t i = start_idx; i < timings_.size(); ++i) { if (timings_[i].IsStartTiming() && strcmp(timings_[i].GetName(), name) == 0) { return i; } } return kIndexNotFound; } TimingLogger::TimingData TimingLogger::CalculateTimingData() const { TimingLogger::TimingData ret; ret.data_.resize(timings_.size()); std::vector<size_t> open_stack; for (size_t i = 0; i < timings_.size(); ++i) { if (timings_[i].IsEndTiming()) { CHECK(!open_stack.empty()) << "No starting split for ending split at index " << i; size_t open_idx = open_stack.back(); uint64_t time = timings_[i].GetTime() - timings_[open_idx].GetTime(); ret.data_[open_idx].exclusive_time += time; DCHECK_EQ(ret.data_[open_idx].total_time, 0U); ret.data_[open_idx].total_time += time; // Each open split has exactly one end. open_stack.pop_back(); // If there is a parent node, subtract from the exclusive time. if (!open_stack.empty()) { // Note this may go negative, but will work due to 2s complement when we add the value // total time value later. ret.data_[open_stack.back()].exclusive_time -= time; } } else { open_stack.push_back(i); } } CHECK(open_stack.empty()) << "Missing ending for timing " << timings_[open_stack.back()].GetName() << " at index " << open_stack.back(); return ret; // No need to fear, C++11 move semantics are here. } void TimingLogger::Dump(std::ostream &os, const char* indent_string) const { static constexpr size_t kFractionalDigits = 3; TimingLogger::TimingData timing_data(CalculateTimingData()); uint64_t longest_split = 0; for (size_t i = 0; i < timings_.size(); ++i) { longest_split = std::max(longest_split, timing_data.GetTotalTime(i)); } // Compute which type of unit we will use for printing the timings. TimeUnit tu = GetAppropriateTimeUnit(longest_split); uint64_t divisor = GetNsToTimeUnitDivisor(tu); uint64_t mod_fraction = divisor >= 1000 ? divisor / 1000 : 1; // Print formatted splits. size_t tab_count = 1; os << name_ << " [Exclusive time] [Total time]\n"; for (size_t i = 0; i < timings_.size(); ++i) { if (timings_[i].IsStartTiming()) { uint64_t exclusive_time = timing_data.GetExclusiveTime(i); uint64_t total_time = timing_data.GetTotalTime(i); if (!precise_) { // Make the fractional part 0. exclusive_time -= exclusive_time % mod_fraction; total_time -= total_time % mod_fraction; } for (size_t j = 0; j < tab_count; ++j) { os << indent_string; } os << FormatDuration(exclusive_time, tu, kFractionalDigits); // If they are the same, just print one value to prevent spam. if (exclusive_time != total_time) { os << "/" << FormatDuration(total_time, tu, kFractionalDigits); } os << " " << timings_[i].GetName() << "\n"; ++tab_count; } else { --tab_count; } } os << name_ << ": end, " << PrettyDuration(GetTotalNs()) << "\n"; } void TimingLogger::Verify() { size_t counts[2] = { 0 }; for (size_t i = 0; i < timings_.size(); ++i) { if (i > 0) { CHECK_LE(timings_[i - 1].GetTime(), timings_[i].GetTime()); } ++counts[timings_[i].IsStartTiming() ? 0 : 1]; } CHECK_EQ(counts[0], counts[1]) << "Number of StartTiming and EndTiming doesn't match"; } TimingLogger::~TimingLogger() { if (kIsDebugBuild) { Verify(); } } } // namespace art