/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "leb128.h" #include "gtest/gtest.h" #include "base/histogram-inl.h" #include "base/time_utils.h" namespace art { struct DecodeUnsignedLeb128TestCase { uint32_t decoded; uint8_t leb128_data[5]; }; static DecodeUnsignedLeb128TestCase uleb128_tests[] = { {0, {0, 0, 0, 0, 0}}, {1, {1, 0, 0, 0, 0}}, {0x7F, {0x7F, 0, 0, 0, 0}}, {0x80, {0x80, 1, 0, 0, 0}}, {0x81, {0x81, 1, 0, 0, 0}}, {0xFF, {0xFF, 1, 0, 0, 0}}, {0x4000, {0x80, 0x80, 1, 0, 0}}, {0x4001, {0x81, 0x80, 1, 0, 0}}, {0x4081, {0x81, 0x81, 1, 0, 0}}, {0x0FFFFFFF, {0xFF, 0xFF, 0xFF, 0x7F, 0}}, {0xFFFFFFFF, {0xFF, 0xFF, 0xFF, 0xFF, 0xF}}, }; struct DecodeSignedLeb128TestCase { int32_t decoded; uint8_t leb128_data[5]; }; static DecodeSignedLeb128TestCase sleb128_tests[] = { {0, {0, 0, 0, 0, 0}}, {1, {1, 0, 0, 0, 0}}, {0x3F, {0x3F, 0, 0, 0, 0}}, {0x40, {0xC0, 0 /* sign bit */, 0, 0, 0}}, {0x41, {0xC1, 0 /* sign bit */, 0, 0, 0}}, {0x80, {0x80, 1, 0, 0, 0}}, {0xFF, {0xFF, 1, 0, 0, 0}}, {0x1FFF, {0xFF, 0x3F, 0, 0, 0}}, {0x2000, {0x80, 0xC0, 0 /* sign bit */, 0, 0}}, {0x2001, {0x81, 0xC0, 0 /* sign bit */, 0, 0}}, {0x2081, {0x81, 0xC1, 0 /* sign bit */, 0, 0}}, {0x4000, {0x80, 0x80, 1, 0, 0}}, {0x0FFFFF, {0xFF, 0xFF, 0x3F, 0, 0}}, {0x100000, {0x80, 0x80, 0xC0, 0 /* sign bit */, 0}}, {0x100001, {0x81, 0x80, 0xC0, 0 /* sign bit */, 0}}, {0x100081, {0x81, 0x81, 0xC0, 0 /* sign bit */, 0}}, {0x104081, {0x81, 0x81, 0xC1, 0 /* sign bit */, 0}}, {0x200000, {0x80, 0x80, 0x80, 1, 0}}, {0x7FFFFFF, {0xFF, 0xFF, 0xFF, 0x3F, 0}}, {0x8000000, {0x80, 0x80, 0x80, 0xC0, 0 /* sign bit */}}, {0x8000001, {0x81, 0x80, 0x80, 0xC0, 0 /* sign bit */}}, {0x8000081, {0x81, 0x81, 0x80, 0xC0, 0 /* sign bit */}}, {0x8004081, {0x81, 0x81, 0x81, 0xC0, 0 /* sign bit */}}, {0x8204081, {0x81, 0x81, 0x81, 0xC1, 0 /* sign bit */}}, {0x0FFFFFFF, {0xFF, 0xFF, 0xFF, 0xFF, 0 /* sign bit */}}, {0x10000000, {0x80, 0x80, 0x80, 0x80, 1}}, {0x7FFFFFFF, {0xFF, 0xFF, 0xFF, 0xFF, 0x7}}, {-1, {0x7F, 0, 0, 0, 0}}, {-2, {0x7E, 0, 0, 0, 0}}, {-0x3F, {0x41, 0, 0, 0, 0}}, {-0x40, {0x40, 0, 0, 0, 0}}, {-0x41, {0xBF, 0x7F, 0, 0, 0}}, {-0x80, {0x80, 0x7F, 0, 0, 0}}, {-0x81, {0xFF, 0x7E, 0, 0, 0}}, {-0x00002000, {0x80, 0x40, 0, 0, 0}}, {-0x00002001, {0xFF, 0xBF, 0x7F, 0, 0}}, {-0x00100000, {0x80, 0x80, 0x40, 0, 0}}, {-0x00100001, {0xFF, 0xFF, 0xBF, 0x7F, 0}}, {-0x08000000, {0x80, 0x80, 0x80, 0x40, 0}}, {-0x08000001, {0xFF, 0xFF, 0xFF, 0xBF, 0x7F}}, {-0x20000000, {0x80, 0x80, 0x80, 0x80, 0x7E}}, {(-1) << 31, {0x80, 0x80, 0x80, 0x80, 0x78}}, }; TEST(Leb128Test, UnsignedSinglesVector) { // Test individual encodings. for (size_t i = 0; i < arraysize(uleb128_tests); ++i) { Leb128EncodingVector builder; builder.PushBackUnsigned(uleb128_tests[i].decoded); EXPECT_EQ(UnsignedLeb128Size(uleb128_tests[i].decoded), builder.GetData().size()); const uint8_t* data_ptr = &uleb128_tests[i].leb128_data[0]; const uint8_t* encoded_data_ptr = &builder.GetData()[0]; for (size_t j = 0; j < 5; ++j) { if (j < builder.GetData().size()) { EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j; } else { EXPECT_EQ(data_ptr[j], 0U) << " i = " << i << " j = " << j; } } EXPECT_EQ(DecodeUnsignedLeb128(&data_ptr), uleb128_tests[i].decoded) << " i = " << i; } } TEST(Leb128Test, UnsignedSingles) { // Test individual encodings. for (size_t i = 0; i < arraysize(uleb128_tests); ++i) { uint8_t encoded_data[5]; uint8_t* end = EncodeUnsignedLeb128(encoded_data, uleb128_tests[i].decoded); size_t data_size = static_cast<size_t>(end - encoded_data); EXPECT_EQ(UnsignedLeb128Size(uleb128_tests[i].decoded), data_size); const uint8_t* data_ptr = &uleb128_tests[i].leb128_data[0]; for (size_t j = 0; j < 5; ++j) { if (j < data_size) { EXPECT_EQ(data_ptr[j], encoded_data[j]) << " i = " << i << " j = " << j; } else { EXPECT_EQ(data_ptr[j], 0U) << " i = " << i << " j = " << j; } } EXPECT_EQ(DecodeUnsignedLeb128(&data_ptr), uleb128_tests[i].decoded) << " i = " << i; } } TEST(Leb128Test, UnsignedStreamVector) { // Encode a number of entries. Leb128EncodingVector builder; for (size_t i = 0; i < arraysize(uleb128_tests); ++i) { builder.PushBackUnsigned(uleb128_tests[i].decoded); } const uint8_t* encoded_data_ptr = &builder.GetData()[0]; for (size_t i = 0; i < arraysize(uleb128_tests); ++i) { const uint8_t* data_ptr = &uleb128_tests[i].leb128_data[0]; for (size_t j = 0; j < UnsignedLeb128Size(uleb128_tests[i].decoded); ++j) { EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j; } for (size_t j = UnsignedLeb128Size(uleb128_tests[i].decoded); j < 5; ++j) { EXPECT_EQ(data_ptr[j], 0) << " i = " << i << " j = " << j; } EXPECT_EQ(DecodeUnsignedLeb128(&encoded_data_ptr), uleb128_tests[i].decoded) << " i = " << i; } EXPECT_EQ(builder.GetData().size(), static_cast<size_t>(encoded_data_ptr - &builder.GetData()[0])); } TEST(Leb128Test, UnsignedStream) { // Encode a number of entries. uint8_t encoded_data[5 * arraysize(uleb128_tests)]; uint8_t* end = encoded_data; for (size_t i = 0; i < arraysize(uleb128_tests); ++i) { end = EncodeUnsignedLeb128(end, uleb128_tests[i].decoded); } size_t data_size = static_cast<size_t>(end - encoded_data); const uint8_t* encoded_data_ptr = encoded_data; for (size_t i = 0; i < arraysize(uleb128_tests); ++i) { const uint8_t* data_ptr = &uleb128_tests[i].leb128_data[0]; for (size_t j = 0; j < UnsignedLeb128Size(uleb128_tests[i].decoded); ++j) { EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j; } for (size_t j = UnsignedLeb128Size(uleb128_tests[i].decoded); j < 5; ++j) { EXPECT_EQ(data_ptr[j], 0) << " i = " << i << " j = " << j; } EXPECT_EQ(DecodeUnsignedLeb128(&encoded_data_ptr), uleb128_tests[i].decoded) << " i = " << i; } EXPECT_EQ(data_size, static_cast<size_t>(encoded_data_ptr - encoded_data)); } TEST(Leb128Test, SignedSinglesVector) { // Test individual encodings. for (size_t i = 0; i < arraysize(sleb128_tests); ++i) { Leb128EncodingVector builder; builder.PushBackSigned(sleb128_tests[i].decoded); EXPECT_EQ(SignedLeb128Size(sleb128_tests[i].decoded), builder.GetData().size()); const uint8_t* data_ptr = &sleb128_tests[i].leb128_data[0]; const uint8_t* encoded_data_ptr = &builder.GetData()[0]; for (size_t j = 0; j < 5; ++j) { if (j < builder.GetData().size()) { EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j; } else { EXPECT_EQ(data_ptr[j], 0U) << " i = " << i << " j = " << j; } } EXPECT_EQ(DecodeSignedLeb128(&data_ptr), sleb128_tests[i].decoded) << " i = " << i; } } TEST(Leb128Test, SignedSingles) { // Test individual encodings. for (size_t i = 0; i < arraysize(sleb128_tests); ++i) { uint8_t encoded_data[5]; uint8_t* end = EncodeSignedLeb128(encoded_data, sleb128_tests[i].decoded); size_t data_size = static_cast<size_t>(end - encoded_data); EXPECT_EQ(SignedLeb128Size(sleb128_tests[i].decoded), data_size); const uint8_t* data_ptr = &sleb128_tests[i].leb128_data[0]; for (size_t j = 0; j < 5; ++j) { if (j < data_size) { EXPECT_EQ(data_ptr[j], encoded_data[j]) << " i = " << i << " j = " << j; } else { EXPECT_EQ(data_ptr[j], 0U) << " i = " << i << " j = " << j; } } EXPECT_EQ(DecodeSignedLeb128(&data_ptr), sleb128_tests[i].decoded) << " i = " << i; } } TEST(Leb128Test, SignedStreamVector) { // Encode a number of entries. Leb128EncodingVector builder; for (size_t i = 0; i < arraysize(sleb128_tests); ++i) { builder.PushBackSigned(sleb128_tests[i].decoded); } const uint8_t* encoded_data_ptr = &builder.GetData()[0]; for (size_t i = 0; i < arraysize(sleb128_tests); ++i) { const uint8_t* data_ptr = &sleb128_tests[i].leb128_data[0]; for (size_t j = 0; j < SignedLeb128Size(sleb128_tests[i].decoded); ++j) { EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j; } for (size_t j = SignedLeb128Size(sleb128_tests[i].decoded); j < 5; ++j) { EXPECT_EQ(data_ptr[j], 0) << " i = " << i << " j = " << j; } EXPECT_EQ(DecodeSignedLeb128(&encoded_data_ptr), sleb128_tests[i].decoded) << " i = " << i; } EXPECT_EQ(builder.GetData().size(), static_cast<size_t>(encoded_data_ptr - &builder.GetData()[0])); } TEST(Leb128Test, SignedStream) { // Encode a number of entries. uint8_t encoded_data[5 * arraysize(sleb128_tests)]; uint8_t* end = encoded_data; for (size_t i = 0; i < arraysize(sleb128_tests); ++i) { end = EncodeSignedLeb128(end, sleb128_tests[i].decoded); } size_t data_size = static_cast<size_t>(end - encoded_data); const uint8_t* encoded_data_ptr = encoded_data; for (size_t i = 0; i < arraysize(sleb128_tests); ++i) { const uint8_t* data_ptr = &sleb128_tests[i].leb128_data[0]; for (size_t j = 0; j < SignedLeb128Size(sleb128_tests[i].decoded); ++j) { EXPECT_EQ(data_ptr[j], encoded_data_ptr[j]) << " i = " << i << " j = " << j; } for (size_t j = SignedLeb128Size(sleb128_tests[i].decoded); j < 5; ++j) { EXPECT_EQ(data_ptr[j], 0) << " i = " << i << " j = " << j; } EXPECT_EQ(DecodeSignedLeb128(&encoded_data_ptr), sleb128_tests[i].decoded) << " i = " << i; } EXPECT_EQ(data_size, static_cast<size_t>(encoded_data_ptr - encoded_data)); } TEST(Leb128Test, UnsignedUpdate) { for (size_t i = 0; i < arraysize(uleb128_tests); ++i) { for (size_t j = 0; j < arraysize(uleb128_tests); ++j) { uint32_t old_value = uleb128_tests[i].decoded; uint32_t new_value = uleb128_tests[j].decoded; // We can only make the encoded value smaller. if (new_value <= old_value) { uint8_t encoded_data[5]; uint8_t* old_end = EncodeUnsignedLeb128(encoded_data, old_value); UpdateUnsignedLeb128(encoded_data, new_value); const uint8_t* new_end = encoded_data; EXPECT_EQ(DecodeUnsignedLeb128(&new_end), new_value); // Even if the new value needs fewer bytes, we should fill the space. EXPECT_EQ(new_end, old_end); } } } } TEST(Leb128Test, Speed) { std::unique_ptr<Histogram<uint64_t>> enc_hist(new Histogram<uint64_t>("Leb128EncodeSpeedTest", 5)); std::unique_ptr<Histogram<uint64_t>> dec_hist(new Histogram<uint64_t>("Leb128DecodeSpeedTest", 5)); Leb128EncodingVector builder; // Push back 1024 chunks of 1024 values measuring encoding speed. uint64_t last_time = NanoTime(); for (size_t i = 0; i < 1024; i++) { for (size_t j = 0; j < 1024; j++) { builder.PushBackUnsigned((i * 1024) + j); } uint64_t cur_time = NanoTime(); enc_hist->AddValue(cur_time - last_time); last_time = cur_time; } // Verify encoding and measure decode speed. const uint8_t* encoded_data_ptr = &builder.GetData()[0]; last_time = NanoTime(); for (size_t i = 0; i < 1024; i++) { for (size_t j = 0; j < 1024; j++) { EXPECT_EQ(DecodeUnsignedLeb128(&encoded_data_ptr), (i * 1024) + j); } uint64_t cur_time = NanoTime(); dec_hist->AddValue(cur_time - last_time); last_time = cur_time; } Histogram<uint64_t>::CumulativeData enc_data; enc_hist->CreateHistogram(&enc_data); enc_hist->PrintConfidenceIntervals(std::cout, 0.99, enc_data); Histogram<uint64_t>::CumulativeData dec_data; dec_hist->CreateHistogram(&dec_data); dec_hist->PrintConfidenceIntervals(std::cout, 0.99, dec_data); } } // namespace art