/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mem_map.h" #include <memory> #include <valgrind.h> #include "gtest/gtest.h" namespace art { class MemMapTest : public testing::Test { public: static uint8_t* BaseBegin(MemMap* mem_map) { return reinterpret_cast<uint8_t*>(mem_map->base_begin_); } static size_t BaseSize(MemMap* mem_map) { return mem_map->base_size_; } static void RemapAtEndTest(bool low_4gb) { std::string error_msg; // Cast the page size to size_t. const size_t page_size = static_cast<size_t>(kPageSize); // Map a two-page memory region. MemMap* m0 = MemMap::MapAnonymous("MemMapTest_RemapAtEndTest_map0", nullptr, 2 * page_size, PROT_READ | PROT_WRITE, low_4gb, false, &error_msg); // Check its state and write to it. uint8_t* base0 = m0->Begin(); ASSERT_TRUE(base0 != nullptr) << error_msg; size_t size0 = m0->Size(); EXPECT_EQ(m0->Size(), 2 * page_size); EXPECT_EQ(BaseBegin(m0), base0); EXPECT_EQ(BaseSize(m0), size0); memset(base0, 42, 2 * page_size); // Remap the latter half into a second MemMap. MemMap* m1 = m0->RemapAtEnd(base0 + page_size, "MemMapTest_RemapAtEndTest_map1", PROT_READ | PROT_WRITE, &error_msg); // Check the states of the two maps. EXPECT_EQ(m0->Begin(), base0) << error_msg; EXPECT_EQ(m0->Size(), page_size); EXPECT_EQ(BaseBegin(m0), base0); EXPECT_EQ(BaseSize(m0), page_size); uint8_t* base1 = m1->Begin(); size_t size1 = m1->Size(); EXPECT_EQ(base1, base0 + page_size); EXPECT_EQ(size1, page_size); EXPECT_EQ(BaseBegin(m1), base1); EXPECT_EQ(BaseSize(m1), size1); // Write to the second region. memset(base1, 43, page_size); // Check the contents of the two regions. for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base0[i], 42); } for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base1[i], 43); } // Unmap the first region. delete m0; // Make sure the second region is still accessible after the first // region is unmapped. for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base1[i], 43); } delete m1; } void CommonInit() { MemMap::Init(); } #if defined(__LP64__) && !defined(__x86_64__) static uintptr_t GetLinearScanPos() { return MemMap::next_mem_pos_; } #endif }; #if defined(__LP64__) && !defined(__x86_64__) #ifdef __BIONIC__ extern uintptr_t CreateStartPos(uint64_t input); #endif TEST_F(MemMapTest, Start) { CommonInit(); uintptr_t start = GetLinearScanPos(); EXPECT_LE(64 * KB, start); EXPECT_LT(start, static_cast<uintptr_t>(ART_BASE_ADDRESS)); #ifdef __BIONIC__ // Test a couple of values. Make sure they are different. uintptr_t last = 0; for (size_t i = 0; i < 100; ++i) { uintptr_t random_start = CreateStartPos(i * kPageSize); EXPECT_NE(last, random_start); last = random_start; } // Even on max, should be below ART_BASE_ADDRESS. EXPECT_LT(CreateStartPos(~0), static_cast<uintptr_t>(ART_BASE_ADDRESS)); #endif // End of test. } #endif TEST_F(MemMapTest, MapAnonymousEmpty) { CommonInit(); std::string error_msg; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousEmpty", nullptr, 0, PROT_READ, false, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); map.reset(MemMap::MapAnonymous("MapAnonymousEmpty", nullptr, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); } #ifdef __LP64__ TEST_F(MemMapTest, MapAnonymousEmpty32bit) { CommonInit(); std::string error_msg; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousEmpty", nullptr, kPageSize, PROT_READ | PROT_WRITE, true, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_LT(reinterpret_cast<uintptr_t>(BaseBegin(map.get())), 1ULL << 32); } #endif TEST_F(MemMapTest, MapAnonymousExactAddr) { CommonInit(); std::string error_msg; // Map at an address that should work, which should succeed. std::unique_ptr<MemMap> map0(MemMap::MapAnonymous("MapAnonymous0", reinterpret_cast<uint8_t*>(ART_BASE_ADDRESS), kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map0.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_TRUE(map0->BaseBegin() == reinterpret_cast<void*>(ART_BASE_ADDRESS)); // Map at an unspecified address, which should succeed. std::unique_ptr<MemMap> map1(MemMap::MapAnonymous("MapAnonymous1", nullptr, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map1.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_TRUE(map1->BaseBegin() != nullptr); // Attempt to map at the same address, which should fail. std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymous2", reinterpret_cast<uint8_t*>(map1->BaseBegin()), kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map2.get() == nullptr) << error_msg; ASSERT_TRUE(!error_msg.empty()); } TEST_F(MemMapTest, RemapAtEnd) { RemapAtEndTest(false); } #ifdef __LP64__ TEST_F(MemMapTest, RemapAtEnd32bit) { RemapAtEndTest(true); } #endif TEST_F(MemMapTest, MapAnonymousExactAddr32bitHighAddr) { CommonInit(); // This test may not work under valgrind. if (RUNNING_ON_VALGRIND == 0) { uintptr_t start_addr = ART_BASE_ADDRESS + 0x1000000; std::string error_msg; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousExactAddr32bitHighAddr", reinterpret_cast<uint8_t*>(start_addr), 0x21000000, PROT_READ | PROT_WRITE, true, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_EQ(reinterpret_cast<uintptr_t>(BaseBegin(map.get())), start_addr); } } TEST_F(MemMapTest, MapAnonymousOverflow) { CommonInit(); std::string error_msg; uintptr_t ptr = 0; ptr -= kPageSize; // Now it's close to the top. std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousOverflow", reinterpret_cast<uint8_t*>(ptr), 2 * kPageSize, // brings it over the top. PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_EQ(nullptr, map.get()); ASSERT_FALSE(error_msg.empty()); } #ifdef __LP64__ TEST_F(MemMapTest, MapAnonymousLow4GBExpectedTooHigh) { CommonInit(); std::string error_msg; std::unique_ptr<MemMap> map( MemMap::MapAnonymous("MapAnonymousLow4GBExpectedTooHigh", reinterpret_cast<uint8_t*>(UINT64_C(0x100000000)), kPageSize, PROT_READ | PROT_WRITE, true, false, &error_msg)); ASSERT_EQ(nullptr, map.get()); ASSERT_FALSE(error_msg.empty()); } TEST_F(MemMapTest, MapAnonymousLow4GBRangeTooHigh) { CommonInit(); std::string error_msg; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousLow4GBRangeTooHigh", reinterpret_cast<uint8_t*>(0xF0000000), 0x20000000, PROT_READ | PROT_WRITE, true, false, &error_msg)); ASSERT_EQ(nullptr, map.get()); ASSERT_FALSE(error_msg.empty()); } #endif TEST_F(MemMapTest, MapAnonymousReuse) { CommonInit(); std::string error_msg; std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousReserve", nullptr, 0x20000, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_NE(nullptr, map.get()); ASSERT_TRUE(error_msg.empty()); std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymousReused", reinterpret_cast<uint8_t*>(map->BaseBegin()), 0x10000, PROT_READ | PROT_WRITE, false, true, &error_msg)); ASSERT_NE(nullptr, map2.get()); ASSERT_TRUE(error_msg.empty()); } TEST_F(MemMapTest, CheckNoGaps) { CommonInit(); std::string error_msg; constexpr size_t kNumPages = 3; // Map a 3-page mem map. std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymous0", nullptr, kPageSize * kNumPages, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); // Record the base address. uint8_t* map_base = reinterpret_cast<uint8_t*>(map->BaseBegin()); // Unmap it. map.reset(); // Map at the same address, but in page-sized separate mem maps, // assuming the space at the address is still available. std::unique_ptr<MemMap> map0(MemMap::MapAnonymous("MapAnonymous0", map_base, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map0.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); std::unique_ptr<MemMap> map1(MemMap::MapAnonymous("MapAnonymous1", map_base + kPageSize, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map1.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymous2", map_base + kPageSize * 2, kPageSize, PROT_READ | PROT_WRITE, false, false, &error_msg)); ASSERT_TRUE(map2.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); // One-map cases. ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map0.get())); ASSERT_TRUE(MemMap::CheckNoGaps(map1.get(), map1.get())); ASSERT_TRUE(MemMap::CheckNoGaps(map2.get(), map2.get())); // Two or three-map cases. ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map1.get())); ASSERT_TRUE(MemMap::CheckNoGaps(map1.get(), map2.get())); ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map2.get())); // Unmap the middle one. map1.reset(); // Should return false now that there's a gap in the middle. ASSERT_FALSE(MemMap::CheckNoGaps(map0.get(), map2.get())); } } // namespace art