/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_DALVIK #include "thread.h" #include <cutils/trace.h> #include <pthread.h> #include <signal.h> #include <sys/resource.h> #include <sys/time.h> #include <algorithm> #include <bitset> #include <cerrno> #include <iostream> #include <list> #include <sstream> #include "arch/context.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/bit_utils.h" #include "base/mutex.h" #include "base/timing_logger.h" #include "base/to_str.h" #include "class_linker-inl.h" #include "debugger.h" #include "dex_file-inl.h" #include "entrypoints/entrypoint_utils.h" #include "entrypoints/quick/quick_alloc_entrypoints.h" #include "gc_map.h" #include "gc/accounting/card_table-inl.h" #include "gc/allocator/rosalloc.h" #include "gc/heap.h" #include "gc/space/space.h" #include "handle_scope-inl.h" #include "indirect_reference_table-inl.h" #include "jni_internal.h" #include "mirror/class_loader.h" #include "mirror/class-inl.h" #include "mirror/object_array-inl.h" #include "mirror/stack_trace_element.h" #include "monitor.h" #include "object_lock.h" #include "quick_exception_handler.h" #include "quick/quick_method_frame_info.h" #include "reflection.h" #include "runtime.h" #include "scoped_thread_state_change.h" #include "ScopedLocalRef.h" #include "ScopedUtfChars.h" #include "stack.h" #include "thread_list.h" #include "thread-inl.h" #include "utils.h" #include "verifier/dex_gc_map.h" #include "verifier/method_verifier.h" #include "verify_object-inl.h" #include "vmap_table.h" #include "well_known_classes.h" namespace art { bool Thread::is_started_ = false; pthread_key_t Thread::pthread_key_self_; ConditionVariable* Thread::resume_cond_ = nullptr; const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA); static const char* kThreadNameDuringStartup = "<native thread without managed peer>"; void Thread::InitCardTable() { tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); } static void UnimplementedEntryPoint() { UNIMPLEMENTED(FATAL); } void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints, QuickEntryPoints* qpoints); void Thread::InitTlsEntryPoints() { // Insert a placeholder so we can easily tell if we call an unimplemented entry point. uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints); uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints)); for (uintptr_t* it = begin; it != end; ++it) { *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); } InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints); } void Thread::InitStringEntryPoints() { ScopedObjectAccess soa(this); QuickEntryPoints* qpoints = &tlsPtr_.quick_entrypoints; qpoints->pNewEmptyString = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newEmptyString)); qpoints->pNewStringFromBytes_B = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_B)); qpoints->pNewStringFromBytes_BI = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BI)); qpoints->pNewStringFromBytes_BII = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BII)); qpoints->pNewStringFromBytes_BIII = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIII)); qpoints->pNewStringFromBytes_BIIString = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIIString)); qpoints->pNewStringFromBytes_BString = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BString)); qpoints->pNewStringFromBytes_BIICharset = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIICharset)); qpoints->pNewStringFromBytes_BCharset = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BCharset)); qpoints->pNewStringFromChars_C = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_C)); qpoints->pNewStringFromChars_CII = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_CII)); qpoints->pNewStringFromChars_IIC = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_IIC)); qpoints->pNewStringFromCodePoints = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromCodePoints)); qpoints->pNewStringFromString = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromString)); qpoints->pNewStringFromStringBuffer = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuffer)); qpoints->pNewStringFromStringBuilder = reinterpret_cast<void(*)()>( soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuilder)); } void Thread::ResetQuickAllocEntryPointsForThread() { ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints); } class DeoptimizationReturnValueRecord { public: DeoptimizationReturnValueRecord(const JValue& ret_val, bool is_reference, DeoptimizationReturnValueRecord* link) : ret_val_(ret_val), is_reference_(is_reference), link_(link) {} JValue GetReturnValue() const { return ret_val_; } bool IsReference() const { return is_reference_; } DeoptimizationReturnValueRecord* GetLink() const { return link_; } mirror::Object** GetGCRoot() { DCHECK(is_reference_); return ret_val_.GetGCRoot(); } private: JValue ret_val_; const bool is_reference_; DeoptimizationReturnValueRecord* const link_; DISALLOW_COPY_AND_ASSIGN(DeoptimizationReturnValueRecord); }; class StackedShadowFrameRecord { public: StackedShadowFrameRecord(ShadowFrame* shadow_frame, StackedShadowFrameType type, StackedShadowFrameRecord* link) : shadow_frame_(shadow_frame), type_(type), link_(link) {} ShadowFrame* GetShadowFrame() const { return shadow_frame_; } StackedShadowFrameType GetType() const { return type_; } StackedShadowFrameRecord* GetLink() const { return link_; } private: ShadowFrame* const shadow_frame_; const StackedShadowFrameType type_; StackedShadowFrameRecord* const link_; DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord); }; void Thread::PushAndClearDeoptimizationReturnValue() { DeoptimizationReturnValueRecord* record = new DeoptimizationReturnValueRecord( tls64_.deoptimization_return_value, tls32_.deoptimization_return_value_is_reference, tlsPtr_.deoptimization_return_value_stack); tlsPtr_.deoptimization_return_value_stack = record; ClearDeoptimizationReturnValue(); } JValue Thread::PopDeoptimizationReturnValue() { DeoptimizationReturnValueRecord* record = tlsPtr_.deoptimization_return_value_stack; DCHECK(record != nullptr); tlsPtr_.deoptimization_return_value_stack = record->GetLink(); JValue ret_val(record->GetReturnValue()); delete record; return ret_val; } void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) { StackedShadowFrameRecord* record = new StackedShadowFrameRecord( sf, type, tlsPtr_.stacked_shadow_frame_record); tlsPtr_.stacked_shadow_frame_record = record; } ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type) { StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; DCHECK(record != nullptr); DCHECK_EQ(record->GetType(), type); tlsPtr_.stacked_shadow_frame_record = record->GetLink(); ShadowFrame* shadow_frame = record->GetShadowFrame(); delete record; return shadow_frame; } void Thread::InitTid() { tls32_.tid = ::art::GetTid(); } void Thread::InitAfterFork() { // One thread (us) survived the fork, but we have a new tid so we need to // update the value stashed in this Thread*. InitTid(); } void* Thread::CreateCallback(void* arg) { Thread* self = reinterpret_cast<Thread*>(arg); Runtime* runtime = Runtime::Current(); if (runtime == nullptr) { LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self; return nullptr; } { // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true // after self->Init(). MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); // Check that if we got here we cannot be shutting down (as shutdown should never have started // while threads are being born). CHECK(!runtime->IsShuttingDownLocked()); // Note: given that the JNIEnv is created in the parent thread, the only failure point here is // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort // the runtime in such a case. In case this ever changes, we need to make sure here to // delete the tmp_jni_env, as we own it at this point. CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env)); self->tlsPtr_.tmp_jni_env = nullptr; Runtime::Current()->EndThreadBirth(); } { ScopedObjectAccess soa(self); self->InitStringEntryPoints(); // Copy peer into self, deleting global reference when done. CHECK(self->tlsPtr_.jpeer != nullptr); self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer); self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer); self->tlsPtr_.jpeer = nullptr; self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str()); ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority); self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer)); Dbg::PostThreadStart(self); // Invoke the 'run' method of our java.lang.Thread. mirror::Object* receiver = self->tlsPtr_.opeer; jmethodID mid = WellKnownClasses::java_lang_Thread_run; ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver)); InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr); } // Detach and delete self. Runtime::Current()->GetThreadList()->Unregister(self); return nullptr; } Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, mirror::Object* thread_peer) { ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer); Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer))); // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_ // to stop it from going away. if (kIsDebugBuild) { MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); if (result != nullptr && !result->IsSuspended()) { Locks::thread_list_lock_->AssertHeld(soa.Self()); } } return result; } Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, jobject java_thread) { return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread)); } static size_t FixStackSize(size_t stack_size) { // A stack size of zero means "use the default". if (stack_size == 0) { stack_size = Runtime::Current()->GetDefaultStackSize(); } // Dalvik used the bionic pthread default stack size for native threads, // so include that here to support apps that expect large native stacks. stack_size += 1 * MB; // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. if (stack_size < PTHREAD_STACK_MIN) { stack_size = PTHREAD_STACK_MIN; } if (Runtime::Current()->ExplicitStackOverflowChecks()) { // It's likely that callers are trying to ensure they have at least a certain amount of // stack space, so we should add our reserved space on top of what they requested, rather // than implicitly take it away from them. stack_size += GetStackOverflowReservedBytes(kRuntimeISA); } else { // If we are going to use implicit stack checks, allocate space for the protected // region at the bottom of the stack. stack_size += Thread::kStackOverflowImplicitCheckSize + GetStackOverflowReservedBytes(kRuntimeISA); } // Some systems require the stack size to be a multiple of the system page size, so round up. stack_size = RoundUp(stack_size, kPageSize); return stack_size; } // Global variable to prevent the compiler optimizing away the page reads for the stack. uint8_t dont_optimize_this; // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack // overflow is detected. It is located right below the stack_begin_. // // There is a little complexity here that deserves a special mention. On some // architectures, the stack created using a VM_GROWSDOWN flag // to prevent memory being allocated when it's not needed. This flag makes the // kernel only allocate memory for the stack by growing down in memory. Because we // want to put an mprotected region far away from that at the stack top, we need // to make sure the pages for the stack are mapped in before we call mprotect. We do // this by reading every page from the stack bottom (highest address) to the stack top. // We then madvise this away. void Thread::InstallImplicitProtection() { uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; uint8_t* stack_himem = tlsPtr_.stack_end; uint8_t* stack_top = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(&stack_himem) & ~(kPageSize - 1)); // Page containing current top of stack. // First remove the protection on the protected region as will want to read and // write it. This may fail (on the first attempt when the stack is not mapped) // but we ignore that. UnprotectStack(); // Map in the stack. This must be done by reading from the // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN // in the kernel. Any access more than a page below the current SP might cause // a segv. // Read every page from the high address to the low. for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) { dont_optimize_this = *p; } VLOG(threads) << "installing stack protected region at " << std::hex << static_cast<void*>(pregion) << " to " << static_cast<void*>(pregion + kStackOverflowProtectedSize - 1); // Protect the bottom of the stack to prevent read/write to it. ProtectStack(); // Tell the kernel that we won't be needing these pages any more. // NB. madvise will probably write zeroes into the memory (on linux it does). uint32_t unwanted_size = stack_top - pregion - kPageSize; madvise(pregion, unwanted_size, MADV_DONTNEED); } void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) { CHECK(java_peer != nullptr); Thread* self = static_cast<JNIEnvExt*>(env)->self; Runtime* runtime = Runtime::Current(); // Atomically start the birth of the thread ensuring the runtime isn't shutting down. bool thread_start_during_shutdown = false; { MutexLock mu(self, *Locks::runtime_shutdown_lock_); if (runtime->IsShuttingDownLocked()) { thread_start_during_shutdown = true; } else { runtime->StartThreadBirth(); } } if (thread_start_during_shutdown) { ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError")); env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown"); return; } Thread* child_thread = new Thread(is_daemon); // Use global JNI ref to hold peer live while child thread starts. child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer); stack_size = FixStackSize(stack_size); // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to // assign it. env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, reinterpret_cast<jlong>(child_thread)); // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and // do not have a good way to report this on the child's side. std::unique_ptr<JNIEnvExt> child_jni_env_ext( JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM())); int pthread_create_result = 0; if (child_jni_env_ext.get() != nullptr) { pthread_t new_pthread; pthread_attr_t attr; child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get(); CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED"); CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); if (pthread_create_result == 0) { // pthread_create started the new thread. The child is now responsible for managing the // JNIEnvExt we created. // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization // between the threads. child_jni_env_ext.release(); return; } } // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up. { MutexLock mu(self, *Locks::runtime_shutdown_lock_); runtime->EndThreadBirth(); } // Manually delete the global reference since Thread::Init will not have been run. env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer); child_thread->tlsPtr_.jpeer = nullptr; delete child_thread; child_thread = nullptr; // TODO: remove from thread group? env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0); { std::string msg(child_jni_env_ext.get() == nullptr ? "Could not allocate JNI Env" : StringPrintf("pthread_create (%s stack) failed: %s", PrettySize(stack_size).c_str(), strerror(pthread_create_result))); ScopedObjectAccess soa(env); soa.Self()->ThrowOutOfMemoryError(msg.c_str()); } } bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) { // This function does all the initialization that must be run by the native thread it applies to. // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so // we can handshake with the corresponding native thread when it's ready.) Check this native // thread hasn't been through here already... CHECK(Thread::Current() == nullptr); // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this // avoids pthread_self_ ever being invalid when discovered from Thread::Current(). tlsPtr_.pthread_self = pthread_self(); CHECK(is_started_); SetUpAlternateSignalStack(); if (!InitStackHwm()) { return false; } InitCpu(); InitTlsEntryPoints(); RemoveSuspendTrigger(); InitCardTable(); InitTid(); CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); DCHECK_EQ(Thread::Current(), this); tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this); if (jni_env_ext != nullptr) { DCHECK_EQ(jni_env_ext->vm, java_vm); DCHECK_EQ(jni_env_ext->self, this); tlsPtr_.jni_env = jni_env_ext; } else { tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm); if (tlsPtr_.jni_env == nullptr) { return false; } } thread_list->Register(this); return true; } Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group, bool create_peer) { Runtime* runtime = Runtime::Current(); if (runtime == nullptr) { LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name; return nullptr; } Thread* self; { MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); if (runtime->IsShuttingDownLocked()) { LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name; return nullptr; } else { Runtime::Current()->StartThreadBirth(); self = new Thread(as_daemon); bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); Runtime::Current()->EndThreadBirth(); if (!init_success) { delete self; return nullptr; } } } self->InitStringEntryPoints(); CHECK_NE(self->GetState(), kRunnable); self->SetState(kNative); // If we're the main thread, ClassLinker won't be created until after we're attached, // so that thread needs a two-stage attach. Regular threads don't need this hack. // In the compiler, all threads need this hack, because no-one's going to be getting // a native peer! if (create_peer) { self->CreatePeer(thread_name, as_daemon, thread_group); if (self->IsExceptionPending()) { // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it. { ScopedObjectAccess soa(self); LOG(ERROR) << "Exception creating thread peer:"; LOG(ERROR) << self->GetException()->Dump(); self->ClearException(); } runtime->GetThreadList()->Unregister(self); // Unregister deletes self, no need to do this here. return nullptr; } } else { // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. if (thread_name != nullptr) { self->tlsPtr_.name->assign(thread_name); ::art::SetThreadName(thread_name); } else if (self->GetJniEnv()->check_jni) { LOG(WARNING) << *Thread::Current() << " attached without supplying a name"; } } { ScopedObjectAccess soa(self); Dbg::PostThreadStart(self); } return self; } void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { Runtime* runtime = Runtime::Current(); CHECK(runtime->IsStarted()); JNIEnv* env = tlsPtr_.jni_env; if (thread_group == nullptr) { thread_group = runtime->GetMainThreadGroup(); } ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name)); // Add missing null check in case of OOM b/18297817 if (name != nullptr && thread_name.get() == nullptr) { CHECK(IsExceptionPending()); return; } jint thread_priority = GetNativePriority(); jboolean thread_is_daemon = as_daemon; ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); if (peer.get() == nullptr) { CHECK(IsExceptionPending()); return; } { ScopedObjectAccess soa(this); tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get()); } env->CallNonvirtualVoidMethod(peer.get(), WellKnownClasses::java_lang_Thread, WellKnownClasses::java_lang_Thread_init, thread_group, thread_name.get(), thread_priority, thread_is_daemon); if (IsExceptionPending()) { return; } Thread* self = this; DCHECK_EQ(self, Thread::Current()); env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer, reinterpret_cast<jlong>(self)); ScopedObjectAccess soa(self); StackHandleScope<1> hs(self); MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa))); if (peer_thread_name.Get() == nullptr) { // The Thread constructor should have set the Thread.name to a // non-null value. However, because we can run without code // available (in the compiler, in tests), we manually assign the // fields the constructor should have set. if (runtime->IsActiveTransaction()) { InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority); } else { InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority); } peer_thread_name.Assign(GetThreadName(soa)); } // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. if (peer_thread_name.Get() != nullptr) { SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); } } template<bool kTransactionActive> void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group, jobject thread_name, jint thread_priority) { soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)-> SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon); soa.DecodeField(WellKnownClasses::java_lang_Thread_group)-> SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group)); soa.DecodeField(WellKnownClasses::java_lang_Thread_name)-> SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name)); soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)-> SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority); } void Thread::SetThreadName(const char* name) { tlsPtr_.name->assign(name); ::art::SetThreadName(name); Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); } bool Thread::InitStackHwm() { void* read_stack_base; size_t read_stack_size; size_t read_guard_size; GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size); tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base); tlsPtr_.stack_size = read_stack_size; // The minimum stack size we can cope with is the overflow reserved bytes (typically // 8K) + the protected region size (4K) + another page (4K). Typically this will // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes // between 8K and 12K. uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize + 4 * KB; if (read_stack_size <= min_stack) { // Note, as we know the stack is small, avoid operations that could use a lot of stack. LogMessage::LogLineLowStack(__PRETTY_FUNCTION__, __LINE__, ERROR, "Attempt to attach a thread with a too-small stack"); return false; } // This is included in the SIGQUIT output, but it's useful here for thread debugging. VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)", read_stack_base, PrettySize(read_stack_size).c_str(), PrettySize(read_guard_size).c_str()); // Set stack_end_ to the bottom of the stack saving space of stack overflows Runtime* runtime = Runtime::Current(); bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler(); ResetDefaultStackEnd(); // Install the protected region if we are doing implicit overflow checks. if (implicit_stack_check) { // The thread might have protected region at the bottom. We need // to install our own region so we need to move the limits // of the stack to make room for it. tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize; tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize; tlsPtr_.stack_size -= read_guard_size; InstallImplicitProtection(); } // Sanity check. int stack_variable; CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end)); return true; } void Thread::ShortDump(std::ostream& os) const { os << "Thread["; if (GetThreadId() != 0) { // If we're in kStarting, we won't have a thin lock id or tid yet. os << GetThreadId() << ",tid=" << GetTid() << ','; } os << GetState() << ",Thread*=" << this << ",peer=" << tlsPtr_.opeer << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\"" << "]"; } void Thread::Dump(std::ostream& os) const { DumpState(os); DumpStack(os); } mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const { ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr; } void Thread::GetThreadName(std::string& name) const { name.assign(*tlsPtr_.name); } uint64_t Thread::GetCpuMicroTime() const { #if defined(__linux__) clockid_t cpu_clock_id; pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id); timespec now; clock_gettime(cpu_clock_id, &now); return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000); #else // __APPLE__ UNIMPLEMENTED(WARNING); return -1; #endif } // Attempt to rectify locks so that we dump thread list with required locks before exiting. static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { LOG(ERROR) << *thread << " suspend count already zero."; Locks::thread_suspend_count_lock_->Unlock(self); if (!Locks::mutator_lock_->IsSharedHeld(self)) { Locks::mutator_lock_->SharedTryLock(self); if (!Locks::mutator_lock_->IsSharedHeld(self)) { LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; } } if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { Locks::thread_list_lock_->TryLock(self); if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; } } std::ostringstream ss; Runtime::Current()->GetThreadList()->Dump(ss); LOG(FATAL) << ss.str(); } void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) { if (kIsDebugBuild) { DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count) << delta << " " << tls32_.debug_suspend_count << " " << this; DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this; Locks::thread_suspend_count_lock_->AssertHeld(self); if (this != self && !IsSuspended()) { Locks::thread_list_lock_->AssertHeld(self); } } if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) { UnsafeLogFatalForSuspendCount(self, this); return; } tls32_.suspend_count += delta; if (for_debugger) { tls32_.debug_suspend_count += delta; } if (tls32_.suspend_count == 0) { AtomicClearFlag(kSuspendRequest); } else { AtomicSetFlag(kSuspendRequest); TriggerSuspend(); } } void Thread::RunCheckpointFunction() { Closure *checkpoints[kMaxCheckpoints]; // Grab the suspend_count lock and copy the current set of // checkpoints. Then clear the list and the flag. The RequestCheckpoint // function will also grab this lock so we prevent a race between setting // the kCheckpointRequest flag and clearing it. { MutexLock mu(this, *Locks::thread_suspend_count_lock_); for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { checkpoints[i] = tlsPtr_.checkpoint_functions[i]; tlsPtr_.checkpoint_functions[i] = nullptr; } AtomicClearFlag(kCheckpointRequest); } // Outside the lock, run all the checkpoint functions that // we collected. bool found_checkpoint = false; for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { if (checkpoints[i] != nullptr) { ATRACE_BEGIN("Checkpoint function"); checkpoints[i]->Run(this); ATRACE_END(); found_checkpoint = true; } } CHECK(found_checkpoint); } bool Thread::RequestCheckpoint(Closure* function) { union StateAndFlags old_state_and_flags; old_state_and_flags.as_int = tls32_.state_and_flags.as_int; if (old_state_and_flags.as_struct.state != kRunnable) { return false; // Fail, thread is suspended and so can't run a checkpoint. } uint32_t available_checkpoint = kMaxCheckpoints; for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) { if (tlsPtr_.checkpoint_functions[i] == nullptr) { available_checkpoint = i; break; } } if (available_checkpoint == kMaxCheckpoints) { // No checkpoint functions available, we can't run a checkpoint return false; } tlsPtr_.checkpoint_functions[available_checkpoint] = function; // Checkpoint function installed now install flag bit. // We must be runnable to request a checkpoint. DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable); union StateAndFlags new_state_and_flags; new_state_and_flags.as_int = old_state_and_flags.as_int; new_state_and_flags.as_struct.flags |= kCheckpointRequest; bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent( old_state_and_flags.as_int, new_state_and_flags.as_int); if (UNLIKELY(!success)) { // The thread changed state before the checkpoint was installed. CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function); tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr; } else { CHECK_EQ(ReadFlag(kCheckpointRequest), true); TriggerSuspend(); } return success; } Closure* Thread::GetFlipFunction() { Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function); Closure* func; do { func = atomic_func->LoadRelaxed(); if (func == nullptr) { return nullptr; } } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr)); DCHECK(func != nullptr); return func; } void Thread::SetFlipFunction(Closure* function) { CHECK(function != nullptr); Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function); atomic_func->StoreSequentiallyConsistent(function); } void Thread::FullSuspendCheck() { VLOG(threads) << this << " self-suspending"; ATRACE_BEGIN("Full suspend check"); // Make thread appear suspended to other threads, release mutator_lock_. tls32_.suspended_at_suspend_check = true; TransitionFromRunnableToSuspended(kSuspended); // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_. TransitionFromSuspendedToRunnable(); tls32_.suspended_at_suspend_check = false; ATRACE_END(); VLOG(threads) << this << " self-reviving"; } void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { std::string group_name; int priority; bool is_daemon = false; Thread* self = Thread::Current(); // If flip_function is not null, it means we have run a checkpoint // before the thread wakes up to execute the flip function and the // thread roots haven't been forwarded. So the following access to // the roots (opeer or methods in the frames) would be bad. Run it // here. TODO: clean up. if (thread != nullptr) { ScopedObjectAccessUnchecked soa(self); Thread* this_thread = const_cast<Thread*>(thread); Closure* flip_func = this_thread->GetFlipFunction(); if (flip_func != nullptr) { flip_func->Run(this_thread); } } // Don't do this if we are aborting since the GC may have all the threads suspended. This will // cause ScopedObjectAccessUnchecked to deadlock. if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) { ScopedObjectAccessUnchecked soa(self); priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority) ->GetInt(thread->tlsPtr_.opeer); is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon) ->GetBoolean(thread->tlsPtr_.opeer); mirror::Object* thread_group = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer); if (thread_group != nullptr) { ArtField* group_name_field = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name); mirror::String* group_name_string = reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group)); group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>"; } } else { priority = GetNativePriority(); } std::string scheduler_group_name(GetSchedulerGroupName(tid)); if (scheduler_group_name.empty()) { scheduler_group_name = "default"; } if (thread != nullptr) { os << '"' << *thread->tlsPtr_.name << '"'; if (is_daemon) { os << " daemon"; } os << " prio=" << priority << " tid=" << thread->GetThreadId() << " " << thread->GetState(); if (thread->IsStillStarting()) { os << " (still starting up)"; } os << "\n"; } else { os << '"' << ::art::GetThreadName(tid) << '"' << " prio=" << priority << " (not attached)\n"; } if (thread != nullptr) { MutexLock mu(self, *Locks::thread_suspend_count_lock_); os << " | group=\"" << group_name << "\"" << " sCount=" << thread->tls32_.suspend_count << " dsCount=" << thread->tls32_.debug_suspend_count << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer) << " self=" << reinterpret_cast<const void*>(thread) << "\n"; } os << " | sysTid=" << tid << " nice=" << getpriority(PRIO_PROCESS, tid) << " cgrp=" << scheduler_group_name; if (thread != nullptr) { int policy; sched_param sp; CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp), __FUNCTION__); os << " sched=" << policy << "/" << sp.sched_priority << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self); } os << "\n"; // Grab the scheduler stats for this thread. std::string scheduler_stats; if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) { scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. } else { scheduler_stats = "0 0 0"; } char native_thread_state = '?'; int utime = 0; int stime = 0; int task_cpu = 0; GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu); os << " | state=" << native_thread_state << " schedstat=( " << scheduler_stats << " )" << " utm=" << utime << " stm=" << stime << " core=" << task_cpu << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; if (thread != nullptr) { os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-" << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize=" << PrettySize(thread->tlsPtr_.stack_size) << "\n"; // Dump the held mutexes. os << " | held mutexes="; for (size_t i = 0; i < kLockLevelCount; ++i) { if (i != kMonitorLock) { BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i)); if (mutex != nullptr) { os << " \"" << mutex->GetName() << "\""; if (mutex->IsReaderWriterMutex()) { ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex); if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) { os << "(exclusive held)"; } else { os << "(shared held)"; } } } } } os << "\n"; } } void Thread::DumpState(std::ostream& os) const { Thread::DumpState(os, this, GetTid()); } struct StackDumpVisitor : public StackVisitor { StackDumpVisitor(std::ostream& os_in, Thread* thread_in, Context* context, bool can_allocate_in) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames), os(os_in), thread(thread_in), can_allocate(can_allocate_in), last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {} virtual ~StackDumpVisitor() { if (frame_count == 0) { os << " (no managed stack frames)\n"; } } bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ArtMethod* m = GetMethod(); if (m->IsRuntimeMethod()) { return true; } m = m->GetInterfaceMethodIfProxy(sizeof(void*)); const int kMaxRepetition = 3; mirror::Class* c = m->GetDeclaringClass(); mirror::DexCache* dex_cache = c->GetDexCache(); int line_number = -1; if (dex_cache != nullptr) { // be tolerant of bad input const DexFile& dex_file = *dex_cache->GetDexFile(); line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false)); } if (line_number == last_line_number && last_method == m) { ++repetition_count; } else { if (repetition_count >= kMaxRepetition) { os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; } repetition_count = 0; last_line_number = line_number; last_method = m; } if (repetition_count < kMaxRepetition) { os << " at " << PrettyMethod(m, false); if (m->IsNative()) { os << "(Native method)"; } else { const char* source_file(m->GetDeclaringClassSourceFile()); os << "(" << (source_file != nullptr ? source_file : "unavailable") << ":" << line_number << ")"; } os << "\n"; if (frame_count == 0) { Monitor::DescribeWait(os, thread); } if (can_allocate) { // Visit locks, but do not abort on errors. This would trigger a nested abort. Monitor::VisitLocks(this, DumpLockedObject, &os, false); } } ++frame_count; return true; } static void DumpLockedObject(mirror::Object* o, void* context) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { std::ostream& os = *reinterpret_cast<std::ostream*>(context); os << " - locked "; if (o == nullptr) { os << "an unknown object"; } else { if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) && Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) { // Getting the identity hashcode here would result in lock inflation and suspension of the // current thread, which isn't safe if this is the only runnable thread. os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o), PrettyTypeOf(o).c_str()); } else { // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So // we get the pretty type beofre we call IdentityHashCode. const std::string pretty_type(PrettyTypeOf(o)); os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str()); } } os << "\n"; } std::ostream& os; const Thread* thread; const bool can_allocate; ArtMethod* last_method; int last_line_number; int repetition_count; int frame_count; }; static bool ShouldShowNativeStack(const Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ThreadState state = thread->GetState(); // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting. if (state > kWaiting && state < kStarting) { return true; } // In an Object.wait variant or Thread.sleep? That's not interesting. if (state == kTimedWaiting || state == kSleeping || state == kWaiting) { return false; } // Threads with no managed stack frames should be shown. const ManagedStack* managed_stack = thread->GetManagedStack(); if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr && managed_stack->GetTopShadowFrame() == nullptr)) { return true; } // In some other native method? That's interesting. // We don't just check kNative because native methods will be in state kSuspended if they're // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the // thread-startup states if it's early enough in their life cycle (http://b/7432159). ArtMethod* current_method = thread->GetCurrentMethod(nullptr); return current_method != nullptr && current_method->IsNative(); } void Thread::DumpJavaStack(std::ostream& os) const { // If flip_function is not null, it means we have run a checkpoint // before the thread wakes up to execute the flip function and the // thread roots haven't been forwarded. So the following access to // the roots (locks or methods in the frames) would be bad. Run it // here. TODO: clean up. { Thread* this_thread = const_cast<Thread*>(this); Closure* flip_func = this_thread->GetFlipFunction(); if (flip_func != nullptr) { flip_func->Run(this_thread); } } // Dumping the Java stack involves the verifier for locks. The verifier operates under the // assumption that there is no exception pending on entry. Thus, stash any pending exception. // Thread::Current() instead of this in case a thread is dumping the stack of another suspended // thread. StackHandleScope<1> scope(Thread::Current()); Handle<mirror::Throwable> exc; bool have_exception = false; if (IsExceptionPending()) { exc = scope.NewHandle(GetException()); const_cast<Thread*>(this)->ClearException(); have_exception = true; } std::unique_ptr<Context> context(Context::Create()); StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !tls32_.throwing_OutOfMemoryError); dumper.WalkStack(); if (have_exception) { const_cast<Thread*>(this)->SetException(exc.Get()); } } void Thread::DumpStack(std::ostream& os) const { // TODO: we call this code when dying but may not have suspended the thread ourself. The // IsSuspended check is therefore racy with the use for dumping (normally we inhibit // the race with the thread_suspend_count_lock_). bool dump_for_abort = (gAborting > 0); bool safe_to_dump = (this == Thread::Current() || IsSuspended()); if (!kIsDebugBuild) { // We always want to dump the stack for an abort, however, there is no point dumping another // thread's stack in debug builds where we'll hit the not suspended check in the stack walk. safe_to_dump = (safe_to_dump || dump_for_abort); } if (safe_to_dump) { // If we're currently in native code, dump that stack before dumping the managed stack. if (dump_for_abort || ShouldShowNativeStack(this)) { DumpKernelStack(os, GetTid(), " kernel: ", false); DumpNativeStack(os, GetTid(), " native: ", GetCurrentMethod(nullptr, !dump_for_abort)); } DumpJavaStack(os); } else { os << "Not able to dump stack of thread that isn't suspended"; } } void Thread::ThreadExitCallback(void* arg) { Thread* self = reinterpret_cast<Thread*>(arg); if (self->tls32_.thread_exit_check_count == 0) { LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's " "going to use a pthread_key_create destructor?): " << *self; CHECK(is_started_); CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); self->tls32_.thread_exit_check_count = 1; } else { LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; } } void Thread::Startup() { CHECK(!is_started_); is_started_ = true; { // MutexLock to keep annotalysis happy. // // Note we use null for the thread because Thread::Current can // return garbage since (is_started_ == true) and // Thread::pthread_key_self_ is not yet initialized. // This was seen on glibc. MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_); resume_cond_ = new ConditionVariable("Thread resumption condition variable", *Locks::thread_suspend_count_lock_); } // Allocate a TLS slot. CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key"); // Double-check the TLS slot allocation. if (pthread_getspecific(pthread_key_self_) != nullptr) { LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr"; } } void Thread::FinishStartup() { Runtime* runtime = Runtime::Current(); CHECK(runtime->IsStarted()); // Finish attaching the main thread. ScopedObjectAccess soa(Thread::Current()); Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup()); Thread::Current()->AssertNoPendingException(); Runtime::Current()->GetClassLinker()->RunRootClinits(); } void Thread::Shutdown() { CHECK(is_started_); is_started_ = false; CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); if (resume_cond_ != nullptr) { delete resume_cond_; resume_cond_ = nullptr; } } Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) { wait_mutex_ = new Mutex("a thread wait mutex"); wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_); tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>; tlsPtr_.name = new std::string(kThreadNameDuringStartup); tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf))); CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread); tls32_.state_and_flags.as_struct.flags = 0; tls32_.state_and_flags.as_struct.state = kNative; memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes)); std::fill(tlsPtr_.rosalloc_runs, tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets, gc::allocator::RosAlloc::GetDedicatedFullRun()); for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { tlsPtr_.checkpoint_functions[i] = nullptr; } tlsPtr_.flip_function = nullptr; tls32_.suspended_at_suspend_check = false; } bool Thread::IsStillStarting() const { // You might think you can check whether the state is kStarting, but for much of thread startup, // the thread is in kNative; it might also be in kVmWait. // You might think you can check whether the peer is null, but the peer is actually created and // assigned fairly early on, and needs to be. // It turns out that the last thing to change is the thread name; that's a good proxy for "has // this thread _ever_ entered kRunnable". return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) || (*tlsPtr_.name == kThreadNameDuringStartup); } void Thread::AssertPendingException() const { CHECK(IsExceptionPending()) << "Pending exception expected."; } void Thread::AssertPendingOOMException() const { AssertPendingException(); auto* e = GetException(); CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass()) << e->Dump(); } void Thread::AssertNoPendingException() const { if (UNLIKELY(IsExceptionPending())) { ScopedObjectAccess soa(Thread::Current()); mirror::Throwable* exception = GetException(); LOG(FATAL) << "No pending exception expected: " << exception->Dump(); } } void Thread::AssertNoPendingExceptionForNewException(const char* msg) const { if (UNLIKELY(IsExceptionPending())) { ScopedObjectAccess soa(Thread::Current()); mirror::Throwable* exception = GetException(); LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: " << exception->Dump(); } } class MonitorExitVisitor : public SingleRootVisitor { public: explicit MonitorExitVisitor(Thread* self) : self_(self) { } // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit. void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { if (self_->HoldsLock(entered_monitor)) { LOG(WARNING) << "Calling MonitorExit on object " << entered_monitor << " (" << PrettyTypeOf(entered_monitor) << ")" << " left locked by native thread " << *Thread::Current() << " which is detaching"; entered_monitor->MonitorExit(self_); } } private: Thread* const self_; }; void Thread::Destroy() { Thread* self = this; DCHECK_EQ(self, Thread::Current()); if (tlsPtr_.jni_env != nullptr) { { ScopedObjectAccess soa(self); MonitorExitVisitor visitor(self); // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal)); } // Release locally held global references which releasing may require the mutator lock. if (tlsPtr_.jpeer != nullptr) { // If pthread_create fails we don't have a jni env here. tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer); tlsPtr_.jpeer = nullptr; } if (tlsPtr_.class_loader_override != nullptr) { tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override); tlsPtr_.class_loader_override = nullptr; } } if (tlsPtr_.opeer != nullptr) { ScopedObjectAccess soa(self); // We may need to call user-supplied managed code, do this before final clean-up. HandleUncaughtExceptions(soa); RemoveFromThreadGroup(soa); // this.nativePeer = 0; if (Runtime::Current()->IsActiveTransaction()) { soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer) ->SetLong<true>(tlsPtr_.opeer, 0); } else { soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer) ->SetLong<false>(tlsPtr_.opeer, 0); } Dbg::PostThreadDeath(self); // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone // who is waiting. mirror::Object* lock = soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer); // (This conditional is only needed for tests, where Thread.lock won't have been set.) if (lock != nullptr) { StackHandleScope<1> hs(self); Handle<mirror::Object> h_obj(hs.NewHandle(lock)); ObjectLock<mirror::Object> locker(self, h_obj); locker.NotifyAll(); } tlsPtr_.opeer = nullptr; } { ScopedObjectAccess soa(self); Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this); } } Thread::~Thread() { CHECK(tlsPtr_.class_loader_override == nullptr); CHECK(tlsPtr_.jpeer == nullptr); CHECK(tlsPtr_.opeer == nullptr); bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run? if (initialized) { delete tlsPtr_.jni_env; tlsPtr_.jni_env = nullptr; } CHECK_NE(GetState(), kRunnable); CHECK_NE(ReadFlag(kCheckpointRequest), true); CHECK(tlsPtr_.checkpoint_functions[0] == nullptr); CHECK(tlsPtr_.checkpoint_functions[1] == nullptr); CHECK(tlsPtr_.checkpoint_functions[2] == nullptr); CHECK(tlsPtr_.flip_function == nullptr); CHECK_EQ(tls32_.suspended_at_suspend_check, false); // We may be deleting a still born thread. SetStateUnsafe(kTerminated); delete wait_cond_; delete wait_mutex_; if (tlsPtr_.long_jump_context != nullptr) { delete tlsPtr_.long_jump_context; } if (initialized) { CleanupCpu(); } if (tlsPtr_.single_step_control != nullptr) { delete tlsPtr_.single_step_control; } delete tlsPtr_.instrumentation_stack; delete tlsPtr_.name; delete tlsPtr_.stack_trace_sample; free(tlsPtr_.nested_signal_state); Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this); TearDownAlternateSignalStack(); } void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) { if (!IsExceptionPending()) { return; } ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer)); ScopedThreadStateChange tsc(this, kNative); // Get and clear the exception. ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred()); tlsPtr_.jni_env->ExceptionClear(); // If the thread has its own handler, use that. ScopedLocalRef<jobject> handler(tlsPtr_.jni_env, tlsPtr_.jni_env->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_uncaughtHandler)); if (handler.get() == nullptr) { // Otherwise use the thread group's default handler. handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group)); } // Call the handler. tlsPtr_.jni_env->CallVoidMethod(handler.get(), WellKnownClasses::java_lang_Thread__UncaughtExceptionHandler_uncaughtException, peer.get(), exception.get()); // If the handler threw, clear that exception too. tlsPtr_.jni_env->ExceptionClear(); } void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) { // this.group.removeThread(this); // group can be null if we're in the compiler or a test. mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group) ->GetObject(tlsPtr_.opeer); if (ogroup != nullptr) { ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup)); ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer)); ScopedThreadStateChange tsc(soa.Self(), kNative); tlsPtr_.jni_env->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread, peer.get()); } } size_t Thread::NumHandleReferences() { size_t count = 0; for (HandleScope* cur = tlsPtr_.top_handle_scope; cur != nullptr; cur = cur->GetLink()) { count += cur->NumberOfReferences(); } return count; } bool Thread::HandleScopeContains(jobject obj) const { StackReference<mirror::Object>* hs_entry = reinterpret_cast<StackReference<mirror::Object>*>(obj); for (HandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) { if (cur->Contains(hs_entry)) { return true; } } // JNI code invoked from portable code uses shadow frames rather than the handle scope. return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry); } void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) { BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor( visitor, RootInfo(kRootNativeStack, thread_id)); for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { for (size_t j = 0, count = cur->NumberOfReferences(); j < count; ++j) { // GetReference returns a pointer to the stack reference within the handle scope. If this // needs to be updated, it will be done by the root visitor. buffered_visitor.VisitRootIfNonNull(cur->GetHandle(j).GetReference()); } } } mirror::Object* Thread::DecodeJObject(jobject obj) const { if (obj == nullptr) { return nullptr; } IndirectRef ref = reinterpret_cast<IndirectRef>(obj); IndirectRefKind kind = GetIndirectRefKind(ref); mirror::Object* result; bool expect_null = false; // The "kinds" below are sorted by the frequency we expect to encounter them. if (kind == kLocal) { IndirectReferenceTable& locals = tlsPtr_.jni_env->locals; // Local references do not need a read barrier. result = locals.Get<kWithoutReadBarrier>(ref); } else if (kind == kHandleScopeOrInvalid) { // TODO: make stack indirect reference table lookup more efficient. // Check if this is a local reference in the handle scope. if (LIKELY(HandleScopeContains(obj))) { // Read from handle scope. result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr(); VerifyObject(result); } else { tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj); expect_null = true; result = nullptr; } } else if (kind == kGlobal) { result = tlsPtr_.jni_env->vm->DecodeGlobal(const_cast<Thread*>(this), ref); } else { DCHECK_EQ(kind, kWeakGlobal); result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref); if (Runtime::Current()->IsClearedJniWeakGlobal(result)) { // This is a special case where it's okay to return null. expect_null = true; result = nullptr; } } if (UNLIKELY(!expect_null && result == nullptr)) { tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj); } return result; } // Implements java.lang.Thread.interrupted. bool Thread::Interrupted() { MutexLock mu(Thread::Current(), *wait_mutex_); bool interrupted = IsInterruptedLocked(); SetInterruptedLocked(false); return interrupted; } // Implements java.lang.Thread.isInterrupted. bool Thread::IsInterrupted() { MutexLock mu(Thread::Current(), *wait_mutex_); return IsInterruptedLocked(); } void Thread::Interrupt(Thread* self) { MutexLock mu(self, *wait_mutex_); if (interrupted_) { return; } interrupted_ = true; NotifyLocked(self); } void Thread::Notify() { Thread* self = Thread::Current(); MutexLock mu(self, *wait_mutex_); NotifyLocked(self); } void Thread::NotifyLocked(Thread* self) { if (wait_monitor_ != nullptr) { wait_cond_->Signal(self); } } void Thread::SetClassLoaderOverride(jobject class_loader_override) { if (tlsPtr_.class_loader_override != nullptr) { GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override); } tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override); } class CountStackDepthVisitor : public StackVisitor { public: explicit CountStackDepthVisitor(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), depth_(0), skip_depth_(0), skipping_(true) {} bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // We want to skip frames up to and including the exception's constructor. // Note we also skip the frame if it doesn't have a method (namely the callee // save frame) ArtMethod* m = GetMethod(); if (skipping_ && !m->IsRuntimeMethod() && !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) { skipping_ = false; } if (!skipping_) { if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). ++depth_; } } else { ++skip_depth_; } return true; } int GetDepth() const { return depth_; } int GetSkipDepth() const { return skip_depth_; } private: uint32_t depth_; uint32_t skip_depth_; bool skipping_; }; template<bool kTransactionActive> class BuildInternalStackTraceVisitor : public StackVisitor { public: explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth) : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), self_(self), skip_depth_(skip_depth), count_(0), trace_(nullptr), pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {} bool Init(int depth) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Allocate method trace with format [method pointers][pcs]. auto* cl = Runtime::Current()->GetClassLinker(); trace_ = cl->AllocPointerArray(self_, depth * 2); if (trace_ == nullptr) { self_->AssertPendingOOMException(); return false; } // If We are called from native, use non-transactional mode. const char* last_no_suspend_cause = self_->StartAssertNoThreadSuspension("Building internal stack trace"); CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause; return true; } virtual ~BuildInternalStackTraceVisitor() { if (trace_ != nullptr) { self_->EndAssertNoThreadSuspension(nullptr); } } bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (trace_ == nullptr) { return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. } if (skip_depth_ > 0) { skip_depth_--; return true; } ArtMethod* m = GetMethod(); if (m->IsRuntimeMethod()) { return true; // Ignore runtime frames (in particular callee save). } trace_->SetElementPtrSize<kTransactionActive>( count_, m, pointer_size_); trace_->SetElementPtrSize<kTransactionActive>( trace_->GetLength() / 2 + count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc(), pointer_size_); ++count_; return true; } mirror::PointerArray* GetInternalStackTrace() const { return trace_; } private: Thread* const self_; // How many more frames to skip. int32_t skip_depth_; // Current position down stack trace. uint32_t count_; // An array of the methods on the stack, the last entries are the dex PCs. mirror::PointerArray* trace_; // For cross compilation. size_t pointer_size_; }; template<bool kTransactionActive> jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { // Compute depth of stack CountStackDepthVisitor count_visitor(const_cast<Thread*>(this)); count_visitor.WalkStack(); int32_t depth = count_visitor.GetDepth(); int32_t skip_depth = count_visitor.GetSkipDepth(); // Build internal stack trace. BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(), const_cast<Thread*>(this), skip_depth); if (!build_trace_visitor.Init(depth)) { return nullptr; // Allocation failed. } build_trace_visitor.WalkStack(); mirror::PointerArray* trace = build_trace_visitor.GetInternalStackTrace(); if (kIsDebugBuild) { // Second half is dex PCs. for (uint32_t i = 0; i < static_cast<uint32_t>(trace->GetLength() / 2); ++i) { auto* method = trace->GetElementPtrSize<ArtMethod*>( i, Runtime::Current()->GetClassLinker()->GetImagePointerSize()); CHECK(method != nullptr); } } return soa.AddLocalReference<jobject>(trace); } template jobject Thread::CreateInternalStackTrace<false>( const ScopedObjectAccessAlreadyRunnable& soa) const; template jobject Thread::CreateInternalStackTrace<true>( const ScopedObjectAccessAlreadyRunnable& soa) const; bool Thread::IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const { CountStackDepthVisitor count_visitor(const_cast<Thread*>(this)); count_visitor.WalkStack(); return count_visitor.GetDepth() == exception->GetStackDepth(); } jobjectArray Thread::InternalStackTraceToStackTraceElementArray( const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array, int* stack_depth) { // Decode the internal stack trace into the depth, method trace and PC trace int32_t depth = soa.Decode<mirror::PointerArray*>(internal)->GetLength() / 2; auto* cl = Runtime::Current()->GetClassLinker(); jobjectArray result; if (output_array != nullptr) { // Reuse the array we were given. result = output_array; // ...adjusting the number of frames we'll write to not exceed the array length. const int32_t traces_length = soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength(); depth = std::min(depth, traces_length); } else { // Create java_trace array and place in local reference table mirror::ObjectArray<mirror::StackTraceElement>* java_traces = cl->AllocStackTraceElementArray(soa.Self(), depth); if (java_traces == nullptr) { return nullptr; } result = soa.AddLocalReference<jobjectArray>(java_traces); } if (stack_depth != nullptr) { *stack_depth = depth; } for (int32_t i = 0; i < depth; ++i) { auto* method_trace = soa.Decode<mirror::PointerArray*>(internal); // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, sizeof(void*)); uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>( i + method_trace->GetLength() / 2, sizeof(void*)); int32_t line_number; StackHandleScope<3> hs(soa.Self()); auto class_name_object(hs.NewHandle<mirror::String>(nullptr)); auto source_name_object(hs.NewHandle<mirror::String>(nullptr)); if (method->IsProxyMethod()) { line_number = -1; class_name_object.Assign(method->GetDeclaringClass()->GetName()); // source_name_object intentionally left null for proxy methods } else { line_number = method->GetLineNumFromDexPC(dex_pc); // Allocate element, potentially triggering GC // TODO: reuse class_name_object via Class::name_? const char* descriptor = method->GetDeclaringClassDescriptor(); CHECK(descriptor != nullptr); std::string class_name(PrettyDescriptor(descriptor)); class_name_object.Assign( mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str())); if (class_name_object.Get() == nullptr) { soa.Self()->AssertPendingOOMException(); return nullptr; } const char* source_file = method->GetDeclaringClassSourceFile(); if (source_file != nullptr) { source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file)); if (source_name_object.Get() == nullptr) { soa.Self()->AssertPendingOOMException(); return nullptr; } } } const char* method_name = method->GetInterfaceMethodIfProxy(sizeof(void*))->GetName(); CHECK(method_name != nullptr); Handle<mirror::String> method_name_object( hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name))); if (method_name_object.Get() == nullptr) { return nullptr; } mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc( soa.Self(), class_name_object, method_name_object, source_name_object, line_number); if (obj == nullptr) { return nullptr; } // We are called from native: use non-transactional mode. soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj); } return result; } void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) { va_list args; va_start(args, fmt); ThrowNewExceptionV(exception_class_descriptor, fmt, args); va_end(args); } void Thread::ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) { std::string msg; StringAppendV(&msg, fmt, ap); ThrowNewException(exception_class_descriptor, msg.c_str()); } void Thread::ThrowNewException(const char* exception_class_descriptor, const char* msg) { // Callers should either clear or call ThrowNewWrappedException. AssertNoPendingExceptionForNewException(msg); ThrowNewWrappedException(exception_class_descriptor, msg); } static mirror::ClassLoader* GetCurrentClassLoader(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ArtMethod* method = self->GetCurrentMethod(nullptr); return method != nullptr ? method->GetDeclaringClass()->GetClassLoader() : nullptr; } void Thread::ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg) { DCHECK_EQ(this, Thread::Current()); ScopedObjectAccessUnchecked soa(this); StackHandleScope<3> hs(soa.Self()); Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self()))); ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException())); ClearException(); Runtime* runtime = Runtime::Current(); auto* cl = runtime->GetClassLinker(); Handle<mirror::Class> exception_class( hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader))); if (UNLIKELY(exception_class.Get() == nullptr)) { CHECK(IsExceptionPending()); LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor); return; } if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true, true))) { DCHECK(IsExceptionPending()); return; } DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass()); Handle<mirror::Throwable> exception( hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this)))); // If we couldn't allocate the exception, throw the pre-allocated out of memory exception. if (exception.Get() == nullptr) { SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError()); return; } // Choose an appropriate constructor and set up the arguments. const char* signature; ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr); if (msg != nullptr) { // Ensure we remember this and the method over the String allocation. msg_string.reset( soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg))); if (UNLIKELY(msg_string.get() == nullptr)) { CHECK(IsExceptionPending()); // OOME. return; } if (cause.get() == nullptr) { signature = "(Ljava/lang/String;)V"; } else { signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V"; } } else { if (cause.get() == nullptr) { signature = "()V"; } else { signature = "(Ljava/lang/Throwable;)V"; } } ArtMethod* exception_init_method = exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize()); CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in " << PrettyDescriptor(exception_class_descriptor); if (UNLIKELY(!runtime->IsStarted())) { // Something is trying to throw an exception without a started runtime, which is the common // case in the compiler. We won't be able to invoke the constructor of the exception, so set // the exception fields directly. if (msg != nullptr) { exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get()))); } if (cause.get() != nullptr) { exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get()))); } ScopedLocalRef<jobject> trace(GetJniEnv(), Runtime::Current()->IsActiveTransaction() ? CreateInternalStackTrace<true>(soa) : CreateInternalStackTrace<false>(soa)); if (trace.get() != nullptr) { exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get()))); } SetException(exception.Get()); } else { jvalue jv_args[2]; size_t i = 0; if (msg != nullptr) { jv_args[i].l = msg_string.get(); ++i; } if (cause.get() != nullptr) { jv_args[i].l = cause.get(); ++i; } ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get())); InvokeWithJValues(soa, ref.get(), soa.EncodeMethod(exception_init_method), jv_args); if (LIKELY(!IsExceptionPending())) { SetException(exception.Get()); } } } void Thread::ThrowOutOfMemoryError(const char* msg) { LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : "")); if (!tls32_.throwing_OutOfMemoryError) { tls32_.throwing_OutOfMemoryError = true; ThrowNewException("Ljava/lang/OutOfMemoryError;", msg); tls32_.throwing_OutOfMemoryError = false; } else { Dump(LOG(WARNING)); // The pre-allocated OOME has no stack, so help out and log one. SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError()); } } Thread* Thread::CurrentFromGdb() { return Thread::Current(); } void Thread::DumpFromGdb() const { std::ostringstream ss; Dump(ss); std::string str(ss.str()); // log to stderr for debugging command line processes std::cerr << str; #ifdef HAVE_ANDROID_OS // log to logcat for debugging frameworks processes LOG(INFO) << str; #endif } // Explicitly instantiate 32 and 64bit thread offset dumping support. template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset); template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset); template<size_t ptr_size> void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) { #define DO_THREAD_OFFSET(x, y) \ if (offset == x.Uint32Value()) { \ os << y; \ return; \ } DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags") DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table") DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception") DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer"); DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env") DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self") DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end") DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id") DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method") DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame") DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope") DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger") #undef DO_THREAD_OFFSET #define INTERPRETER_ENTRY_POINT_INFO(x) \ if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ os << #x; \ return; \ } INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge) INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge) #undef INTERPRETER_ENTRY_POINT_INFO #define JNI_ENTRY_POINT_INFO(x) \ if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ os << #x; \ return; \ } JNI_ENTRY_POINT_INFO(pDlsymLookup) #undef JNI_ENTRY_POINT_INFO #define QUICK_ENTRY_POINT_INFO(x) \ if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ os << #x; \ return; \ } QUICK_ENTRY_POINT_INFO(pAllocArray) QUICK_ENTRY_POINT_INFO(pAllocArrayResolved) QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck) QUICK_ENTRY_POINT_INFO(pAllocObject) QUICK_ENTRY_POINT_INFO(pAllocObjectResolved) QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized) QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck) QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray) QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck) QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes) QUICK_ENTRY_POINT_INFO(pAllocStringFromChars) QUICK_ENTRY_POINT_INFO(pAllocStringFromString) QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial) QUICK_ENTRY_POINT_INFO(pCheckCast) QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage) QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess) QUICK_ENTRY_POINT_INFO(pInitializeType) QUICK_ENTRY_POINT_INFO(pResolveString) QUICK_ENTRY_POINT_INFO(pSet8Instance) QUICK_ENTRY_POINT_INFO(pSet8Static) QUICK_ENTRY_POINT_INFO(pSet16Instance) QUICK_ENTRY_POINT_INFO(pSet16Static) QUICK_ENTRY_POINT_INFO(pSet32Instance) QUICK_ENTRY_POINT_INFO(pSet32Static) QUICK_ENTRY_POINT_INFO(pSet64Instance) QUICK_ENTRY_POINT_INFO(pSet64Static) QUICK_ENTRY_POINT_INFO(pSetObjInstance) QUICK_ENTRY_POINT_INFO(pSetObjStatic) QUICK_ENTRY_POINT_INFO(pGetByteInstance) QUICK_ENTRY_POINT_INFO(pGetBooleanInstance) QUICK_ENTRY_POINT_INFO(pGetByteStatic) QUICK_ENTRY_POINT_INFO(pGetBooleanStatic) QUICK_ENTRY_POINT_INFO(pGetShortInstance) QUICK_ENTRY_POINT_INFO(pGetCharInstance) QUICK_ENTRY_POINT_INFO(pGetShortStatic) QUICK_ENTRY_POINT_INFO(pGetCharStatic) QUICK_ENTRY_POINT_INFO(pGet32Instance) QUICK_ENTRY_POINT_INFO(pGet32Static) QUICK_ENTRY_POINT_INFO(pGet64Instance) QUICK_ENTRY_POINT_INFO(pGet64Static) QUICK_ENTRY_POINT_INFO(pGetObjInstance) QUICK_ENTRY_POINT_INFO(pGetObjStatic) QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck) QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck) QUICK_ENTRY_POINT_INFO(pAputObject) QUICK_ENTRY_POINT_INFO(pHandleFillArrayData) QUICK_ENTRY_POINT_INFO(pJniMethodStart) QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized) QUICK_ENTRY_POINT_INFO(pJniMethodEnd) QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized) QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference) QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized) QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline) QUICK_ENTRY_POINT_INFO(pLockObject) QUICK_ENTRY_POINT_INFO(pUnlockObject) QUICK_ENTRY_POINT_INFO(pCmpgDouble) QUICK_ENTRY_POINT_INFO(pCmpgFloat) QUICK_ENTRY_POINT_INFO(pCmplDouble) QUICK_ENTRY_POINT_INFO(pCmplFloat) QUICK_ENTRY_POINT_INFO(pFmod) QUICK_ENTRY_POINT_INFO(pL2d) QUICK_ENTRY_POINT_INFO(pFmodf) QUICK_ENTRY_POINT_INFO(pL2f) QUICK_ENTRY_POINT_INFO(pD2iz) QUICK_ENTRY_POINT_INFO(pF2iz) QUICK_ENTRY_POINT_INFO(pIdivmod) QUICK_ENTRY_POINT_INFO(pD2l) QUICK_ENTRY_POINT_INFO(pF2l) QUICK_ENTRY_POINT_INFO(pLdiv) QUICK_ENTRY_POINT_INFO(pLmod) QUICK_ENTRY_POINT_INFO(pLmul) QUICK_ENTRY_POINT_INFO(pShlLong) QUICK_ENTRY_POINT_INFO(pShrLong) QUICK_ENTRY_POINT_INFO(pUshrLong) QUICK_ENTRY_POINT_INFO(pIndexOf) QUICK_ENTRY_POINT_INFO(pStringCompareTo) QUICK_ENTRY_POINT_INFO(pMemcpy) QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline) QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline) QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge) QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck) QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck) QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck) QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck) QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck) QUICK_ENTRY_POINT_INFO(pTestSuspend) QUICK_ENTRY_POINT_INFO(pDeliverException) QUICK_ENTRY_POINT_INFO(pThrowArrayBounds) QUICK_ENTRY_POINT_INFO(pThrowDivZero) QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod) QUICK_ENTRY_POINT_INFO(pThrowNullPointer) QUICK_ENTRY_POINT_INFO(pThrowStackOverflow) QUICK_ENTRY_POINT_INFO(pDeoptimize) QUICK_ENTRY_POINT_INFO(pA64Load) QUICK_ENTRY_POINT_INFO(pA64Store) QUICK_ENTRY_POINT_INFO(pNewEmptyString) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset) QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C) QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII) QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC) QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints) QUICK_ENTRY_POINT_INFO(pNewStringFromString) QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer) QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder) QUICK_ENTRY_POINT_INFO(pReadBarrierJni) #undef QUICK_ENTRY_POINT_INFO os << offset; } void Thread::QuickDeliverException() { // Get exception from thread. mirror::Throwable* exception = GetException(); CHECK(exception != nullptr); // Don't leave exception visible while we try to find the handler, which may cause class // resolution. ClearException(); bool is_deoptimization = (exception == GetDeoptimizationException()); QuickExceptionHandler exception_handler(this, is_deoptimization); if (is_deoptimization) { exception_handler.DeoptimizeStack(); } else { exception_handler.FindCatch(exception); } exception_handler.UpdateInstrumentationStack(); exception_handler.DoLongJump(); } Context* Thread::GetLongJumpContext() { Context* result = tlsPtr_.long_jump_context; if (result == nullptr) { result = Context::Create(); } else { tlsPtr_.long_jump_context = nullptr; // Avoid context being shared. result->Reset(); } return result; } // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack. struct CurrentMethodVisitor FINAL : public StackVisitor { CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames), this_object_(nullptr), method_(nullptr), dex_pc_(0), abort_on_error_(abort_on_error) {} bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ArtMethod* m = GetMethod(); if (m->IsRuntimeMethod()) { // Continue if this is a runtime method. return true; } if (context_ != nullptr) { this_object_ = GetThisObject(); } method_ = m; dex_pc_ = GetDexPc(abort_on_error_); return false; } mirror::Object* this_object_; ArtMethod* method_; uint32_t dex_pc_; const bool abort_on_error_; }; ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const { CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error); visitor.WalkStack(false); if (dex_pc != nullptr) { *dex_pc = visitor.dex_pc_; } return visitor.method_; } bool Thread::HoldsLock(mirror::Object* object) const { if (object == nullptr) { return false; } return object->GetLockOwnerThreadId() == GetThreadId(); } // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor). template <typename RootVisitor> class ReferenceMapVisitor : public StackVisitor { public: ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) // We are visiting the references in compiled frames, so we do not need // to know the inlined frames. : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames), visitor_(visitor) {} bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (false) { LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod()) << StringPrintf("@ PC:%04x", GetDexPc()); } ShadowFrame* shadow_frame = GetCurrentShadowFrame(); if (shadow_frame != nullptr) { VisitShadowFrame(shadow_frame); } else { VisitQuickFrame(); } return true; } void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ArtMethod* m = shadow_frame->GetMethod(); DCHECK(m != nullptr); size_t num_regs = shadow_frame->NumberOfVRegs(); if (m->IsNative() || shadow_frame->HasReferenceArray()) { // handle scope for JNI or References for interpreter. for (size_t reg = 0; reg < num_regs; ++reg) { mirror::Object* ref = shadow_frame->GetVRegReference(reg); if (ref != nullptr) { mirror::Object* new_ref = ref; visitor_(&new_ref, reg, this); if (new_ref != ref) { shadow_frame->SetVRegReference(reg, new_ref); } } } } else { // Java method. // Portable path use DexGcMap and store in Method.native_gc_map_. const uint8_t* gc_map = m->GetNativeGcMap(sizeof(void*)); CHECK(gc_map != nullptr) << PrettyMethod(m); verifier::DexPcToReferenceMap dex_gc_map(gc_map); uint32_t dex_pc = shadow_frame->GetDexPC(); const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc); DCHECK(reg_bitmap != nullptr); num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs); for (size_t reg = 0; reg < num_regs; ++reg) { if (TestBitmap(reg, reg_bitmap)) { mirror::Object* ref = shadow_frame->GetVRegReference(reg); if (ref != nullptr) { mirror::Object* new_ref = ref; visitor_(&new_ref, reg, this); if (new_ref != ref) { shadow_frame->SetVRegReference(reg, new_ref); } } } } } } private: void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { auto* cur_quick_frame = GetCurrentQuickFrame(); DCHECK(cur_quick_frame != nullptr); auto* m = *cur_quick_frame; // Process register map (which native and runtime methods don't have) if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) { if (m->IsOptimized(sizeof(void*))) { auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>( reinterpret_cast<uintptr_t>(cur_quick_frame)); Runtime* runtime = Runtime::Current(); const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*)); uintptr_t native_pc_offset = m->NativeQuickPcOffset(GetCurrentQuickFramePc(), entry_point); CodeInfo code_info = m->GetOptimizedCodeInfo(); StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset); MemoryRegion mask = map.GetStackMask(code_info); // Visit stack entries that hold pointers. for (size_t i = 0; i < mask.size_in_bits(); ++i) { if (mask.LoadBit(i)) { auto* ref_addr = vreg_base + i; mirror::Object* ref = ref_addr->AsMirrorPtr(); if (ref != nullptr) { mirror::Object* new_ref = ref; visitor_(&new_ref, -1, this); if (ref != new_ref) { ref_addr->Assign(new_ref); } } } } // Visit callee-save registers that hold pointers. uint32_t register_mask = map.GetRegisterMask(code_info); for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) { if (register_mask & (1 << i)) { mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i)); if (*ref_addr != nullptr) { visitor_(ref_addr, -1, this); } } } } else { const uint8_t* native_gc_map = m->GetNativeGcMap(sizeof(void*)); CHECK(native_gc_map != nullptr) << PrettyMethod(m); const DexFile::CodeItem* code_item = m->GetCodeItem(); // Can't be null or how would we compile its instructions? DCHECK(code_item != nullptr) << PrettyMethod(m); NativePcOffsetToReferenceMap map(native_gc_map); size_t num_regs = std::min(map.RegWidth() * 8, static_cast<size_t>(code_item->registers_size_)); if (num_regs > 0) { Runtime* runtime = Runtime::Current(); const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*)); uintptr_t native_pc_offset = m->NativeQuickPcOffset(GetCurrentQuickFramePc(), entry_point); const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset); DCHECK(reg_bitmap != nullptr); const void* code_pointer = ArtMethod::EntryPointToCodePointer(entry_point); const VmapTable vmap_table(m->GetVmapTable(code_pointer, sizeof(void*))); QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer); // For all dex registers in the bitmap DCHECK(cur_quick_frame != nullptr); for (size_t reg = 0; reg < num_regs; ++reg) { // Does this register hold a reference? if (TestBitmap(reg, reg_bitmap)) { uint32_t vmap_offset; if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) { int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset, kReferenceVReg); // This is sound as spilled GPRs will be word sized (ie 32 or 64bit). mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg)); if (*ref_addr != nullptr) { visitor_(ref_addr, reg, this); } } else { StackReference<mirror::Object>* ref_addr = reinterpret_cast<StackReference<mirror::Object>*>(GetVRegAddrFromQuickCode( cur_quick_frame, code_item, frame_info.CoreSpillMask(), frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg)); mirror::Object* ref = ref_addr->AsMirrorPtr(); if (ref != nullptr) { mirror::Object* new_ref = ref; visitor_(&new_ref, reg, this); if (ref != new_ref) { ref_addr->Assign(new_ref); } } } } } } } } } // Visitor for when we visit a root. RootVisitor& visitor_; }; class RootCallbackVisitor { public: RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {} void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg)); } private: RootVisitor* const visitor_; const uint32_t tid_; }; void Thread::VisitRoots(RootVisitor* visitor) { const uint32_t thread_id = GetThreadId(); visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id)); if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) { visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), RootInfo(kRootNativeStack, thread_id)); } visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id)); tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id)); tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id)); HandleScopeVisitRoots(visitor, thread_id); if (tlsPtr_.debug_invoke_req != nullptr) { tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id)); } if (tlsPtr_.stacked_shadow_frame_record != nullptr) { RootCallbackVisitor visitor_to_callback(visitor, thread_id); ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback); for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; record != nullptr; record = record->GetLink()) { for (ShadowFrame* shadow_frame = record->GetShadowFrame(); shadow_frame != nullptr; shadow_frame = shadow_frame->GetLink()) { mapper.VisitShadowFrame(shadow_frame); } } } if (tlsPtr_.deoptimization_return_value_stack != nullptr) { for (DeoptimizationReturnValueRecord* record = tlsPtr_.deoptimization_return_value_stack; record != nullptr; record = record->GetLink()) { if (record->IsReference()) { visitor->VisitRootIfNonNull(record->GetGCRoot(), RootInfo(kRootThreadObject, thread_id)); } } } for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) { verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id)); } // Visit roots on this thread's stack Context* context = GetLongJumpContext(); RootCallbackVisitor visitor_to_callback(visitor, thread_id); ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback); mapper.WalkStack(); ReleaseLongJumpContext(context); for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) { visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id)); } } class VerifyRootVisitor : public SingleRootVisitor { public: void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { VerifyObject(root); } }; void Thread::VerifyStackImpl() { VerifyRootVisitor visitor; std::unique_ptr<Context> context(Context::Create()); RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId()); ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback); mapper.WalkStack(); } // Set the stack end to that to be used during a stack overflow void Thread::SetStackEndForStackOverflow() { // During stack overflow we allow use of the full stack. if (tlsPtr_.stack_end == tlsPtr_.stack_begin) { // However, we seem to have already extended to use the full stack. LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently " << GetStackOverflowReservedBytes(kRuntimeISA) << ")?"; DumpStack(LOG(ERROR)); LOG(FATAL) << "Recursive stack overflow."; } tlsPtr_.stack_end = tlsPtr_.stack_begin; // Remove the stack overflow protection if is it set up. bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks(); if (implicit_stack_check) { if (!UnprotectStack()) { LOG(ERROR) << "Unable to remove stack protection for stack overflow"; } } } void Thread::SetTlab(uint8_t* start, uint8_t* end) { DCHECK_LE(start, end); tlsPtr_.thread_local_start = start; tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start; tlsPtr_.thread_local_end = end; tlsPtr_.thread_local_objects = 0; } bool Thread::HasTlab() const { bool has_tlab = tlsPtr_.thread_local_pos != nullptr; if (has_tlab) { DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr); } else { DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr); } return has_tlab; } std::ostream& operator<<(std::ostream& os, const Thread& thread) { thread.ShortDump(os); return os; } void Thread::ProtectStack() { void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; VLOG(threads) << "Protecting stack at " << pregion; if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) { LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. " "Reason: " << strerror(errno) << " size: " << kStackOverflowProtectedSize; } } bool Thread::UnprotectStack() { void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; VLOG(threads) << "Unprotecting stack at " << pregion; return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0; } void Thread::ActivateSingleStepControl(SingleStepControl* ssc) { CHECK(Dbg::IsDebuggerActive()); CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this; CHECK(ssc != nullptr); tlsPtr_.single_step_control = ssc; } void Thread::DeactivateSingleStepControl() { CHECK(Dbg::IsDebuggerActive()); CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this; SingleStepControl* ssc = GetSingleStepControl(); tlsPtr_.single_step_control = nullptr; delete ssc; } void Thread::SetDebugInvokeReq(DebugInvokeReq* req) { CHECK(Dbg::IsDebuggerActive()); CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this; CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself"; CHECK(req != nullptr); tlsPtr_.debug_invoke_req = req; } void Thread::ClearDebugInvokeReq() { CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this; CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself"; DebugInvokeReq* req = tlsPtr_.debug_invoke_req; tlsPtr_.debug_invoke_req = nullptr; delete req; } void Thread::PushVerifier(verifier::MethodVerifier* verifier) { verifier->link_ = tlsPtr_.method_verifier; tlsPtr_.method_verifier = verifier; } void Thread::PopVerifier(verifier::MethodVerifier* verifier) { CHECK_EQ(tlsPtr_.method_verifier, verifier); tlsPtr_.method_verifier = verifier->link_; } } // namespace art