// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Implementation notes: // // We need to remove a piece from the ELF shared library. However, we also // want to avoid fixing DWARF cfi data and relative relocation addresses. // So after packing we shift offets and starting address of the RX segment // while preserving code/data vaddrs location. // This requires some fixups for symtab/hash/gnu_hash dynamic section addresses. #include "elf_file.h" #include <stdlib.h> #include <sys/types.h> #include <unistd.h> #include <algorithm> #include <string> #include <vector> #include "debug.h" #include "elf_traits.h" #include "libelf.h" #include "packer.h" namespace relocation_packer { // Out-of-band dynamic tags used to indicate the offset and size of the // android packed relocations section. static constexpr int32_t DT_ANDROID_REL = DT_LOOS + 2; static constexpr int32_t DT_ANDROID_RELSZ = DT_LOOS + 3; static constexpr int32_t DT_ANDROID_RELA = DT_LOOS + 4; static constexpr int32_t DT_ANDROID_RELASZ = DT_LOOS + 5; static constexpr uint32_t SHT_ANDROID_REL = SHT_LOOS + 1; static constexpr uint32_t SHT_ANDROID_RELA = SHT_LOOS + 2; static const size_t kPageSize = 4096; // Alignment to preserve, in bytes. This must be at least as large as the // largest d_align and sh_addralign values found in the loaded file. // Out of caution for RELRO page alignment, we preserve to a complete target // page. See http://www.airs.com/blog/archives/189. static const size_t kPreserveAlignment = kPageSize; // Get section data. Checks that the section has exactly one data entry, // so that the section size and the data size are the same. True in // practice for all sections we resize when packing or unpacking. Done // by ensuring that a call to elf_getdata(section, data) returns NULL as // the next data entry. static Elf_Data* GetSectionData(Elf_Scn* section) { Elf_Data* data = elf_getdata(section, NULL); CHECK(data && elf_getdata(section, data) == NULL); return data; } // Rewrite section data. Allocates new data and makes it the data element's // buffer. Relies on program exit to free allocated data. static void RewriteSectionData(Elf_Scn* section, const void* section_data, size_t size) { Elf_Data* data = GetSectionData(section); CHECK(size == data->d_size); uint8_t* area = new uint8_t[size]; memcpy(area, section_data, size); data->d_buf = area; } // Verbose ELF header logging. template <typename Ehdr> static void VerboseLogElfHeader(const Ehdr* elf_header) { VLOG(1) << "e_phoff = " << elf_header->e_phoff; VLOG(1) << "e_shoff = " << elf_header->e_shoff; VLOG(1) << "e_ehsize = " << elf_header->e_ehsize; VLOG(1) << "e_phentsize = " << elf_header->e_phentsize; VLOG(1) << "e_phnum = " << elf_header->e_phnum; VLOG(1) << "e_shnum = " << elf_header->e_shnum; VLOG(1) << "e_shstrndx = " << elf_header->e_shstrndx; } // Verbose ELF program header logging. template <typename Phdr> static void VerboseLogProgramHeader(size_t program_header_index, const Phdr* program_header) { std::string type; switch (program_header->p_type) { case PT_NULL: type = "NULL"; break; case PT_LOAD: type = "LOAD"; break; case PT_DYNAMIC: type = "DYNAMIC"; break; case PT_INTERP: type = "INTERP"; break; case PT_PHDR: type = "PHDR"; break; case PT_GNU_RELRO: type = "GNU_RELRO"; break; case PT_GNU_STACK: type = "GNU_STACK"; break; case PT_ARM_EXIDX: type = "EXIDX"; break; default: type = "(OTHER)"; break; } VLOG(1) << "phdr[" << program_header_index << "] : " << type; VLOG(1) << " p_offset = " << program_header->p_offset; VLOG(1) << " p_vaddr = " << program_header->p_vaddr; VLOG(1) << " p_paddr = " << program_header->p_paddr; VLOG(1) << " p_filesz = " << program_header->p_filesz; VLOG(1) << " p_memsz = " << program_header->p_memsz; VLOG(1) << " p_flags = " << program_header->p_flags; VLOG(1) << " p_align = " << program_header->p_align; } // Verbose ELF section header logging. template <typename Shdr> static void VerboseLogSectionHeader(const std::string& section_name, const Shdr* section_header) { VLOG(1) << "section " << section_name; VLOG(1) << " sh_addr = " << section_header->sh_addr; VLOG(1) << " sh_offset = " << section_header->sh_offset; VLOG(1) << " sh_size = " << section_header->sh_size; VLOG(1) << " sh_entsize = " << section_header->sh_entsize; VLOG(1) << " sh_addralign = " << section_header->sh_addralign; } // Verbose ELF section data logging. static void VerboseLogSectionData(const Elf_Data* data) { VLOG(1) << " data"; VLOG(1) << " d_buf = " << data->d_buf; VLOG(1) << " d_off = " << data->d_off; VLOG(1) << " d_size = " << data->d_size; VLOG(1) << " d_align = " << data->d_align; } // Load the complete ELF file into a memory image in libelf, and identify // the .rel.dyn or .rela.dyn, .dynamic, and .android.rel.dyn or // .android.rela.dyn sections. No-op if the ELF file has already been loaded. template <typename ELF> bool ElfFile<ELF>::Load() { if (elf_) return true; Elf* elf = elf_begin(fd_, ELF_C_RDWR, NULL); CHECK(elf); if (elf_kind(elf) != ELF_K_ELF) { LOG(ERROR) << "File not in ELF format"; return false; } auto elf_header = ELF::getehdr(elf); if (!elf_header) { LOG(ERROR) << "Failed to load ELF header: " << elf_errmsg(elf_errno()); return false; } if (elf_header->e_type != ET_DYN) { LOG(ERROR) << "ELF file is not a shared object"; return false; } // Require that our endianness matches that of the target, and that both // are little-endian. Safe for all current build/target combinations. const int endian = elf_header->e_ident[EI_DATA]; CHECK(endian == ELFDATA2LSB); CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__); const int file_class = elf_header->e_ident[EI_CLASS]; VLOG(1) << "endian = " << endian << ", file class = " << file_class; VerboseLogElfHeader(elf_header); auto elf_program_header = ELF::getphdr(elf); CHECK(elf_program_header != nullptr); const typename ELF::Phdr* dynamic_program_header = NULL; for (size_t i = 0; i < elf_header->e_phnum; ++i) { auto program_header = &elf_program_header[i]; VerboseLogProgramHeader(i, program_header); if (program_header->p_type == PT_DYNAMIC) { CHECK(dynamic_program_header == NULL); dynamic_program_header = program_header; } } CHECK(dynamic_program_header != nullptr); size_t string_index; elf_getshdrstrndx(elf, &string_index); // Notes of the dynamic relocations, packed relocations, and .dynamic // sections. Found while iterating sections, and later stored in class // attributes. Elf_Scn* found_relocations_section = nullptr; Elf_Scn* found_dynamic_section = nullptr; // Notes of relocation section types seen. We require one or the other of // these; both is unsupported. bool has_rel_relocations = false; bool has_rela_relocations = false; bool has_android_relocations = false; Elf_Scn* section = NULL; while ((section = elf_nextscn(elf, section)) != nullptr) { auto section_header = ELF::getshdr(section); std::string name = elf_strptr(elf, string_index, section_header->sh_name); VerboseLogSectionHeader(name, section_header); // Note relocation section types. if (section_header->sh_type == SHT_REL || section_header->sh_type == SHT_ANDROID_REL) { has_rel_relocations = true; } if (section_header->sh_type == SHT_RELA || section_header->sh_type == SHT_ANDROID_RELA) { has_rela_relocations = true; } // Note special sections as we encounter them. if ((name == ".rel.dyn" || name == ".rela.dyn") && section_header->sh_size > 0) { found_relocations_section = section; // Note if relocation section is already packed has_android_relocations = section_header->sh_type == SHT_ANDROID_REL || section_header->sh_type == SHT_ANDROID_RELA; } if (section_header->sh_offset == dynamic_program_header->p_offset) { found_dynamic_section = section; } // Ensure we preserve alignment, repeated later for the data block(s). CHECK(section_header->sh_addralign <= kPreserveAlignment); Elf_Data* data = NULL; while ((data = elf_getdata(section, data)) != NULL) { CHECK(data->d_align <= kPreserveAlignment); VerboseLogSectionData(data); } } // Loading failed if we did not find the required special sections. if (!found_relocations_section) { LOG(ERROR) << "Missing or empty .rel.dyn or .rela.dyn section"; return false; } if (!found_dynamic_section) { LOG(ERROR) << "Missing .dynamic section"; return false; } // Loading failed if we could not identify the relocations type. if (!has_rel_relocations && !has_rela_relocations) { LOG(ERROR) << "No relocations sections found"; return false; } if (has_rel_relocations && has_rela_relocations) { LOG(ERROR) << "Multiple relocations sections with different types found, " << "not currently supported"; return false; } elf_ = elf; relocations_section_ = found_relocations_section; dynamic_section_ = found_dynamic_section; relocations_type_ = has_rel_relocations ? REL : RELA; has_android_relocations_ = has_android_relocations; return true; } // Helper for ResizeSection(). Adjust the main ELF header for the hole. template <typename ELF> static void AdjustElfHeaderForHole(typename ELF::Ehdr* elf_header, typename ELF::Off hole_start, ssize_t hole_size) { if (elf_header->e_phoff > hole_start) { elf_header->e_phoff += hole_size; VLOG(1) << "e_phoff adjusted to " << elf_header->e_phoff; } if (elf_header->e_shoff > hole_start) { elf_header->e_shoff += hole_size; VLOG(1) << "e_shoff adjusted to " << elf_header->e_shoff; } } // Helper for ResizeSection(). Adjust all section headers for the hole. template <typename ELF> static void AdjustSectionHeadersForHole(Elf* elf, typename ELF::Off hole_start, ssize_t hole_size) { size_t string_index; elf_getshdrstrndx(elf, &string_index); Elf_Scn* section = NULL; while ((section = elf_nextscn(elf, section)) != NULL) { auto section_header = ELF::getshdr(section); std::string name = elf_strptr(elf, string_index, section_header->sh_name); if (section_header->sh_offset > hole_start) { section_header->sh_offset += hole_size; VLOG(1) << "section " << name << " sh_offset adjusted to " << section_header->sh_offset; } else { section_header->sh_addr -= hole_size; VLOG(1) << "section " << name << " sh_addr adjusted to " << section_header->sh_addr; } } } // Helper for ResizeSection(). Adjust the offsets of any program headers // that have offsets currently beyond the hole start. template <typename ELF> static void AdjustProgramHeaderOffsets(typename ELF::Phdr* program_headers, size_t count, typename ELF::Off hole_start, ssize_t hole_size) { for (size_t i = 0; i < count; ++i) { typename ELF::Phdr* program_header = &program_headers[i]; // Do not adjust PT_GNU_STACK - it confuses gdb and results // in incorrect unwinding if the executable is stripped after // packing. if (program_header->p_type == PT_GNU_STACK) { continue; } if (program_header->p_offset > hole_start) { // The hole start is past this segment, so adjust offset. program_header->p_offset += hole_size; VLOG(1) << "phdr[" << i << "] p_offset adjusted to "<< program_header->p_offset; } else { program_header->p_vaddr -= hole_size; program_header->p_paddr -= hole_size; if (program_header->p_align > kPageSize) { program_header->p_align = kPageSize; } VLOG(1) << "phdr[" << i << "] p_vaddr adjusted to "<< program_header->p_vaddr << "; p_paddr adjusted to "<< program_header->p_paddr << "; p_align adjusted to "<< program_header->p_align; } } } // Helper for ResizeSection(). Find the first loadable segment in the // file. We expect it to map from file offset zero. template <typename ELF> static typename ELF::Phdr* FindLoadSegmentForHole(typename ELF::Phdr* program_headers, size_t count, typename ELF::Off hole_start) { for (size_t i = 0; i < count; ++i) { typename ELF::Phdr* program_header = &program_headers[i]; if (program_header->p_type == PT_LOAD && program_header->p_offset <= hole_start && (program_header->p_offset + program_header->p_filesz) >= hole_start ) { return program_header; } } LOG(FATAL) << "Cannot locate a LOAD segment with hole_start=0x" << std::hex << hole_start; NOTREACHED(); return nullptr; } // Helper for ResizeSection(). Rewrite program headers. template <typename ELF> static void RewriteProgramHeadersForHole(Elf* elf, typename ELF::Off hole_start, ssize_t hole_size) { const typename ELF::Ehdr* elf_header = ELF::getehdr(elf); CHECK(elf_header); typename ELF::Phdr* elf_program_header = ELF::getphdr(elf); CHECK(elf_program_header); const size_t program_header_count = elf_header->e_phnum; // Locate the segment that we can overwrite to form the new LOAD entry, // and the segment that we are going to split into two parts. typename ELF::Phdr* target_load_header = FindLoadSegmentForHole<ELF>(elf_program_header, program_header_count, hole_start); VLOG(1) << "phdr[" << target_load_header - elf_program_header << "] adjust"; // Adjust PT_LOAD program header memsz and filesz target_load_header->p_filesz += hole_size; target_load_header->p_memsz += hole_size; // Adjust the offsets and p_vaddrs AdjustProgramHeaderOffsets<ELF>(elf_program_header, program_header_count, hole_start, hole_size); } // Helper for ResizeSection(). Locate and return the dynamic section. template <typename ELF> static Elf_Scn* GetDynamicSection(Elf* elf) { const typename ELF::Ehdr* elf_header = ELF::getehdr(elf); CHECK(elf_header); const typename ELF::Phdr* elf_program_header = ELF::getphdr(elf); CHECK(elf_program_header); // Find the program header that describes the dynamic section. const typename ELF::Phdr* dynamic_program_header = NULL; for (size_t i = 0; i < elf_header->e_phnum; ++i) { const typename ELF::Phdr* program_header = &elf_program_header[i]; if (program_header->p_type == PT_DYNAMIC) { dynamic_program_header = program_header; } } CHECK(dynamic_program_header); // Now find the section with the same offset as this program header. Elf_Scn* dynamic_section = NULL; Elf_Scn* section = NULL; while ((section = elf_nextscn(elf, section)) != NULL) { typename ELF::Shdr* section_header = ELF::getshdr(section); if (section_header->sh_offset == dynamic_program_header->p_offset) { dynamic_section = section; } } CHECK(dynamic_section != NULL); return dynamic_section; } // Helper for ResizeSection(). Adjust the .dynamic section for the hole. template <typename ELF> void ElfFile<ELF>::AdjustDynamicSectionForHole(Elf_Scn* dynamic_section, typename ELF::Off hole_start, ssize_t hole_size, relocations_type_t relocations_type) { CHECK(relocations_type != NONE); Elf_Data* data = GetSectionData(dynamic_section); auto dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf); std::vector<typename ELF::Dyn> dynamics( dynamic_base, dynamic_base + data->d_size / sizeof(dynamics[0])); if (hole_size > 0) { // expanding hole_start += hole_size; } for (size_t i = 0; i < dynamics.size(); ++i) { typename ELF::Dyn* dynamic = &dynamics[i]; const typename ELF::Sword tag = dynamic->d_tag; // Any tags that hold offsets are adjustment candidates. const bool is_adjustable = (tag == DT_PLTGOT || tag == DT_HASH || tag == DT_GNU_HASH || tag == DT_STRTAB || tag == DT_SYMTAB || tag == DT_RELA || tag == DT_INIT || tag == DT_FINI || tag == DT_REL || tag == DT_JMPREL || tag == DT_INIT_ARRAY || tag == DT_FINI_ARRAY || tag == DT_VERSYM || tag == DT_VERNEED || tag == DT_VERDEF || tag == DT_ANDROID_REL|| tag == DT_ANDROID_RELA); if (is_adjustable && dynamic->d_un.d_ptr <= hole_start) { dynamic->d_un.d_ptr -= hole_size; VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag << " d_ptr adjusted to " << dynamic->d_un.d_ptr; } // DT_RELSZ or DT_RELASZ indicate the overall size of relocations. // Only one will be present. Adjust by hole size. if (tag == DT_RELSZ || tag == DT_RELASZ || tag == DT_ANDROID_RELSZ || tag == DT_ANDROID_RELASZ) { dynamic->d_un.d_val += hole_size; VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag << " d_val adjusted to " << dynamic->d_un.d_val; } // Special case: DT_MIPS_RLD_MAP2 stores the difference between dynamic // entry address and the address of the _r_debug (used by GDB) // since the dynamic section and target address are on the // different sides of the hole it needs to be adjusted accordingly if (tag == DT_MIPS_RLD_MAP2) { dynamic->d_un.d_val += hole_size; VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag << " d_val adjusted to " << dynamic->d_un.d_val; } // Ignore DT_RELCOUNT and DT_RELACOUNT: (1) nobody uses them and // technically (2) the relative relocation count is not changed. // DT_RELENT and DT_RELAENT don't change, ignore them as well. } void* section_data = &dynamics[0]; size_t bytes = dynamics.size() * sizeof(dynamics[0]); RewriteSectionData(dynamic_section, section_data, bytes); } // Resize a section. If the new size is larger than the current size, open // up a hole by increasing file offsets that come after the hole. If smaller // than the current size, remove the hole by decreasing those offsets. template <typename ELF> void ElfFile<ELF>::ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size, typename ELF::Word new_sh_type, relocations_type_t relocations_type) { size_t string_index; elf_getshdrstrndx(elf, &string_index); auto section_header = ELF::getshdr(section); std::string name = elf_strptr(elf, string_index, section_header->sh_name); if (section_header->sh_size == new_size) { return; } // Require that the section size and the data size are the same. True // in practice for all sections we resize when packing or unpacking. Elf_Data* data = GetSectionData(section); CHECK(data->d_off == 0 && data->d_size == section_header->sh_size); // Require that the section is not zero-length (that is, has allocated // data that we can validly expand). CHECK(data->d_size && data->d_buf); const auto hole_start = section_header->sh_offset; const ssize_t hole_size = new_size - data->d_size; VLOG_IF(1, (hole_size > 0)) << "expand section (" << name << ") size: " << data->d_size << " -> " << (data->d_size + hole_size); VLOG_IF(1, (hole_size < 0)) << "shrink section (" << name << ") size: " << data->d_size << " -> " << (data->d_size + hole_size); // libelf overrides sh_entsize for known sh_types, so it does not matter what we set // for SHT_REL/SHT_RELA. typename ELF::Xword new_entsize = (new_sh_type == SHT_ANDROID_REL || new_sh_type == SHT_ANDROID_RELA) ? 1 : 0; VLOG(1) << "Update section (" << name << ") entry size: " << section_header->sh_entsize << " -> " << new_entsize; // Resize the data and the section header. data->d_size += hole_size; section_header->sh_size += hole_size; section_header->sh_entsize = new_entsize; section_header->sh_type = new_sh_type; // Add the hole size to all offsets in the ELF file that are after the // start of the hole. If the hole size is positive we are expanding the // section to create a new hole; if negative, we are closing up a hole. // Start with the main ELF header. typename ELF::Ehdr* elf_header = ELF::getehdr(elf); AdjustElfHeaderForHole<ELF>(elf_header, hole_start, hole_size); // Adjust all section headers. AdjustSectionHeadersForHole<ELF>(elf, hole_start, hole_size); // Rewrite the program headers to either split or coalesce segments, // and adjust dynamic entries to match. RewriteProgramHeadersForHole<ELF>(elf, hole_start, hole_size); Elf_Scn* dynamic_section = GetDynamicSection<ELF>(elf); AdjustDynamicSectionForHole(dynamic_section, hole_start, hole_size, relocations_type); } // Find the first slot in a dynamics array with the given tag. The array // always ends with a free (unused) element, and which we exclude from the // search. Returns dynamics->size() if not found. template <typename ELF> static size_t FindDynamicEntry(typename ELF::Sword tag, std::vector<typename ELF::Dyn>* dynamics) { // Loop until the penultimate entry. We exclude the end sentinel. for (size_t i = 0; i < dynamics->size() - 1; ++i) { if (dynamics->at(i).d_tag == tag) { return i; } } // The tag was not found. return dynamics->size(); } // Replace dynamic entry. template <typename ELF> static void ReplaceDynamicEntry(typename ELF::Sword tag, const typename ELF::Dyn& dyn, std::vector<typename ELF::Dyn>* dynamics) { const size_t slot = FindDynamicEntry<ELF>(tag, dynamics); if (slot == dynamics->size()) { LOG(FATAL) << "Dynamic slot is not found for tag=" << tag; } // Replace this entry with the one supplied. dynamics->at(slot) = dyn; VLOG(1) << "dynamic[" << slot << "] overwritten with " << dyn.d_tag; } // Remove relative entries from dynamic relocations and write as packed // data into android packed relocations. template <typename ELF> bool ElfFile<ELF>::PackRelocations() { // Load the ELF file into libelf. if (!Load()) { LOG(ERROR) << "Failed to load as ELF"; return false; } // Retrieve the current dynamic relocations section data. Elf_Data* data = GetSectionData(relocations_section_); // we always pack rela, because packed format is pretty much the same std::vector<typename ELF::Rela> relocations; if (relocations_type_ == REL) { // Convert data to a vector of relocations. const typename ELF::Rel* relocations_base = reinterpret_cast<typename ELF::Rel*>(data->d_buf); ConvertRelArrayToRelaVector(relocations_base, data->d_size / sizeof(typename ELF::Rel), &relocations); VLOG(1) << "Relocations : REL"; } else if (relocations_type_ == RELA) { // Convert data to a vector of relocations with addends. const typename ELF::Rela* relocations_base = reinterpret_cast<typename ELF::Rela*>(data->d_buf); relocations = std::vector<typename ELF::Rela>( relocations_base, relocations_base + data->d_size / sizeof(relocations[0])); VLOG(1) << "Relocations : RELA"; } else { NOTREACHED(); } return PackTypedRelocations(&relocations); } // Helper for PackRelocations(). Rel type is one of ELF::Rel or ELF::Rela. template <typename ELF> bool ElfFile<ELF>::PackTypedRelocations(std::vector<typename ELF::Rela>* relocations) { typedef typename ELF::Rela Rela; if (has_android_relocations_) { LOG(INFO) << "Relocation table is already packed"; return true; } // If no relocations then we have nothing packable. Perhaps // the shared object has already been packed? if (relocations->empty()) { LOG(ERROR) << "No relocations found"; return false; } const size_t rel_size = relocations_type_ == RELA ? sizeof(typename ELF::Rela) : sizeof(typename ELF::Rel); const size_t initial_bytes = relocations->size() * rel_size; VLOG(1) << "Unpacked : " << initial_bytes << " bytes"; std::vector<uint8_t> packed; RelocationPacker<ELF> packer; // Pack relocations: dry run to estimate memory savings. packer.PackRelocations(*relocations, &packed); const size_t packed_bytes_estimate = packed.size() * sizeof(packed[0]); VLOG(1) << "Packed (no padding): " << packed_bytes_estimate << " bytes"; if (packed.empty()) { LOG(INFO) << "Too few relocations to pack"; return true; } // Pre-calculate the size of the hole we will close up when we rewrite // dynamic relocations. We have to adjust relocation addresses to // account for this. typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_); ssize_t hole_size = initial_bytes - packed_bytes_estimate; // hole_size needs to be page_aligned. hole_size -= hole_size % kPreserveAlignment; LOG(INFO) << "Compaction : " << hole_size << " bytes"; // Adjusting for alignment may have removed any packing benefit. if (hole_size == 0) { LOG(INFO) << "Too few relocations to pack after alignment"; return true; } if (hole_size <= 0) { LOG(INFO) << "Packing relocations saves no space"; return true; } size_t data_padding_bytes = is_padding_relocations_ ? initial_bytes - packed_bytes_estimate : initial_bytes - hole_size - packed_bytes_estimate; // pad data std::vector<uint8_t> padding(data_padding_bytes, 0); packed.insert(packed.end(), padding.begin(), padding.end()); const void* packed_data = &packed[0]; // Run a loopback self-test as a check that packing is lossless. std::vector<Rela> unpacked; packer.UnpackRelocations(packed, &unpacked); CHECK(unpacked.size() == relocations->size()); CHECK(!memcmp(&unpacked[0], &relocations->at(0), unpacked.size() * sizeof(unpacked[0]))); // Rewrite the current dynamic relocations section with packed one then shrink it to size. const size_t bytes = packed.size() * sizeof(packed[0]); ResizeSection(elf_, relocations_section_, bytes, relocations_type_ == REL ? SHT_ANDROID_REL : SHT_ANDROID_RELA, relocations_type_); RewriteSectionData(relocations_section_, packed_data, bytes); // TODO (dimitry): fix string table and replace .rel.dyn/plt with .android.rel.dyn/plt // Rewrite .dynamic and rename relocation tags describing the packed android // relocations. Elf_Data* data = GetSectionData(dynamic_section_); const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf); std::vector<typename ELF::Dyn> dynamics( dynamic_base, dynamic_base + data->d_size / sizeof(dynamics[0])); section_header = ELF::getshdr(relocations_section_); { typename ELF::Dyn dyn; dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA; dyn.d_un.d_ptr = section_header->sh_addr; ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_REL : DT_RELA, dyn, &dynamics); } { typename ELF::Dyn dyn; dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ; dyn.d_un.d_val = section_header->sh_size; ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_RELSZ : DT_RELASZ, dyn, &dynamics); } const void* dynamics_data = &dynamics[0]; const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]); RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes); Flush(); return true; } // Find packed relative relocations in the packed android relocations // section, unpack them, and rewrite the dynamic relocations section to // contain unpacked data. template <typename ELF> bool ElfFile<ELF>::UnpackRelocations() { // Load the ELF file into libelf. if (!Load()) { LOG(ERROR) << "Failed to load as ELF"; return false; } typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_); // Retrieve the current packed android relocations section data. Elf_Data* data = GetSectionData(relocations_section_); // Convert data to a vector of bytes. const uint8_t* packed_base = reinterpret_cast<uint8_t*>(data->d_buf); std::vector<uint8_t> packed( packed_base, packed_base + data->d_size / sizeof(packed[0])); if ((section_header->sh_type == SHT_ANDROID_RELA || section_header->sh_type == SHT_ANDROID_REL) && packed.size() > 3 && packed[0] == 'A' && packed[1] == 'P' && packed[2] == 'S' && packed[3] == '2') { LOG(INFO) << "Relocations : " << (relocations_type_ == REL ? "REL" : "RELA"); } else { LOG(ERROR) << "Packed relocations not found (not packed?)"; return false; } return UnpackTypedRelocations(packed); } // Helper for UnpackRelocations(). Rel type is one of ELF::Rel or ELF::Rela. template <typename ELF> bool ElfFile<ELF>::UnpackTypedRelocations(const std::vector<uint8_t>& packed) { // Unpack the data to re-materialize the relative relocations. const size_t packed_bytes = packed.size() * sizeof(packed[0]); LOG(INFO) << "Packed : " << packed_bytes << " bytes"; std::vector<typename ELF::Rela> unpacked_relocations; RelocationPacker<ELF> packer; packer.UnpackRelocations(packed, &unpacked_relocations); const size_t relocation_entry_size = relocations_type_ == REL ? sizeof(typename ELF::Rel) : sizeof(typename ELF::Rela); const size_t unpacked_bytes = unpacked_relocations.size() * relocation_entry_size; LOG(INFO) << "Unpacked : " << unpacked_bytes << " bytes"; // Retrieve the current dynamic relocations section data. Elf_Data* data = GetSectionData(relocations_section_); LOG(INFO) << "Relocations : " << unpacked_relocations.size() << " entries"; // If we found the same number of null relocation entries in the dynamic // relocations section as we hold as unpacked relative relocations, then // this is a padded file. const bool is_padded = packed_bytes == unpacked_bytes; // Unless padded, pre-apply relative relocations to account for the // hole, and pre-adjust all relocation offsets accordingly. typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_); if (!is_padded) { LOG(INFO) << "Expansion : " << unpacked_bytes - packed_bytes << " bytes"; } // Rewrite the current dynamic relocations section with unpacked version of // relocations. const void* section_data = nullptr; std::vector<typename ELF::Rel> unpacked_rel_relocations; if (relocations_type_ == RELA) { section_data = &unpacked_relocations[0]; } else if (relocations_type_ == REL) { ConvertRelaVectorToRelVector(unpacked_relocations, &unpacked_rel_relocations); section_data = &unpacked_rel_relocations[0]; } else { NOTREACHED(); } ResizeSection(elf_, relocations_section_, unpacked_bytes, relocations_type_ == REL ? SHT_REL : SHT_RELA, relocations_type_); RewriteSectionData(relocations_section_, section_data, unpacked_bytes); // Rewrite .dynamic to remove two tags describing packed android relocations. data = GetSectionData(dynamic_section_); const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf); std::vector<typename ELF::Dyn> dynamics( dynamic_base, dynamic_base + data->d_size / sizeof(dynamics[0])); { typename ELF::Dyn dyn; dyn.d_tag = relocations_type_ == REL ? DT_REL : DT_RELA; dyn.d_un.d_ptr = section_header->sh_addr; ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA, dyn, &dynamics); } { typename ELF::Dyn dyn; dyn.d_tag = relocations_type_ == REL ? DT_RELSZ : DT_RELASZ; dyn.d_un.d_val = section_header->sh_size; ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ, dyn, &dynamics); } const void* dynamics_data = &dynamics[0]; const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]); RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes); Flush(); return true; } // Flush rewritten shared object file data. template <typename ELF> void ElfFile<ELF>::Flush() { // Flag all ELF data held in memory as needing to be written back to the // file, and tell libelf that we have controlled the file layout. elf_flagelf(elf_, ELF_C_SET, ELF_F_DIRTY); elf_flagelf(elf_, ELF_C_SET, ELF_F_LAYOUT); // Write ELF data back to disk. const off_t file_bytes = elf_update(elf_, ELF_C_WRITE); if (file_bytes == -1) { LOG(ERROR) << "elf_update failed: " << elf_errmsg(elf_errno()); } CHECK(file_bytes > 0); VLOG(1) << "elf_update returned: " << file_bytes; // Clean up libelf, and truncate the output file to the number of bytes // written by elf_update(). elf_end(elf_); elf_ = NULL; const int truncate = ftruncate(fd_, file_bytes); CHECK(truncate == 0); } template <typename ELF> void ElfFile<ELF>::ConvertRelArrayToRelaVector(const typename ELF::Rel* rel_array, size_t rel_array_size, std::vector<typename ELF::Rela>* rela_vector) { for (size_t i = 0; i<rel_array_size; ++i) { typename ELF::Rela rela; rela.r_offset = rel_array[i].r_offset; rela.r_info = rel_array[i].r_info; rela.r_addend = 0; rela_vector->push_back(rela); } } template <typename ELF> void ElfFile<ELF>::ConvertRelaVectorToRelVector(const std::vector<typename ELF::Rela>& rela_vector, std::vector<typename ELF::Rel>* rel_vector) { for (auto rela : rela_vector) { typename ELF::Rel rel; rel.r_offset = rela.r_offset; rel.r_info = rela.r_info; CHECK(rela.r_addend == 0); rel_vector->push_back(rel); } } template class ElfFile<ELF32_traits>; template class ElfFile<ELF64_traits>; } // namespace relocation_packer