// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2014 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: joydeepb@ri.cmu.edu (Joydeep Biswas) // // This example demonstrates how to use the DynamicAutoDiffCostFunction // variant of CostFunction. The DynamicAutoDiffCostFunction is meant to // be used in cases where the number of parameter blocks or the sizes are not // known at compile time. // // This example simulates a robot traversing down a 1-dimension hallway with // noise odometry readings and noisy range readings of the end of the hallway. // By fusing the noisy odometry and sensor readings this example demonstrates // how to compute the maximum likelihood estimate (MLE) of the robot's pose at // each timestep. // // The robot starts at the origin, and it is travels to the end of a corridor of // fixed length specified by the "--corridor_length" flag. It executes a series // of motion commands to move forward a fixed length, specified by the // "--pose_separation" flag, at which pose it receives relative odometry // measurements as well as a range reading of the distance to the end of the // hallway. The odometry readings are drawn with Gaussian noise and standard // deviation specified by the "--odometry_stddev" flag, and the range readings // similarly with standard deviation specified by the "--range-stddev" flag. // // There are two types of residuals in this problem: // 1) The OdometryConstraint residual, that accounts for the odometry readings // between successive pose estimatess of the robot. // 2) The RangeConstraint residual, that accounts for the errors in the observed // range readings from each pose. // // The OdometryConstraint residual is modeled as an AutoDiffCostFunction with // a fixed parameter block size of 1, which is the relative odometry being // solved for, between a pair of successive poses of the robot. Differences // between observed and computed relative odometry values are penalized weighted // by the known standard deviation of the odometry readings. // // The RangeConstraint residual is modeled as a DynamicAutoDiffCostFunction // which sums up the relative odometry estimates to compute the estimated // global pose of the robot, and then computes the expected range reading. // Differences between the observed and expected range readings are then // penalized weighted by the standard deviation of readings of the sensor. // Since the number of poses of the robot is not known at compile time, this // cost function is implemented as a DynamicAutoDiffCostFunction. // // The outputs of the example are the initial values of the odometry and range // readings, and the range and odometry errors for every pose of the robot. // After computing the MLE, the computed poses and corrected odometry values // are printed out, along with the corresponding range and odometry errors. Note // that as an MLE of a noisy system the errors will not be reduced to zero, but // the odometry estimates will be updated to maximize the joint likelihood of // all odometry and range readings of the robot. // // Mathematical Formulation // ====================================================== // // Let p_0, .., p_N be (N+1) robot poses, where the robot moves down the // corridor starting from p_0 and ending at p_N. We assume that p_0 is the // origin of the coordinate system. // Odometry u_i is the observed relative odometry between pose p_(i-1) and p_i, // and range reading y_i is the range reading of the end of the corridor from // pose p_i. Both odometry as well as range readings are noisy, but we wish to // compute the maximum likelihood estimate (MLE) of corrected odometry values // u*_0 to u*_(N-1), such that the Belief is optimized: // // Belief(u*_(0:N-1) | u_(0:N-1), y_(0:N-1)) 1. // = P(u*_(0:N-1) | u_(0:N-1), y_(0:N-1)) 2. // \propto P(y_(0:N-1) | u*_(0:N-1), u_(0:N-1)) P(u*_(0:N-1) | u_(0:N-1)) 3. // = \prod_i{ P(y_i | u*_(0:i)) P(u*_i | u_i) } 4. // // Here, the subscript "(0:i)" is used as shorthand to indicate entries from all // timesteps 0 to i for that variable, both inclusive. // // Bayes' rule is used to derive eq. 3 from 2, and the independence of // odometry observations and range readings is expolited to derive 4 from 3. // // Thus, the Belief, up to scale, is factored as a product of a number of // terms, two for each pose, where for each pose term there is one term for the // range reading, P(y_i | u*_(0:i) and one term for the odometry reading, // P(u*_i | u_i) . Note that the term for the range reading is dependent on all // odometry values u*_(0:i), while the odometry term, P(u*_i | u_i) depends only // on a single value, u_i. Both the range reading as well as odoemtry // probability terms are modeled as the Normal distribution, and have the form: // // p(x) \propto \exp{-((x - x_mean) / x_stddev)^2} // // where x refers to either the MLE odometry u* or range reading y, and x_mean // is the corresponding mean value, u for the odometry terms, and y_expected, // the expected range reading based on all the previous odometry terms. // The MLE is thus found by finding those values x* which minimize: // // x* = \arg\min{((x - x_mean) / x_stddev)^2} // // which is in the nonlinear least-square form, suited to being solved by Ceres. // The non-linear component arise from the computation of x_mean. The residuals // ((x - x_mean) / x_stddev) for the residuals that Ceres will optimize. As // mentioned earlier, the odometry term for each pose depends only on one // variable, and will be computed by an AutoDiffCostFunction, while the term // for the range reading will depend on all previous odometry observations, and // will be computed by a DynamicAutoDiffCostFunction since the number of // odoemtry observations will only be known at run time. #include <cstdio> #include <math.h> #include <vector> #include "ceres/ceres.h" #include "ceres/dynamic_autodiff_cost_function.h" #include "gflags/gflags.h" #include "glog/logging.h" #include "random.h" using ceres::AutoDiffCostFunction; using ceres::DynamicAutoDiffCostFunction; using ceres::CauchyLoss; using ceres::CostFunction; using ceres::LossFunction; using ceres::Problem; using ceres::Solve; using ceres::Solver; using ceres::examples::RandNormal; using std::min; using std::vector; DEFINE_double(corridor_length, 30.0, "Length of the corridor that the robot is " "travelling down."); DEFINE_double(pose_separation, 0.5, "The distance that the robot traverses " "between successive odometry updates."); DEFINE_double(odometry_stddev, 0.1, "The standard deviation of " "odometry error of the robot."); DEFINE_double(range_stddev, 0.01, "The standard deviation of range readings of " "the robot."); // The stride length of the dynamic_autodiff_cost_function evaluator. static const int kStride = 10; struct OdometryConstraint { typedef AutoDiffCostFunction<OdometryConstraint, 1, 1> OdometryCostFunction; OdometryConstraint(double odometry_mean, double odometry_stddev) : odometry_mean(odometry_mean), odometry_stddev(odometry_stddev) {} template <typename T> bool operator()(const T* const odometry, T* residual) const { *residual = (*odometry - T(odometry_mean)) / T(odometry_stddev); return true; } static OdometryCostFunction* Create(const double odometry_value) { return new OdometryCostFunction( new OdometryConstraint(odometry_value, FLAGS_odometry_stddev)); } const double odometry_mean; const double odometry_stddev; }; struct RangeConstraint { typedef DynamicAutoDiffCostFunction<RangeConstraint, kStride> RangeCostFunction; RangeConstraint( int pose_index, double range_reading, double range_stddev, double corridor_length) : pose_index(pose_index), range_reading(range_reading), range_stddev(range_stddev), corridor_length(corridor_length) {} template <typename T> bool operator()(T const* const* relative_poses, T* residuals) const { T global_pose(0); for (int i = 0; i <= pose_index; ++i) { global_pose += relative_poses[i][0]; } residuals[0] = (global_pose + T(range_reading) - T(corridor_length)) / T(range_stddev); return true; } // Factory method to create a CostFunction from a RangeConstraint to // conveniently add to a ceres problem. static RangeCostFunction* Create(const int pose_index, const double range_reading, vector<double>* odometry_values, vector<double*>* parameter_blocks) { RangeConstraint* constraint = new RangeConstraint( pose_index, range_reading, FLAGS_range_stddev, FLAGS_corridor_length); RangeCostFunction* cost_function = new RangeCostFunction(constraint); // Add all the parameter blocks that affect this constraint. parameter_blocks->clear(); for (int i = 0; i <= pose_index; ++i) { parameter_blocks->push_back(&((*odometry_values)[i])); cost_function->AddParameterBlock(1); } cost_function->SetNumResiduals(1); return (cost_function); } const int pose_index; const double range_reading; const double range_stddev; const double corridor_length; }; void SimulateRobot(vector<double>* odometry_values, vector<double>* range_readings) { const int num_steps = static_cast<int>( ceil(FLAGS_corridor_length / FLAGS_pose_separation)); // The robot starts out at the origin. double robot_location = 0.0; for (int i = 0; i < num_steps; ++i) { const double actual_odometry_value = min( FLAGS_pose_separation, FLAGS_corridor_length - robot_location); robot_location += actual_odometry_value; const double actual_range = FLAGS_corridor_length - robot_location; const double observed_odometry = RandNormal() * FLAGS_odometry_stddev + actual_odometry_value; const double observed_range = RandNormal() * FLAGS_range_stddev + actual_range; odometry_values->push_back(observed_odometry); range_readings->push_back(observed_range); } } void PrintState(const vector<double>& odometry_readings, const vector<double>& range_readings) { CHECK_EQ(odometry_readings.size(), range_readings.size()); double robot_location = 0.0; printf("pose: location odom range r.error o.error\n"); for (int i = 0; i < odometry_readings.size(); ++i) { robot_location += odometry_readings[i]; const double range_error = robot_location + range_readings[i] - FLAGS_corridor_length; const double odometry_error = FLAGS_pose_separation - odometry_readings[i]; printf("%4d: %8.3f %8.3f %8.3f %8.3f %8.3f\n", static_cast<int>(i), robot_location, odometry_readings[i], range_readings[i], range_error, odometry_error); } } int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); google::ParseCommandLineFlags(&argc, &argv, true); // Make sure that the arguments parsed are all positive. CHECK_GT(FLAGS_corridor_length, 0.0); CHECK_GT(FLAGS_pose_separation, 0.0); CHECK_GT(FLAGS_odometry_stddev, 0.0); CHECK_GT(FLAGS_range_stddev, 0.0); vector<double> odometry_values; vector<double> range_readings; SimulateRobot(&odometry_values, &range_readings); printf("Initial values:\n"); PrintState(odometry_values, range_readings); ceres::Problem problem; for (int i = 0; i < odometry_values.size(); ++i) { // Create and add a DynamicAutoDiffCostFunction for the RangeConstraint from // pose i. vector<double*> parameter_blocks; RangeConstraint::RangeCostFunction* range_cost_function = RangeConstraint::Create( i, range_readings[i], &odometry_values, ¶meter_blocks); problem.AddResidualBlock(range_cost_function, NULL, parameter_blocks); // Create and add an AutoDiffCostFunction for the OdometryConstraint for // pose i. problem.AddResidualBlock(OdometryConstraint::Create(odometry_values[i]), NULL, &(odometry_values[i])); } ceres::Solver::Options solver_options; solver_options.minimizer_progress_to_stdout = true; Solver::Summary summary; printf("Solving...\n"); Solve(solver_options, &problem, &summary); printf("Done.\n"); std::cout << summary.FullReport() << "\n"; printf("Final values:\n"); PrintState(odometry_values, range_readings); return 0; }