/*------------------------------------------------------------------------- * drawElements Quality Program Tester Core * ---------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Reference Texture Implementation. *//*--------------------------------------------------------------------*/ #include "tcuTexture.hpp" #include "deInt32.h" #include "deFloat16.h" #include "deMath.h" #include "deMemory.h" #include "tcuTestLog.hpp" #include "tcuSurface.hpp" #include "tcuFloat.hpp" #include "tcuTextureUtil.hpp" #include "deStringUtil.hpp" #include "deArrayUtil.hpp" #include <limits> namespace tcu { // \note No denorm support, no sign. typedef Float<deUint32, 5, 6, 15, 0> Float11; typedef Float<deUint32, 5, 5, 15, 0> Float10; namespace { // Optimized getters for common formats. // \todo [2012-11-14 pyry] Use intrinsics if available. inline Vec4 readRGBA8888Float (const deUint8* ptr) { return Vec4(ptr[0]/255.0f, ptr[1]/255.0f, ptr[2]/255.0f, ptr[3]/255.0f); } inline Vec4 readRGB888Float (const deUint8* ptr) { return Vec4(ptr[0]/255.0f, ptr[1]/255.0f, ptr[2]/255.0f, 1.0f); } inline IVec4 readRGBA8888Int (const deUint8* ptr) { return IVec4(ptr[0], ptr[1], ptr[2], ptr[3]); } inline IVec4 readRGB888Int (const deUint8* ptr) { return IVec4(ptr[0], ptr[1], ptr[2], 0xff); } // Optimized setters. inline void writeRGBA8888Int (deUint8* ptr, const IVec4& val) { ptr[0] = de::clamp(val[0], 0, 255); ptr[1] = de::clamp(val[1], 0, 255); ptr[2] = de::clamp(val[2], 0, 255); ptr[3] = de::clamp(val[3], 0, 255); } inline void writeRGB888Int (deUint8* ptr, const IVec4& val) { ptr[0] = de::clamp(val[0], 0, 255); ptr[1] = de::clamp(val[1], 0, 255); ptr[2] = de::clamp(val[2], 0, 255); } inline void writeRGBA8888Float (deUint8* ptr, const Vec4& val) { ptr[0] = floatToU8(val[0]); ptr[1] = floatToU8(val[1]); ptr[2] = floatToU8(val[2]); ptr[3] = floatToU8(val[3]); } inline void writeRGB888Float (deUint8* ptr, const Vec4& val) { ptr[0] = floatToU8(val[0]); ptr[1] = floatToU8(val[1]); ptr[2] = floatToU8(val[2]); } inline void writeUint24 (deUint8* dst, deUint32 val) { #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN) dst[0] = (deUint8)((val & 0x0000FFu) >> 0u); dst[1] = (deUint8)((val & 0x00FF00u) >> 8u); dst[2] = (deUint8)((val & 0xFF0000u) >> 16u); #else dst[0] = (deUint8)((val & 0xFF0000u) >> 16u); dst[1] = (deUint8)((val & 0x00FF00u) >> 8u); dst[2] = (deUint8)((val & 0x0000FFu) >> 0u); #endif } inline deUint32 readUint24 (const deUint8* src) { #if (DE_ENDIANNESS == DE_LITTLE_ENDIAN) return (((deUint32)src[0]) << 0u) | (((deUint32)src[1]) << 8u) | (((deUint32)src[2]) << 16u); #else return (((deUint32)src[0]) << 16u) | (((deUint32)src[1]) << 8u) | (((deUint32)src[2]) << 0u); #endif } // \todo [2011-09-21 pyry] Move to tcutil? template <typename T> inline T convertSatRte (float f) { // \note Doesn't work for 64-bit types DE_STATIC_ASSERT(sizeof(T) < sizeof(deUint64)); DE_STATIC_ASSERT((-3 % 2 != 0) && (-4 % 2 == 0)); deInt64 minVal = std::numeric_limits<T>::min(); deInt64 maxVal = std::numeric_limits<T>::max(); float q = deFloatFrac(f); deInt64 intVal = (deInt64)(f-q); // Rounding. if (q == 0.5f) { if (intVal % 2 != 0) intVal++; } else if (q > 0.5f) intVal++; // else Don't add anything // Saturate. intVal = de::max(minVal, de::min(maxVal, intVal)); return (T)intVal; } inline deUint32 convertSatRteUint24 (float f) { const deUint32 rounded = convertSatRte<deUint32>(f); const deUint32 maxUint24 = 0xFFFFFFu; return de::min(rounded, maxUint24); } int getChannelSize (TextureFormat::ChannelType type) { // make sure this table is updated if format table is updated DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 27); switch (type) { case TextureFormat::SNORM_INT8: return 1; case TextureFormat::SNORM_INT16: return 2; case TextureFormat::SNORM_INT32: return 4; case TextureFormat::UNORM_INT8: return 1; case TextureFormat::UNORM_INT16: return 2; case TextureFormat::UNORM_INT24: return 3; case TextureFormat::UNORM_INT32: return 4; case TextureFormat::SIGNED_INT8: return 1; case TextureFormat::SIGNED_INT16: return 2; case TextureFormat::SIGNED_INT32: return 4; case TextureFormat::UNSIGNED_INT8: return 1; case TextureFormat::UNSIGNED_INT16: return 2; case TextureFormat::UNSIGNED_INT24: return 3; case TextureFormat::UNSIGNED_INT32: return 4; case TextureFormat::HALF_FLOAT: return 2; case TextureFormat::FLOAT: return 4; default: DE_ASSERT(DE_FALSE); return 0; } } int getNumUsedChannels (TextureFormat::ChannelOrder order) { // make sure this table is updated if type table is updated DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 18); switch (order) { case TextureFormat::R: return 1; case TextureFormat::A: return 1; case TextureFormat::I: return 1; case TextureFormat::L: return 1; case TextureFormat::LA: return 2; case TextureFormat::RG: return 2; case TextureFormat::RA: return 2; case TextureFormat::RGB: return 3; case TextureFormat::RGBA: return 4; case TextureFormat::ARGB: return 4; case TextureFormat::BGRA: return 4; case TextureFormat::sR: return 1; case TextureFormat::sRG: return 2; case TextureFormat::sRGB: return 3; case TextureFormat::sRGBA: return 4; case TextureFormat::D: return 1; case TextureFormat::S: return 1; case TextureFormat::DS: return 2; default: DE_ASSERT(DE_FALSE); return 0; } } inline float channelToFloat (const deUint8* value, TextureFormat::ChannelType type) { // make sure this table is updated if format table is updated DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 27); switch (type) { case TextureFormat::SNORM_INT8: return de::max(-1.0f, (float)*((const deInt8*)value) / 127.0f); case TextureFormat::SNORM_INT16: return de::max(-1.0f, (float)*((const deInt16*)value) / 32767.0f); case TextureFormat::SNORM_INT32: return de::max(-1.0f, (float)*((const deInt32*)value) / 2147483647.0f); case TextureFormat::UNORM_INT8: return (float)*((const deUint8*)value) / 255.0f; case TextureFormat::UNORM_INT16: return (float)*((const deUint16*)value) / 65535.0f; case TextureFormat::UNORM_INT24: return (float)readUint24(value) / 16777215.0f; case TextureFormat::UNORM_INT32: return (float)*((const deUint32*)value) / 4294967295.0f; case TextureFormat::SIGNED_INT8: return (float)*((const deInt8*)value); case TextureFormat::SIGNED_INT16: return (float)*((const deInt16*)value); case TextureFormat::SIGNED_INT32: return (float)*((const deInt32*)value); case TextureFormat::UNSIGNED_INT8: return (float)*((const deUint8*)value); case TextureFormat::UNSIGNED_INT16: return (float)*((const deUint16*)value); case TextureFormat::UNSIGNED_INT24: return (float)readUint24(value); case TextureFormat::UNSIGNED_INT32: return (float)*((const deUint32*)value); case TextureFormat::HALF_FLOAT: return deFloat16To32(*(const deFloat16*)value); case TextureFormat::FLOAT: return *((const float*)value); default: DE_ASSERT(DE_FALSE); return 0.0f; } } inline int channelToInt (const deUint8* value, TextureFormat::ChannelType type) { // make sure this table is updated if format table is updated DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 27); switch (type) { case TextureFormat::SNORM_INT8: return (int)*((const deInt8*)value); case TextureFormat::SNORM_INT16: return (int)*((const deInt16*)value); case TextureFormat::SNORM_INT32: return (int)*((const deInt32*)value); case TextureFormat::UNORM_INT8: return (int)*((const deUint8*)value); case TextureFormat::UNORM_INT16: return (int)*((const deUint16*)value); case TextureFormat::UNORM_INT24: return (int)readUint24(value); case TextureFormat::UNORM_INT32: return (int)*((const deUint32*)value); case TextureFormat::SIGNED_INT8: return (int)*((const deInt8*)value); case TextureFormat::SIGNED_INT16: return (int)*((const deInt16*)value); case TextureFormat::SIGNED_INT32: return (int)*((const deInt32*)value); case TextureFormat::UNSIGNED_INT8: return (int)*((const deUint8*)value); case TextureFormat::UNSIGNED_INT16: return (int)*((const deUint16*)value); case TextureFormat::UNSIGNED_INT24: return (int)readUint24(value); case TextureFormat::UNSIGNED_INT32: return (int)*((const deUint32*)value); case TextureFormat::HALF_FLOAT: return (int)deFloat16To32(*(const deFloat16*)value); case TextureFormat::FLOAT: return (int)*((const float*)value); default: DE_ASSERT(DE_FALSE); return 0; } } void floatToChannel (deUint8* dst, float src, TextureFormat::ChannelType type) { // make sure this table is updated if format table is updated DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 27); switch (type) { case TextureFormat::SNORM_INT8: *((deInt8*)dst) = convertSatRte<deInt8> (src * 127.0f); break; case TextureFormat::SNORM_INT16: *((deInt16*)dst) = convertSatRte<deInt16> (src * 32767.0f); break; case TextureFormat::SNORM_INT32: *((deInt32*)dst) = convertSatRte<deInt32> (src * 2147483647.0f); break; case TextureFormat::UNORM_INT8: *((deUint8*)dst) = convertSatRte<deUint8> (src * 255.0f); break; case TextureFormat::UNORM_INT16: *((deUint16*)dst) = convertSatRte<deUint16> (src * 65535.0f); break; case TextureFormat::UNORM_INT24: writeUint24(dst, convertSatRteUint24 (src * 16777215.0f)); break; case TextureFormat::UNORM_INT32: *((deUint32*)dst) = convertSatRte<deUint32> (src * 4294967295.0f); break; case TextureFormat::SIGNED_INT8: *((deInt8*)dst) = convertSatRte<deInt8> (src); break; case TextureFormat::SIGNED_INT16: *((deInt16*)dst) = convertSatRte<deInt16> (src); break; case TextureFormat::SIGNED_INT32: *((deInt32*)dst) = convertSatRte<deInt32> (src); break; case TextureFormat::UNSIGNED_INT8: *((deUint8*)dst) = convertSatRte<deUint8> (src); break; case TextureFormat::UNSIGNED_INT16: *((deUint16*)dst) = convertSatRte<deUint16> (src); break; case TextureFormat::UNSIGNED_INT24: writeUint24(dst, convertSatRteUint24 (src)); break; case TextureFormat::UNSIGNED_INT32: *((deUint32*)dst) = convertSatRte<deUint32> (src); break; case TextureFormat::HALF_FLOAT: *((deFloat16*)dst) = deFloat32To16 (src); break; case TextureFormat::FLOAT: *((float*)dst) = src; break; default: DE_ASSERT(DE_FALSE); } } template <typename T, typename S> static inline T convertSat (S src) { S min = (S)std::numeric_limits<T>::min(); S max = (S)std::numeric_limits<T>::max(); if (src < min) return (T)min; else if (src > max) return (T)max; else return (T)src; } template <typename S> static inline deUint32 convertSatUint24 (S src) { S min = (S)0u; S max = (S)0xFFFFFFu; if (src < min) return (deUint32)min; else if (src > max) return (deUint32)max; else return (deUint32)src; } void intToChannel (deUint8* dst, int src, TextureFormat::ChannelType type) { // make sure this table is updated if format table is updated DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 27); switch (type) { case TextureFormat::SNORM_INT8: *((deInt8*)dst) = convertSat<deInt8> (src); break; case TextureFormat::SNORM_INT16: *((deInt16*)dst) = convertSat<deInt16> (src); break; case TextureFormat::UNORM_INT8: *((deUint8*)dst) = convertSat<deUint8> (src); break; case TextureFormat::UNORM_INT16: *((deUint16*)dst) = convertSat<deUint16> (src); break; case TextureFormat::UNORM_INT24: writeUint24(dst, convertSatUint24 (src)); break; case TextureFormat::SIGNED_INT8: *((deInt8*)dst) = convertSat<deInt8> (src); break; case TextureFormat::SIGNED_INT16: *((deInt16*)dst) = convertSat<deInt16> (src); break; case TextureFormat::SIGNED_INT32: *((deInt32*)dst) = convertSat<deInt32> (src); break; case TextureFormat::UNSIGNED_INT8: *((deUint8*)dst) = convertSat<deUint8> ((deUint32)src); break; case TextureFormat::UNSIGNED_INT16: *((deUint16*)dst) = convertSat<deUint16> ((deUint32)src); break; case TextureFormat::UNSIGNED_INT24: writeUint24(dst, convertSatUint24 ((deUint32)src)); break; case TextureFormat::UNSIGNED_INT32: *((deUint32*)dst) = convertSat<deUint32> ((deUint32)src); break; case TextureFormat::HALF_FLOAT: *((deFloat16*)dst) = deFloat32To16((float)src); break; case TextureFormat::FLOAT: *((float*)dst) = (float)src; break; default: DE_ASSERT(DE_FALSE); } } inline float channelToNormFloat (deUint32 src, int bits) { deUint32 maxVal = (1u << bits) - 1; return (float)src / (float)maxVal; } inline deUint32 normFloatToChannel (float src, int bits) { deUint32 maxVal = (1u << bits) - 1; deUint32 intVal = convertSatRte<deUint32>(src * (float)maxVal); return de::min(maxVal, intVal); } inline deUint32 uintToChannel (deUint32 src, int bits) { deUint32 maxVal = (1u << bits) - 1; return de::min(maxVal, src); } tcu::Vec4 unpackRGB999E5 (deUint32 color) { const int mBits = 9; const int eBias = 15; deUint32 exp = color >> 27; deUint32 bs = (color >> 18) & ((1<<9)-1); deUint32 gs = (color >> 9) & ((1<<9)-1); deUint32 rs = color & ((1<<9)-1); float e = deFloatPow(2.0f, (float)((int)exp - eBias - mBits)); float r = (float)rs * e; float g = (float)gs * e; float b = (float)bs * e; return tcu::Vec4(r, g, b, 1.0f); } } // anonymous const TextureSwizzle& getChannelReadSwizzle (TextureFormat::ChannelOrder order) { // make sure to update these tables when channel orders are updated DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 18); static const TextureSwizzle INV = {{ TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE }}; static const TextureSwizzle R = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE }}; static const TextureSwizzle A = {{ TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_0 }}; static const TextureSwizzle I = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0 }}; static const TextureSwizzle L = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ONE }}; static const TextureSwizzle LA = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1 }}; static const TextureSwizzle RG = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE }}; static const TextureSwizzle RA = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_1 }}; static const TextureSwizzle RGB = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_ONE }}; static const TextureSwizzle RGBA = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_3 }}; static const TextureSwizzle BGRA = {{ TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3 }}; static const TextureSwizzle ARGB = {{ TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_3, TextureSwizzle::CHANNEL_0 }}; static const TextureSwizzle D = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE }}; static const TextureSwizzle S = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE }}; static const TextureSwizzle DS = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_1 }}; switch (order) { case TextureFormat::R: return R; case TextureFormat::A: return A; case TextureFormat::I: return I; case TextureFormat::L: return L; case TextureFormat::LA: return LA; case TextureFormat::RG: return RG; case TextureFormat::RA: return RA; case TextureFormat::RGB: return RGB; case TextureFormat::RGBA: return RGBA; case TextureFormat::ARGB: return ARGB; case TextureFormat::BGRA: return BGRA; case TextureFormat::sR: return R; case TextureFormat::sRG: return RG; case TextureFormat::sRGB: return RGB; case TextureFormat::sRGBA: return RGBA; case TextureFormat::D: return D; case TextureFormat::S: return S; case TextureFormat::DS: return DS; default: DE_ASSERT(DE_FALSE); return INV; } } const TextureSwizzle& getChannelWriteSwizzle (TextureFormat::ChannelOrder order) { // make sure to update these tables when channel orders are updated DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 18); static const TextureSwizzle INV = {{ TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle R = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle A = {{ TextureSwizzle::CHANNEL_3, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle I = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle L = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle LA = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle RG = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle RA = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle RGB = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle RGBA = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_3 }}; static const TextureSwizzle BGRA = {{ TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3 }}; static const TextureSwizzle ARGB = {{ TextureSwizzle::CHANNEL_3, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_2 }}; static const TextureSwizzle D = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle S = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; static const TextureSwizzle DS = {{ TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3, TextureSwizzle::CHANNEL_LAST, TextureSwizzle::CHANNEL_LAST }}; switch (order) { case TextureFormat::R: return R; case TextureFormat::A: return A; case TextureFormat::I: return I; case TextureFormat::L: return L; case TextureFormat::LA: return LA; case TextureFormat::RG: return RG; case TextureFormat::RA: return RA; case TextureFormat::RGB: return RGB; case TextureFormat::RGBA: return RGBA; case TextureFormat::ARGB: return ARGB; case TextureFormat::BGRA: return BGRA; case TextureFormat::sR: return R; case TextureFormat::sRG: return RG; case TextureFormat::sRGB: return RGB; case TextureFormat::sRGBA: return RGBA; case TextureFormat::D: return D; case TextureFormat::S: return S; case TextureFormat::DS: return DS; default: DE_ASSERT(DE_FALSE); return INV; } } IVec3 calculatePackedPitch (const TextureFormat& format, const IVec3& size) { const int pixelSize = format.getPixelSize(); const int rowPitch = pixelSize * size.x(); const int slicePitch = rowPitch * size.y(); return IVec3(pixelSize, rowPitch, slicePitch); } /** Get pixel size in bytes. */ int TextureFormat::getPixelSize (void) const { if (type == CHANNELTYPE_LAST && order == CHANNELORDER_LAST) { // Invalid/empty format. return 0; } else if (type == UNORM_SHORT_565 || type == UNORM_SHORT_555 || type == UNORM_SHORT_4444 || type == UNORM_SHORT_5551) { DE_ASSERT(order == RGB || order == RGBA); return 2; } else if (type == UNORM_INT_101010 || type == UNSIGNED_INT_999_E5_REV || type == UNSIGNED_INT_11F_11F_10F_REV) { DE_ASSERT(order == RGB); return 4; } else if (type == UNORM_INT_1010102_REV || type == UNSIGNED_INT_1010102_REV) { DE_ASSERT(order == RGBA); return 4; } else if (type == UNSIGNED_INT_24_8) { DE_ASSERT(order == D || order == DS); return 4; } else if (type == FLOAT_UNSIGNED_INT_24_8_REV) { DE_ASSERT(order == DS); return 8; } else return getNumUsedChannels(order) * getChannelSize(type); } ConstPixelBufferAccess::ConstPixelBufferAccess (void) : m_size (0) , m_pitch (0) , m_data (DE_NULL) { } ConstPixelBufferAccess::ConstPixelBufferAccess (const TextureFormat& format, int width, int height, int depth, const void* data) : m_format (format) , m_size (width, height, depth) , m_pitch (calculatePackedPitch(m_format, m_size)) , m_data ((void*)data) { } ConstPixelBufferAccess::ConstPixelBufferAccess (const TextureFormat& format, const IVec3& size, const void* data) : m_format (format) , m_size (size) , m_pitch (calculatePackedPitch(m_format, m_size)) , m_data ((void*)data) { } ConstPixelBufferAccess::ConstPixelBufferAccess (const TextureFormat& format, int width, int height, int depth, int rowPitch, int slicePitch, const void* data) : m_format (format) , m_size (width, height, depth) , m_pitch (format.getPixelSize(), rowPitch, slicePitch) , m_data ((void*)data) { } ConstPixelBufferAccess::ConstPixelBufferAccess (const TextureFormat& format, const IVec3& size, const IVec3& pitch, const void* data) : m_format (format) , m_size (size) , m_pitch (pitch) , m_data ((void*)data) { DE_ASSERT(m_format.getPixelSize() <= m_pitch.x()); } ConstPixelBufferAccess::ConstPixelBufferAccess (const TextureLevel& level) : m_format (level.getFormat()) , m_size (level.getSize()) , m_pitch (calculatePackedPitch(m_format, m_size)) , m_data ((void*)level.getPtr()) { } PixelBufferAccess::PixelBufferAccess (const TextureFormat& format, int width, int height, int depth, void* data) : ConstPixelBufferAccess(format, width, height, depth, data) { } PixelBufferAccess::PixelBufferAccess (const TextureFormat& format, const IVec3& size, void* data) : ConstPixelBufferAccess(format, size, data) { } PixelBufferAccess::PixelBufferAccess (const TextureFormat& format, int width, int height, int depth, int rowPitch, int slicePitch, void* data) : ConstPixelBufferAccess(format, width, height, depth, rowPitch, slicePitch, data) { } PixelBufferAccess::PixelBufferAccess (const TextureFormat& format, const IVec3& size, const IVec3& pitch, void* data) : ConstPixelBufferAccess(format, size, pitch, data) { } PixelBufferAccess::PixelBufferAccess (TextureLevel& level) : ConstPixelBufferAccess(level) { } Vec4 ConstPixelBufferAccess::getPixel (int x, int y, int z) const { DE_ASSERT(de::inBounds(x, 0, m_size.x())); DE_ASSERT(de::inBounds(y, 0, m_size.y())); DE_ASSERT(de::inBounds(z, 0, m_size.z())); const deUint8* pixelPtr = (const deUint8*)getDataPtr() + z*m_pitch.z() + y*m_pitch.y() + x*m_pitch.x(); // Optimized fomats. if (m_format.type == TextureFormat::UNORM_INT8) { if (m_format.order == TextureFormat::RGBA) return readRGBA8888Float(pixelPtr); else if (m_format.order == TextureFormat::RGB) return readRGB888Float(pixelPtr); } #define UB16(OFFS, COUNT) ((*((const deUint16*)pixelPtr) >> (OFFS)) & ((1<<(COUNT))-1)) #define UB32(OFFS, COUNT) ((*((const deUint32*)pixelPtr) >> (OFFS)) & ((1<<(COUNT))-1)) #define NB16(OFFS, COUNT) channelToNormFloat(UB16(OFFS, COUNT), (COUNT)) #define NB32(OFFS, COUNT) channelToNormFloat(UB32(OFFS, COUNT), (COUNT)) // Packed formats. switch (m_format.type) { case TextureFormat::UNORM_SHORT_565: return Vec4(NB16(11, 5), NB16( 5, 6), NB16( 0, 5), 1.0f); case TextureFormat::UNORM_SHORT_555: return Vec4(NB16(10, 5), NB16( 5, 5), NB16( 0, 5), 1.0f); case TextureFormat::UNORM_SHORT_4444: return Vec4(NB16(12, 4), NB16( 8, 4), NB16( 4, 4), NB16( 0, 4)); case TextureFormat::UNORM_SHORT_5551: return Vec4(NB16(11, 5), NB16( 6, 5), NB16( 1, 5), NB16( 0, 1)); case TextureFormat::UNORM_INT_101010: return Vec4(NB32(22, 10), NB32(12, 10), NB32( 2, 10), 1.0f); case TextureFormat::UNORM_INT_1010102_REV: return Vec4(NB32( 0, 10), NB32(10, 10), NB32(20, 10), NB32(30, 2)); case TextureFormat::UNSIGNED_INT_1010102_REV: return UVec4(UB32(0, 10), UB32(10, 10), UB32(20, 10), UB32(30, 2)).cast<float>(); case TextureFormat::UNSIGNED_INT_999_E5_REV: return unpackRGB999E5(*((const deUint32*)pixelPtr)); case TextureFormat::UNSIGNED_INT_24_8: switch (m_format.order) { // \note Stencil is always ignored. case TextureFormat::D: return Vec4(NB32(8, 24), 0.0f, 0.0f, 1.0f); case TextureFormat::DS: return Vec4(NB32(8, 24), 0.0f, 0.0f, 1.0f /* (float)UB32(0, 8) */); default: DE_ASSERT(false); } case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: { DE_ASSERT(m_format.order == TextureFormat::DS); float d = *((const float*)pixelPtr); // \note Stencil is ignored. // deUint8 s = *((const deUint32*)(pixelPtr+4)) & 0xff; return Vec4(d, 0.0f, 0.0f, 1.0f); } case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV: return Vec4(Float11(UB32(0, 11)).asFloat(), Float11(UB32(11, 11)).asFloat(), Float10(UB32(22, 10)).asFloat(), 1.0f); default: break; } #undef NB16 #undef NB32 #undef UB16 #undef UB32 // Generic path. Vec4 result; const TextureSwizzle::Channel* channelMap = getChannelReadSwizzle(m_format.order).components; int channelSize = getChannelSize(m_format.type); for (int c = 0; c < 4; c++) { switch (channelMap[c]) { case TextureSwizzle::CHANNEL_0: case TextureSwizzle::CHANNEL_1: case TextureSwizzle::CHANNEL_2: case TextureSwizzle::CHANNEL_3: result[c] = channelToFloat(pixelPtr + channelSize*((int)channelMap[c]), m_format.type); break; case TextureSwizzle::CHANNEL_ZERO: result[c] = 0.0f; break; case TextureSwizzle::CHANNEL_ONE: result[c] = 1.0f; break; default: DE_ASSERT(false); } } return result; } IVec4 ConstPixelBufferAccess::getPixelInt (int x, int y, int z) const { DE_ASSERT(de::inBounds(x, 0, m_size.x())); DE_ASSERT(de::inBounds(y, 0, m_size.y())); DE_ASSERT(de::inBounds(z, 0, m_size.z())); const deUint8* const pixelPtr = (const deUint8*)getDataPtr() + z*m_pitch.z() + y*m_pitch.y() + x*m_pitch.x(); IVec4 result; // Optimized fomats. if (m_format.type == TextureFormat::UNORM_INT8) { if (m_format.order == TextureFormat::RGBA) return readRGBA8888Int(pixelPtr); else if (m_format.order == TextureFormat::RGB) return readRGB888Int(pixelPtr); } #define U16(OFFS, COUNT) ((*((const deUint16*)pixelPtr) >> (OFFS)) & ((1<<(COUNT))-1)) #define U32(OFFS, COUNT) ((*((const deUint32*)pixelPtr) >> (OFFS)) & ((1<<(COUNT))-1)) switch (m_format.type) { case TextureFormat::UNORM_SHORT_565: return UVec4(U16(11, 5), U16( 5, 6), U16( 0, 5), 1).cast<int>(); case TextureFormat::UNORM_SHORT_555: return UVec4(U16(10, 5), U16( 5, 5), U16( 0, 5), 1).cast<int>(); case TextureFormat::UNORM_SHORT_4444: return UVec4(U16(12, 4), U16( 8, 4), U16( 4, 4), U16( 0, 4)).cast<int>(); case TextureFormat::UNORM_SHORT_5551: return UVec4(U16(11, 5), U16( 6, 5), U16( 1, 5), U16( 0, 1)).cast<int>(); case TextureFormat::UNORM_INT_101010: return UVec4(U32(22, 10), U32(12, 10), U32( 2, 10), 1).cast<int>(); case TextureFormat::UNORM_INT_1010102_REV: return UVec4(U32( 0, 10), U32(10, 10), U32(20, 10), U32(30, 2)).cast<int>(); case TextureFormat::UNSIGNED_INT_1010102_REV: return UVec4(U32( 0, 10), U32(10, 10), U32(20, 10), U32(30, 2)).cast<int>(); case TextureFormat::UNSIGNED_INT_24_8: switch (m_format.order) { case TextureFormat::D: return UVec4(U32(8, 24), 0, 0, 1).cast<int>(); case TextureFormat::S: return UVec4(0, 0, 0, U32(8, 24)).cast<int>(); case TextureFormat::DS: return UVec4(U32(8, 24), 0, 0, U32(0, 8)).cast<int>(); default: DE_ASSERT(false); } case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: { DE_ASSERT(m_format.order == TextureFormat::DS); float d = *((const float*)pixelPtr); deUint8 s = *((const deUint32*)(pixelPtr+4)) & 0xffu; // \note Returns bit-representation of depth floating-point value. return UVec4(tcu::Float32(d).bits(), 0, 0, s).cast<int>(); } default: break; // To generic path. } #undef U16 #undef U32 // Generic path. const TextureSwizzle::Channel* channelMap = getChannelReadSwizzle(m_format.order).components; int channelSize = getChannelSize(m_format.type); for (int c = 0; c < 4; c++) { switch (channelMap[c]) { case TextureSwizzle::CHANNEL_0: case TextureSwizzle::CHANNEL_1: case TextureSwizzle::CHANNEL_2: case TextureSwizzle::CHANNEL_3: result[c] = channelToInt(pixelPtr + channelSize*((int)channelMap[c]), m_format.type); break; case TextureSwizzle::CHANNEL_ZERO: result[c] = 0; break; case TextureSwizzle::CHANNEL_ONE: result[c] = 1; break; default: DE_ASSERT(false); } } return result; } template<> Vec4 ConstPixelBufferAccess::getPixelT (int x, int y, int z) const { return getPixel(x, y, z); } template<> IVec4 ConstPixelBufferAccess::getPixelT (int x, int y, int z) const { return getPixelInt(x, y, z); } template<> UVec4 ConstPixelBufferAccess::getPixelT (int x, int y, int z) const { return getPixelUint(x, y, z); } float ConstPixelBufferAccess::getPixDepth (int x, int y, int z) const { DE_ASSERT(de::inBounds(x, 0, getWidth())); DE_ASSERT(de::inBounds(y, 0, getHeight())); DE_ASSERT(de::inBounds(z, 0, getDepth())); const deUint8* const pixelPtr = (const deUint8*)getDataPtr() + z*m_pitch.z() + y*m_pitch.y() + x*m_pitch.x(); #define UB32(OFFS, COUNT) ((*((const deUint32*)pixelPtr) >> (OFFS)) & ((1<<(COUNT))-1)) #define NB32(OFFS, COUNT) channelToNormFloat(UB32(OFFS, COUNT), (COUNT)) DE_ASSERT(m_format.order == TextureFormat::DS || m_format.order == TextureFormat::D); switch (m_format.type) { case TextureFormat::UNSIGNED_INT_24_8: switch (m_format.order) { case TextureFormat::D: case TextureFormat::DS: // \note Fall-through. return NB32(8, 24); default: DE_ASSERT(false); return 0.0f; } case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: DE_ASSERT(m_format.order == TextureFormat::DS); return *((const float*)pixelPtr); default: DE_ASSERT(m_format.order == TextureFormat::D || m_format.order == TextureFormat::DS); return channelToFloat(pixelPtr, m_format.type); } #undef UB32 #undef NB32 } int ConstPixelBufferAccess::getPixStencil (int x, int y, int z) const { DE_ASSERT(de::inBounds(x, 0, getWidth())); DE_ASSERT(de::inBounds(y, 0, getHeight())); DE_ASSERT(de::inBounds(z, 0, getDepth())); const deUint8* const pixelPtr = (const deUint8*)getDataPtr() + z*m_pitch.z() + y*m_pitch.y() + x*m_pitch.x(); switch (m_format.type) { case TextureFormat::UNSIGNED_INT_24_8: switch (m_format.order) { case TextureFormat::S: return (int)(*((const deUint32*)pixelPtr) >> 8); case TextureFormat::DS: return (int)(*((const deUint32*)pixelPtr) & 0xff); default: DE_ASSERT(false); return 0; } case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: DE_ASSERT(m_format.order == TextureFormat::DS); return *((const deUint32*)(pixelPtr+4)) & 0xff; default: { if (m_format.order == TextureFormat::S) return channelToInt(pixelPtr, m_format.type); else { DE_ASSERT(m_format.order == TextureFormat::DS); const int stencilChannelIndex = 3; return channelToInt(pixelPtr + getChannelSize(m_format.type)*stencilChannelIndex, m_format.type); } } } } void PixelBufferAccess::setPixel (const Vec4& color, int x, int y, int z) const { DE_ASSERT(de::inBounds(x, 0, getWidth())); DE_ASSERT(de::inBounds(y, 0, getHeight())); DE_ASSERT(de::inBounds(z, 0, getDepth())); deUint8* const pixelPtr = (deUint8*)getDataPtr() + z*m_pitch.z() + y*m_pitch.y() + x*m_pitch.x(); // Optimized fomats. if (m_format.type == TextureFormat::UNORM_INT8) { if (m_format.order == TextureFormat::RGBA) { writeRGBA8888Float(pixelPtr, color); return; } else if (m_format.order == TextureFormat::RGB) { writeRGB888Float(pixelPtr, color); return; } } #define PN(VAL, OFFS, BITS) (normFloatToChannel((VAL), (BITS)) << (OFFS)) #define PU(VAL, OFFS, BITS) (uintToChannel((VAL), (BITS)) << (OFFS)) switch (m_format.type) { case TextureFormat::UNORM_SHORT_565: *((deUint16*)pixelPtr) = (deUint16)(PN(color[0], 11, 5) | PN(color[1], 5, 6) | PN(color[2], 0, 5)); break; case TextureFormat::UNORM_SHORT_555: *((deUint16*)pixelPtr) = (deUint16)(PN(color[0], 10, 5) | PN(color[1], 5, 5) | PN(color[2], 0, 5)); break; case TextureFormat::UNORM_SHORT_4444: *((deUint16*)pixelPtr) = (deUint16)(PN(color[0], 12, 4) | PN(color[1], 8, 4) | PN(color[2], 4, 4) | PN(color[3], 0, 4)); break; case TextureFormat::UNORM_SHORT_5551: *((deUint16*)pixelPtr) = (deUint16)(PN(color[0], 11, 5) | PN(color[1], 6, 5) | PN(color[2], 1, 5) | PN(color[3], 0, 1)); break; case TextureFormat::UNORM_INT_101010: *((deUint32*)pixelPtr) = PN(color[0], 22, 10) | PN(color[1], 12, 10) | PN(color[2], 2, 10); break; case TextureFormat::UNORM_INT_1010102_REV: *((deUint32*)pixelPtr) = PN(color[0], 0, 10) | PN(color[1], 10, 10) | PN(color[2], 20, 10) | PN(color[3], 30, 2); break; case TextureFormat::UNSIGNED_INT_1010102_REV: { UVec4 u = color.cast<deUint32>(); *((deUint32*)pixelPtr) = PU(u[0], 0, 10) | PU(u[1], 10, 10) |PU(u[2], 20, 10) | PU(u[3], 30, 2); break; } case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV: *((deUint32*)pixelPtr) = Float11(color[0]).bits() | (Float11(color[1]).bits() << 11) | (Float10(color[2]).bits() << 22); break; case TextureFormat::UNSIGNED_INT_999_E5_REV: *((deUint32*)pixelPtr) = packRGB999E5(color); break; case TextureFormat::UNSIGNED_INT_24_8: switch (m_format.order) { case TextureFormat::D: *((deUint32*)pixelPtr) = PN(color[0], 8, 24); break; case TextureFormat::S: *((deUint32*)pixelPtr) = PN(color[3], 8, 24); break; case TextureFormat::DS: *((deUint32*)pixelPtr) = PN(color[0], 8, 24) | PU((deUint32)color[3], 0, 8); break; default: DE_ASSERT(false); } break; case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: DE_ASSERT(m_format.order == TextureFormat::DS); *((float*)pixelPtr) = color[0]; *((deUint32*)(pixelPtr+4)) = PU((deUint32)color[3], 0, 8); break; case TextureFormat::FLOAT: if (m_format.order == TextureFormat::D) { *((float*)pixelPtr) = color[0]; break; } // else fall-through to default case! default: { // Generic path. int numChannels = getNumUsedChannels(m_format.order); const TextureSwizzle::Channel* map = getChannelWriteSwizzle(m_format.order).components; int channelSize = getChannelSize(m_format.type); for (int c = 0; c < numChannels; c++) { DE_ASSERT(deInRange32(map[c], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3)); floatToChannel(pixelPtr + channelSize*c, color[map[c]], m_format.type); } break; } } #undef PN #undef PU } void PixelBufferAccess::setPixel (const IVec4& color, int x, int y, int z) const { DE_ASSERT(de::inBounds(x, 0, getWidth())); DE_ASSERT(de::inBounds(y, 0, getHeight())); DE_ASSERT(de::inBounds(z, 0, getDepth())); deUint8* const pixelPtr = (deUint8*)getDataPtr() + z*m_pitch.z() + y*m_pitch.y() + x*m_pitch.x(); // Optimized fomats. if (m_format.type == TextureFormat::UNORM_INT8) { if (m_format.order == TextureFormat::RGBA) { writeRGBA8888Int(pixelPtr, color); return; } else if (m_format.order == TextureFormat::RGB) { writeRGB888Int(pixelPtr, color); return; } } #define PU(VAL, OFFS, BITS) (uintToChannel((deUint32)(VAL), (BITS)) << (OFFS)) switch (m_format.type) { case TextureFormat::UNORM_SHORT_565: *((deUint16*)pixelPtr) = (deUint16)(PU(color[0], 11, 5) | PU(color[1], 5, 6) | PU(color[2], 0, 5)); break; case TextureFormat::UNORM_SHORT_555: *((deUint16*)pixelPtr) = (deUint16)(PU(color[0], 10, 5) | PU(color[1], 5, 5) | PU(color[2], 0, 5)); break; case TextureFormat::UNORM_SHORT_4444: *((deUint16*)pixelPtr) = (deUint16)(PU(color[0], 12, 4) | PU(color[1], 8, 4) | PU(color[2], 4, 4) | PU(color[3], 0, 4)); break; case TextureFormat::UNORM_SHORT_5551: *((deUint16*)pixelPtr) = (deUint16)(PU(color[0], 11, 5) | PU(color[1], 6, 5) | PU(color[2], 1, 5) | PU(color[3], 0, 1)); break; case TextureFormat::UNORM_INT_101010: *((deUint32*)pixelPtr) = PU(color[0], 22, 10) | PU(color[1], 12, 10) | PU(color[2], 2, 10); break; case TextureFormat::UNORM_INT_1010102_REV: *((deUint32*)pixelPtr) = PU(color[0], 0, 10) | PU(color[1], 10, 10) | PU(color[2], 20, 10) | PU(color[3], 30, 2); break; case TextureFormat::UNSIGNED_INT_1010102_REV: *((deUint32*)pixelPtr) = PU(color[0], 0, 10) | PU(color[1], 10, 10) | PU(color[2], 20, 10) | PU(color[3], 30, 2); break; case TextureFormat::UNSIGNED_INT_24_8: switch (m_format.order) { case TextureFormat::D: *((deUint32*)pixelPtr) = PU(color[0], 8, 24); break; case TextureFormat::S: *((deUint32*)pixelPtr) = PU(color[3], 8, 24); break; case TextureFormat::DS: *((deUint32*)pixelPtr) = PU(color[0], 8, 24) | PU((deUint32)color[3], 0, 8); break; default: DE_ASSERT(false); } break; case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: DE_ASSERT(m_format.order == TextureFormat::DS); *((deUint32*)pixelPtr) = color[0]; *((deUint32*)(pixelPtr+4)) = PU((deUint32)color[3], 0, 8); break; default: { // Generic path. int numChannels = getNumUsedChannels(m_format.order); const TextureSwizzle::Channel* map = getChannelWriteSwizzle(m_format.order).components; int channelSize = getChannelSize(m_format.type); for (int c = 0; c < numChannels; c++) { DE_ASSERT(deInRange32(map[c], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3)); intToChannel(pixelPtr + channelSize*c, color[map[c]], m_format.type); } break; } } #undef PU } void PixelBufferAccess::setPixDepth (float depth, int x, int y, int z) const { DE_ASSERT(de::inBounds(x, 0, getWidth())); DE_ASSERT(de::inBounds(y, 0, getHeight())); DE_ASSERT(de::inBounds(z, 0, getDepth())); deUint8* const pixelPtr = (deUint8*)getDataPtr() + z*m_pitch.z() + y*m_pitch.y() + x*m_pitch.x(); #define PN(VAL, OFFS, BITS) (normFloatToChannel((VAL), (BITS)) << (OFFS)) switch (m_format.type) { case TextureFormat::UNSIGNED_INT_24_8: switch (m_format.order) { case TextureFormat::D: *((deUint32*)pixelPtr) = PN(depth, 8, 24); break; case TextureFormat::DS: *((deUint32*)pixelPtr) = (*((deUint32*)pixelPtr) & 0x000000ff) | PN(depth, 8, 24); break; default: DE_ASSERT(false); } break; case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: DE_ASSERT(m_format.order == TextureFormat::DS); *((float*)pixelPtr) = depth; break; default: DE_ASSERT(m_format.order == TextureFormat::D || m_format.order == TextureFormat::DS); floatToChannel(pixelPtr, depth, m_format.type); break; } #undef PN } void PixelBufferAccess::setPixStencil (int stencil, int x, int y, int z) const { DE_ASSERT(de::inBounds(x, 0, getWidth())); DE_ASSERT(de::inBounds(y, 0, getHeight())); DE_ASSERT(de::inBounds(z, 0, getDepth())); deUint8* const pixelPtr = (deUint8*)getDataPtr() + z*m_pitch.z() + y*m_pitch.y() + x*m_pitch.x(); #define PU(VAL, OFFS, BITS) (uintToChannel((deUint32)(VAL), (BITS)) << (OFFS)) switch (m_format.type) { case TextureFormat::UNSIGNED_INT_24_8: switch (m_format.order) { case TextureFormat::S: *((deUint32*)pixelPtr) = PU(stencil, 8, 24); break; case TextureFormat::DS: *((deUint32*)pixelPtr) = (*((deUint32*)pixelPtr) & 0xffffff00) | PU(stencil, 0, 8); break; default: DE_ASSERT(false); } break; case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: DE_ASSERT(m_format.order == TextureFormat::DS); *((deUint32*)(pixelPtr+4)) = PU((deUint32)stencil, 0, 8); break; default: if (m_format.order == TextureFormat::S) intToChannel(pixelPtr, stencil, m_format.type); else { DE_ASSERT(m_format.order == TextureFormat::DS); const int stencilChannelIndex = 3; intToChannel(pixelPtr + getChannelSize(m_format.type)*stencilChannelIndex, stencil, m_format.type); } break; } #undef PU } static inline int imod (int a, int b) { int m = a % b; return m < 0 ? m + b : m; } static inline int mirror (int a) { return a >= 0.0f ? a : -(1 + a); } // Nearest-even rounding in case of tie (fractional part 0.5), otherwise ordinary rounding. static inline float rint (float a) { DE_STATIC_ASSERT((-3 % 2 != 0) && (-4 % 2 == 0)); float fracVal = deFloatFrac(a); if (fracVal != 0.5f) return deFloatRound(a); // Ordinary case. float floorVal = a - fracVal; bool roundUp = (deInt64)floorVal % 2 != 0; return floorVal + (roundUp ? 1.0f : 0.0f); } static inline int wrap (Sampler::WrapMode mode, int c, int size) { switch (mode) { case tcu::Sampler::CLAMP_TO_BORDER: return deClamp32(c, -1, size); case tcu::Sampler::CLAMP_TO_EDGE: return deClamp32(c, 0, size-1); case tcu::Sampler::REPEAT_GL: return imod(c, size); case tcu::Sampler::REPEAT_CL: return imod(c, size); case tcu::Sampler::MIRRORED_REPEAT_GL: return (size - 1) - mirror(imod(c, 2*size) - size); case tcu::Sampler::MIRRORED_REPEAT_CL: return deClamp32(c, 0, size-1); // \note Actual mirroring done already in unnormalization function. default: DE_ASSERT(DE_FALSE); return 0; } } // Special unnormalization for REPEAT_CL and MIRRORED_REPEAT_CL wrap modes; otherwise ordinary unnormalization. static inline float unnormalize (Sampler::WrapMode mode, float c, int size) { switch (mode) { case tcu::Sampler::CLAMP_TO_EDGE: case tcu::Sampler::CLAMP_TO_BORDER: case tcu::Sampler::REPEAT_GL: case tcu::Sampler::MIRRORED_REPEAT_GL: // Fall-through (ordinary case). return (float)size*c; case tcu::Sampler::REPEAT_CL: return (float)size * (c - deFloatFloor(c)); case tcu::Sampler::MIRRORED_REPEAT_CL: return (float)size * deFloatAbs(c - 2.0f * rint(0.5f * c)); default: DE_ASSERT(DE_FALSE); return 0.0f; } } static bool isFixedPointDepthTextureFormat (const tcu::TextureFormat& format) { const tcu::TextureChannelClass channelClass = tcu::getTextureChannelClass(format.type); if (format.order == TextureFormat::D) { // depth internal formats cannot be non-normalized integers return channelClass != tcu::TEXTURECHANNELCLASS_FLOATING_POINT; } else if (format.order == TextureFormat::DS) { // combined formats have no single channel class, detect format manually switch (format.type) { case tcu::TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: return false; case tcu::TextureFormat::UNSIGNED_INT_24_8: return true; default: { // unknown format DE_ASSERT(false); return true; } } } return false; } // Texel lookup with color conversion. static inline Vec4 lookup (const ConstPixelBufferAccess& access, int i, int j, int k) { Vec4 p = access.getPixel(i, j, k); return isSRGB(access.getFormat()) ? sRGBToLinear(p) : p; } // Border texel lookup with color conversion. static inline Vec4 lookupBorder (const tcu::TextureFormat& format, const tcu::Sampler& sampler) { // "lookup" for a combined format does not make sense, disallow DE_ASSERT(!isCombinedDepthStencilType(format.type)); const tcu::TextureChannelClass channelClass = tcu::getTextureChannelClass(format.type); const bool isFloat = channelClass == tcu::TEXTURECHANNELCLASS_FLOATING_POINT; const bool isFixed = channelClass == tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || channelClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT; const bool isPureInteger = channelClass == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER; const bool isPureUnsignedInteger = channelClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER; if (isFloat || isFixed) return sampleTextureBorder<float>(format, sampler); else if (isPureInteger) return sampleTextureBorder<deInt32>(format, sampler).cast<float>(); else if (isPureUnsignedInteger) return sampleTextureBorder<deUint32>(format, sampler).cast<float>(); else { DE_ASSERT(false); return Vec4(-1.0); } } static inline float execCompare (const tcu::Vec4& color, Sampler::CompareMode compare, int chanNdx, float ref_, bool isFixedPoint) { const bool clampValues = isFixedPoint; // if comparing against a floating point texture, ref (and value) is not clamped const float cmp = (clampValues) ? (de::clamp(color[chanNdx], 0.0f, 1.0f)) : (color[chanNdx]); const float ref = (clampValues) ? (de::clamp(ref_, 0.0f, 1.0f)) : (ref_); bool res = false; switch (compare) { case Sampler::COMPAREMODE_LESS: res = ref < cmp; break; case Sampler::COMPAREMODE_LESS_OR_EQUAL: res = ref <= cmp; break; case Sampler::COMPAREMODE_GREATER: res = ref > cmp; break; case Sampler::COMPAREMODE_GREATER_OR_EQUAL: res = ref >= cmp; break; case Sampler::COMPAREMODE_EQUAL: res = ref == cmp; break; case Sampler::COMPAREMODE_NOT_EQUAL: res = ref != cmp; break; case Sampler::COMPAREMODE_ALWAYS: res = true; break; case Sampler::COMPAREMODE_NEVER: res = false; break; default: DE_ASSERT(false); } return res ? 1.0f : 0.0f; } static Vec4 sampleNearest1D (const ConstPixelBufferAccess& access, const Sampler& sampler, float u, const IVec2& offset) { int width = access.getWidth(); int x = deFloorFloatToInt32(u)+offset.x(); // Check for CLAMP_TO_BORDER. if (sampler.wrapS == Sampler::CLAMP_TO_BORDER && !deInBounds32(x, 0, width)) return lookupBorder(access.getFormat(), sampler); int i = wrap(sampler.wrapS, x, width); return lookup(access, i, offset.y(), 0); } static Vec4 sampleNearest2D (const ConstPixelBufferAccess& access, const Sampler& sampler, float u, float v, const IVec3& offset) { int width = access.getWidth(); int height = access.getHeight(); int x = deFloorFloatToInt32(u)+offset.x(); int y = deFloorFloatToInt32(v)+offset.y(); // Check for CLAMP_TO_BORDER. if ((sampler.wrapS == Sampler::CLAMP_TO_BORDER && !deInBounds32(x, 0, width)) || (sampler.wrapT == Sampler::CLAMP_TO_BORDER && !deInBounds32(y, 0, height))) return lookupBorder(access.getFormat(), sampler); int i = wrap(sampler.wrapS, x, width); int j = wrap(sampler.wrapT, y, height); return lookup(access, i, j, offset.z()); } static Vec4 sampleNearest3D (const ConstPixelBufferAccess& access, const Sampler& sampler, float u, float v, float w, const IVec3& offset) { int width = access.getWidth(); int height = access.getHeight(); int depth = access.getDepth(); int x = deFloorFloatToInt32(u)+offset.x(); int y = deFloorFloatToInt32(v)+offset.y(); int z = deFloorFloatToInt32(w)+offset.z(); // Check for CLAMP_TO_BORDER. if ((sampler.wrapS == Sampler::CLAMP_TO_BORDER && !deInBounds32(x, 0, width)) || (sampler.wrapT == Sampler::CLAMP_TO_BORDER && !deInBounds32(y, 0, height)) || (sampler.wrapR == Sampler::CLAMP_TO_BORDER && !deInBounds32(z, 0, depth))) return lookupBorder(access.getFormat(), sampler); int i = wrap(sampler.wrapS, x, width); int j = wrap(sampler.wrapT, y, height); int k = wrap(sampler.wrapR, z, depth); return lookup(access, i, j, k); } static Vec4 sampleLinear1D (const ConstPixelBufferAccess& access, const Sampler& sampler, float u, const IVec2& offset) { int w = access.getWidth(); int x0 = deFloorFloatToInt32(u-0.5f)+offset.x(); int x1 = x0+1; int i0 = wrap(sampler.wrapS, x0, w); int i1 = wrap(sampler.wrapS, x1, w); float a = deFloatFrac(u-0.5f); bool i0UseBorder = sampler.wrapS == Sampler::CLAMP_TO_BORDER && !de::inBounds(i0, 0, w); bool i1UseBorder = sampler.wrapS == Sampler::CLAMP_TO_BORDER && !de::inBounds(i1, 0, w); // Border color for out-of-range coordinates if using CLAMP_TO_BORDER, otherwise execute lookups. Vec4 p0 = i0UseBorder ? lookupBorder(access.getFormat(), sampler) : lookup(access, i0, offset.y(), 0); Vec4 p1 = i1UseBorder ? lookupBorder(access.getFormat(), sampler) : lookup(access, i1, offset.y(), 0); // Interpolate. return p0 * (1.0f - a) + p1 * a; } static Vec4 sampleLinear2D (const ConstPixelBufferAccess& access, const Sampler& sampler, float u, float v, const IVec3& offset) { int w = access.getWidth(); int h = access.getHeight(); int x0 = deFloorFloatToInt32(u-0.5f)+offset.x(); int x1 = x0+1; int y0 = deFloorFloatToInt32(v-0.5f)+offset.y(); int y1 = y0+1; int i0 = wrap(sampler.wrapS, x0, w); int i1 = wrap(sampler.wrapS, x1, w); int j0 = wrap(sampler.wrapT, y0, h); int j1 = wrap(sampler.wrapT, y1, h); float a = deFloatFrac(u-0.5f); float b = deFloatFrac(v-0.5f); bool i0UseBorder = sampler.wrapS == Sampler::CLAMP_TO_BORDER && !de::inBounds(i0, 0, w); bool i1UseBorder = sampler.wrapS == Sampler::CLAMP_TO_BORDER && !de::inBounds(i1, 0, w); bool j0UseBorder = sampler.wrapT == Sampler::CLAMP_TO_BORDER && !de::inBounds(j0, 0, h); bool j1UseBorder = sampler.wrapT == Sampler::CLAMP_TO_BORDER && !de::inBounds(j1, 0, h); // Border color for out-of-range coordinates if using CLAMP_TO_BORDER, otherwise execute lookups. Vec4 p00 = (i0UseBorder || j0UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i0, j0, offset.z()); Vec4 p10 = (i1UseBorder || j0UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i1, j0, offset.z()); Vec4 p01 = (i0UseBorder || j1UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i0, j1, offset.z()); Vec4 p11 = (i1UseBorder || j1UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i1, j1, offset.z()); // Interpolate. return (p00*(1.0f-a)*(1.0f-b)) + (p10*( a)*(1.0f-b)) + (p01*(1.0f-a)*( b)) + (p11*( a)*( b)); } static float sampleLinear1DCompare (const ConstPixelBufferAccess& access, const Sampler& sampler, float ref, float u, const IVec2& offset, bool isFixedPointDepthFormat) { int w = access.getWidth(); int x0 = deFloorFloatToInt32(u-0.5f)+offset.x(); int x1 = x0+1; int i0 = wrap(sampler.wrapS, x0, w); int i1 = wrap(sampler.wrapS, x1, w); float a = deFloatFrac(u-0.5f); bool i0UseBorder = sampler.wrapS == Sampler::CLAMP_TO_BORDER && !de::inBounds(i0, 0, w); bool i1UseBorder = sampler.wrapS == Sampler::CLAMP_TO_BORDER && !de::inBounds(i1, 0, w); // Border color for out-of-range coordinates if using CLAMP_TO_BORDER, otherwise execute lookups. Vec4 p0Clr = i0UseBorder ? lookupBorder(access.getFormat(), sampler) : lookup(access, i0, offset.y(), 0); Vec4 p1Clr = i1UseBorder ? lookupBorder(access.getFormat(), sampler) : lookup(access, i1, offset.y(), 0); // Execute comparisons. float p0 = execCompare(p0Clr, sampler.compare, sampler.compareChannel, ref, isFixedPointDepthFormat); float p1 = execCompare(p1Clr, sampler.compare, sampler.compareChannel, ref, isFixedPointDepthFormat); // Interpolate. return (p0 * (1.0f - a)) + (p1 * a); } static float sampleLinear2DCompare (const ConstPixelBufferAccess& access, const Sampler& sampler, float ref, float u, float v, const IVec3& offset, bool isFixedPointDepthFormat) { int w = access.getWidth(); int h = access.getHeight(); int x0 = deFloorFloatToInt32(u-0.5f)+offset.x(); int x1 = x0+1; int y0 = deFloorFloatToInt32(v-0.5f)+offset.y(); int y1 = y0+1; int i0 = wrap(sampler.wrapS, x0, w); int i1 = wrap(sampler.wrapS, x1, w); int j0 = wrap(sampler.wrapT, y0, h); int j1 = wrap(sampler.wrapT, y1, h); float a = deFloatFrac(u-0.5f); float b = deFloatFrac(v-0.5f); bool i0UseBorder = sampler.wrapS == Sampler::CLAMP_TO_BORDER && !de::inBounds(i0, 0, w); bool i1UseBorder = sampler.wrapS == Sampler::CLAMP_TO_BORDER && !de::inBounds(i1, 0, w); bool j0UseBorder = sampler.wrapT == Sampler::CLAMP_TO_BORDER && !de::inBounds(j0, 0, h); bool j1UseBorder = sampler.wrapT == Sampler::CLAMP_TO_BORDER && !de::inBounds(j1, 0, h); // Border color for out-of-range coordinates if using CLAMP_TO_BORDER, otherwise execute lookups. Vec4 p00Clr = (i0UseBorder || j0UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i0, j0, offset.z()); Vec4 p10Clr = (i1UseBorder || j0UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i1, j0, offset.z()); Vec4 p01Clr = (i0UseBorder || j1UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i0, j1, offset.z()); Vec4 p11Clr = (i1UseBorder || j1UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i1, j1, offset.z()); // Execute comparisons. float p00 = execCompare(p00Clr, sampler.compare, sampler.compareChannel, ref, isFixedPointDepthFormat); float p10 = execCompare(p10Clr, sampler.compare, sampler.compareChannel, ref, isFixedPointDepthFormat); float p01 = execCompare(p01Clr, sampler.compare, sampler.compareChannel, ref, isFixedPointDepthFormat); float p11 = execCompare(p11Clr, sampler.compare, sampler.compareChannel, ref, isFixedPointDepthFormat); // Interpolate. return (p00*(1.0f-a)*(1.0f-b)) + (p10*( a)*(1.0f-b)) + (p01*(1.0f-a)*( b)) + (p11*( a)*( b)); } static Vec4 sampleLinear3D (const ConstPixelBufferAccess& access, const Sampler& sampler, float u, float v, float w, const IVec3& offset) { int width = access.getWidth(); int height = access.getHeight(); int depth = access.getDepth(); int x0 = deFloorFloatToInt32(u-0.5f)+offset.x(); int x1 = x0+1; int y0 = deFloorFloatToInt32(v-0.5f)+offset.y(); int y1 = y0+1; int z0 = deFloorFloatToInt32(w-0.5f)+offset.z(); int z1 = z0+1; int i0 = wrap(sampler.wrapS, x0, width); int i1 = wrap(sampler.wrapS, x1, width); int j0 = wrap(sampler.wrapT, y0, height); int j1 = wrap(sampler.wrapT, y1, height); int k0 = wrap(sampler.wrapR, z0, depth); int k1 = wrap(sampler.wrapR, z1, depth); float a = deFloatFrac(u-0.5f); float b = deFloatFrac(v-0.5f); float c = deFloatFrac(w-0.5f); bool i0UseBorder = sampler.wrapS == Sampler::CLAMP_TO_BORDER && !de::inBounds(i0, 0, width); bool i1UseBorder = sampler.wrapS == Sampler::CLAMP_TO_BORDER && !de::inBounds(i1, 0, width); bool j0UseBorder = sampler.wrapT == Sampler::CLAMP_TO_BORDER && !de::inBounds(j0, 0, height); bool j1UseBorder = sampler.wrapT == Sampler::CLAMP_TO_BORDER && !de::inBounds(j1, 0, height); bool k0UseBorder = sampler.wrapR == Sampler::CLAMP_TO_BORDER && !de::inBounds(k0, 0, depth); bool k1UseBorder = sampler.wrapR == Sampler::CLAMP_TO_BORDER && !de::inBounds(k1, 0, depth); // Border color for out-of-range coordinates if using CLAMP_TO_BORDER, otherwise execute lookups. Vec4 p000 = (i0UseBorder || j0UseBorder || k0UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i0, j0, k0); Vec4 p100 = (i1UseBorder || j0UseBorder || k0UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i1, j0, k0); Vec4 p010 = (i0UseBorder || j1UseBorder || k0UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i0, j1, k0); Vec4 p110 = (i1UseBorder || j1UseBorder || k0UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i1, j1, k0); Vec4 p001 = (i0UseBorder || j0UseBorder || k1UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i0, j0, k1); Vec4 p101 = (i1UseBorder || j0UseBorder || k1UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i1, j0, k1); Vec4 p011 = (i0UseBorder || j1UseBorder || k1UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i0, j1, k1); Vec4 p111 = (i1UseBorder || j1UseBorder || k1UseBorder) ? lookupBorder(access.getFormat(), sampler) : lookup(access, i1, j1, k1); // Interpolate. return (p000*(1.0f-a)*(1.0f-b)*(1.0f-c)) + (p100*( a)*(1.0f-b)*(1.0f-c)) + (p010*(1.0f-a)*( b)*(1.0f-c)) + (p110*( a)*( b)*(1.0f-c)) + (p001*(1.0f-a)*(1.0f-b)*( c)) + (p101*( a)*(1.0f-b)*( c)) + (p011*(1.0f-a)*( b)*( c)) + (p111*( a)*( b)*( c)); } Vec4 ConstPixelBufferAccess::sample1D (const Sampler& sampler, Sampler::FilterMode filter, float s, int level) const { // check selected layer exists DE_ASSERT(de::inBounds(level, 0, m_size.y())); return sample1DOffset(sampler, filter, s, tcu::IVec2(0, level)); } Vec4 ConstPixelBufferAccess::sample2D (const Sampler& sampler, Sampler::FilterMode filter, float s, float t, int depth) const { // check selected layer exists DE_ASSERT(de::inBounds(depth, 0, m_size.z())); return sample2DOffset(sampler, filter, s, t, tcu::IVec3(0, 0, depth)); } Vec4 ConstPixelBufferAccess::sample3D (const Sampler& sampler, Sampler::FilterMode filter, float s, float t, float r) const { return sample3DOffset(sampler, filter, s, t, r, tcu::IVec3(0, 0, 0)); } Vec4 ConstPixelBufferAccess::sample1DOffset (const Sampler& sampler, Sampler::FilterMode filter, float s, const IVec2& offset) const { // check selected layer exists // \note offset.x is X offset, offset.y is the selected layer DE_ASSERT(de::inBounds(offset.y(), 0, m_size.y())); // Non-normalized coordinates. float u = s; if (sampler.normalizedCoords) u = unnormalize(sampler.wrapS, s, m_size.x()); switch (filter) { case Sampler::NEAREST: return sampleNearest1D (*this, sampler, u, offset); case Sampler::LINEAR: return sampleLinear1D (*this, sampler, u, offset); default: DE_ASSERT(DE_FALSE); return Vec4(0.0f); } } Vec4 ConstPixelBufferAccess::sample2DOffset (const Sampler& sampler, Sampler::FilterMode filter, float s, float t, const IVec3& offset) const { // check selected layer exists // \note offset.xy is the XY offset, offset.z is the selected layer DE_ASSERT(de::inBounds(offset.z(), 0, m_size.z())); // Non-normalized coordinates. float u = s; float v = t; if (sampler.normalizedCoords) { u = unnormalize(sampler.wrapS, s, m_size.x()); v = unnormalize(sampler.wrapT, t, m_size.y()); } switch (filter) { case Sampler::NEAREST: return sampleNearest2D (*this, sampler, u, v, offset); case Sampler::LINEAR: return sampleLinear2D (*this, sampler, u, v, offset); default: DE_ASSERT(DE_FALSE); return Vec4(0.0f); } } Vec4 ConstPixelBufferAccess::sample3DOffset (const Sampler& sampler, Sampler::FilterMode filter, float s, float t, float r, const IVec3& offset) const { // Non-normalized coordinates. float u = s; float v = t; float w = r; if (sampler.normalizedCoords) { u = unnormalize(sampler.wrapS, s, m_size.x()); v = unnormalize(sampler.wrapT, t, m_size.y()); w = unnormalize(sampler.wrapR, r, m_size.z()); } switch (filter) { case Sampler::NEAREST: return sampleNearest3D (*this, sampler, u, v, w, offset); case Sampler::LINEAR: return sampleLinear3D (*this, sampler, u, v, w, offset); default: DE_ASSERT(DE_FALSE); return Vec4(0.0f); } } float ConstPixelBufferAccess::sample1DCompare (const Sampler& sampler, Sampler::FilterMode filter, float ref, float s, const IVec2& offset) const { // check selected layer exists // \note offset.x is X offset, offset.y is the selected layer DE_ASSERT(de::inBounds(offset.y(), 0, m_size.y())); // Format information for comparison function const bool isFixedPointDepth = isFixedPointDepthTextureFormat(m_format); // Non-normalized coordinates. float u = s; if (sampler.normalizedCoords) u = unnormalize(sampler.wrapS, s, m_size.x()); switch (filter) { case Sampler::NEAREST: return execCompare(sampleNearest1D(*this, sampler, u, offset), sampler.compare, sampler.compareChannel, ref, isFixedPointDepth); case Sampler::LINEAR: return sampleLinear1DCompare(*this, sampler, ref, u, offset, isFixedPointDepth); default: DE_ASSERT(DE_FALSE); return 0.0f; } } float ConstPixelBufferAccess::sample2DCompare (const Sampler& sampler, Sampler::FilterMode filter, float ref, float s, float t, const IVec3& offset) const { // check selected layer exists // \note offset.xy is XY offset, offset.z is the selected layer DE_ASSERT(de::inBounds(offset.z(), 0, m_size.z())); // Format information for comparison function const bool isFixedPointDepth = isFixedPointDepthTextureFormat(m_format); // Non-normalized coordinates. float u = s; float v = t; if (sampler.normalizedCoords) { u = unnormalize(sampler.wrapS, s, m_size.x()); v = unnormalize(sampler.wrapT, t, m_size.y()); } switch (filter) { case Sampler::NEAREST: return execCompare(sampleNearest2D(*this, sampler, u, v, offset), sampler.compare, sampler.compareChannel, ref, isFixedPointDepth); case Sampler::LINEAR: return sampleLinear2DCompare(*this, sampler, ref, u, v, offset, isFixedPointDepth); default: DE_ASSERT(DE_FALSE); return 0.0f; } } TextureLevel::TextureLevel (void) : m_format () , m_size (0) { } TextureLevel::TextureLevel (const TextureFormat& format) : m_format (format) , m_size (0) { } TextureLevel::TextureLevel (const TextureFormat& format, int width, int height, int depth) : m_format (format) , m_size (0) { setSize(width, height, depth); } TextureLevel::~TextureLevel (void) { } void TextureLevel::setStorage (const TextureFormat& format, int width, int height, int depth) { m_format = format; setSize(width, height, depth); } void TextureLevel::setSize (int width, int height, int depth) { int pixelSize = m_format.getPixelSize(); m_size = IVec3(width, height, depth); m_data.setStorage(m_size.x() * m_size.y() * m_size.z() * pixelSize); } Vec4 sampleLevelArray1D (const ConstPixelBufferAccess* levels, int numLevels, const Sampler& sampler, float s, int depth, float lod) { return sampleLevelArray1DOffset(levels, numLevels, sampler, s, lod, IVec2(0, depth)); // y-offset in 1D textures is layer selector } Vec4 sampleLevelArray2D (const ConstPixelBufferAccess* levels, int numLevels, const Sampler& sampler, float s, float t, int depth, float lod) { return sampleLevelArray2DOffset(levels, numLevels, sampler, s, t, lod, IVec3(0, 0, depth)); // z-offset in 2D textures is layer selector } Vec4 sampleLevelArray3D (const ConstPixelBufferAccess* levels, int numLevels, const Sampler& sampler, float s, float t, float r, float lod) { return sampleLevelArray3DOffset(levels, numLevels, sampler, s, t, r, lod, IVec3(0, 0, 0)); } Vec4 sampleLevelArray1DOffset (const ConstPixelBufferAccess* levels, int numLevels, const Sampler& sampler, float s, float lod, const IVec2& offset) { bool magnified = lod <= sampler.lodThreshold; Sampler::FilterMode filterMode = magnified ? sampler.magFilter : sampler.minFilter; switch (filterMode) { case Sampler::NEAREST: return levels[0].sample1DOffset(sampler, filterMode, s, offset); case Sampler::LINEAR: return levels[0].sample1DOffset(sampler, filterMode, s, offset); case Sampler::NEAREST_MIPMAP_NEAREST: case Sampler::LINEAR_MIPMAP_NEAREST: { int maxLevel = (int)numLevels-1; int level = deClamp32((int)deFloatCeil(lod + 0.5f) - 1, 0, maxLevel); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_NEAREST) ? Sampler::LINEAR : Sampler::NEAREST; return levels[level].sample1DOffset(sampler, levelFilter, s, offset); } case Sampler::NEAREST_MIPMAP_LINEAR: case Sampler::LINEAR_MIPMAP_LINEAR: { int maxLevel = (int)numLevels-1; int level0 = deClamp32((int)deFloatFloor(lod), 0, maxLevel); int level1 = de::min(maxLevel, level0 + 1); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_LINEAR) ? Sampler::LINEAR : Sampler::NEAREST; float f = deFloatFrac(lod); tcu::Vec4 t0 = levels[level0].sample1DOffset(sampler, levelFilter, s, offset); tcu::Vec4 t1 = levels[level1].sample1DOffset(sampler, levelFilter, s, offset); return t0*(1.0f - f) + t1*f; } default: DE_ASSERT(DE_FALSE); return Vec4(0.0f); } } Vec4 sampleLevelArray2DOffset (const ConstPixelBufferAccess* levels, int numLevels, const Sampler& sampler, float s, float t, float lod, const IVec3& offset) { bool magnified = lod <= sampler.lodThreshold; Sampler::FilterMode filterMode = magnified ? sampler.magFilter : sampler.minFilter; switch (filterMode) { case Sampler::NEAREST: return levels[0].sample2DOffset(sampler, filterMode, s, t, offset); case Sampler::LINEAR: return levels[0].sample2DOffset(sampler, filterMode, s, t, offset); case Sampler::NEAREST_MIPMAP_NEAREST: case Sampler::LINEAR_MIPMAP_NEAREST: { int maxLevel = (int)numLevels-1; int level = deClamp32((int)deFloatCeil(lod + 0.5f) - 1, 0, maxLevel); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_NEAREST) ? Sampler::LINEAR : Sampler::NEAREST; return levels[level].sample2DOffset(sampler, levelFilter, s, t, offset); } case Sampler::NEAREST_MIPMAP_LINEAR: case Sampler::LINEAR_MIPMAP_LINEAR: { int maxLevel = (int)numLevels-1; int level0 = deClamp32((int)deFloatFloor(lod), 0, maxLevel); int level1 = de::min(maxLevel, level0 + 1); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_LINEAR) ? Sampler::LINEAR : Sampler::NEAREST; float f = deFloatFrac(lod); tcu::Vec4 t0 = levels[level0].sample2DOffset(sampler, levelFilter, s, t, offset); tcu::Vec4 t1 = levels[level1].sample2DOffset(sampler, levelFilter, s, t, offset); return t0*(1.0f - f) + t1*f; } default: DE_ASSERT(DE_FALSE); return Vec4(0.0f); } } Vec4 sampleLevelArray3DOffset (const ConstPixelBufferAccess* levels, int numLevels, const Sampler& sampler, float s, float t, float r, float lod, const IVec3& offset) { bool magnified = lod <= sampler.lodThreshold; Sampler::FilterMode filterMode = magnified ? sampler.magFilter : sampler.minFilter; switch (filterMode) { case Sampler::NEAREST: return levels[0].sample3DOffset(sampler, filterMode, s, t, r, offset); case Sampler::LINEAR: return levels[0].sample3DOffset(sampler, filterMode, s, t, r, offset); case Sampler::NEAREST_MIPMAP_NEAREST: case Sampler::LINEAR_MIPMAP_NEAREST: { int maxLevel = (int)numLevels-1; int level = deClamp32((int)deFloatCeil(lod + 0.5f) - 1, 0, maxLevel); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_NEAREST) ? Sampler::LINEAR : Sampler::NEAREST; return levels[level].sample3DOffset(sampler, levelFilter, s, t, r, offset); } case Sampler::NEAREST_MIPMAP_LINEAR: case Sampler::LINEAR_MIPMAP_LINEAR: { int maxLevel = (int)numLevels-1; int level0 = deClamp32((int)deFloatFloor(lod), 0, maxLevel); int level1 = de::min(maxLevel, level0 + 1); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_LINEAR) ? Sampler::LINEAR : Sampler::NEAREST; float f = deFloatFrac(lod); tcu::Vec4 t0 = levels[level0].sample3DOffset(sampler, levelFilter, s, t, r, offset); tcu::Vec4 t1 = levels[level1].sample3DOffset(sampler, levelFilter, s, t, r, offset); return t0*(1.0f - f) + t1*f; } default: DE_ASSERT(DE_FALSE); return Vec4(0.0f); } } float sampleLevelArray1DCompare (const ConstPixelBufferAccess* levels, int numLevels, const Sampler& sampler, float ref, float s, float lod, const IVec2& offset) { bool magnified = lod <= sampler.lodThreshold; Sampler::FilterMode filterMode = magnified ? sampler.magFilter : sampler.minFilter; switch (filterMode) { case Sampler::NEAREST: return levels[0].sample1DCompare(sampler, filterMode, ref, s, offset); case Sampler::LINEAR: return levels[0].sample1DCompare(sampler, filterMode, ref, s, offset); case Sampler::NEAREST_MIPMAP_NEAREST: case Sampler::LINEAR_MIPMAP_NEAREST: { int maxLevel = (int)numLevels-1; int level = deClamp32((int)deFloatCeil(lod + 0.5f) - 1, 0, maxLevel); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_NEAREST) ? Sampler::LINEAR : Sampler::NEAREST; return levels[level].sample1DCompare(sampler, levelFilter, ref, s, offset); } case Sampler::NEAREST_MIPMAP_LINEAR: case Sampler::LINEAR_MIPMAP_LINEAR: { int maxLevel = (int)numLevels-1; int level0 = deClamp32((int)deFloatFloor(lod), 0, maxLevel); int level1 = de::min(maxLevel, level0 + 1); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_LINEAR) ? Sampler::LINEAR : Sampler::NEAREST; float f = deFloatFrac(lod); float t0 = levels[level0].sample1DCompare(sampler, levelFilter, ref, s, offset); float t1 = levels[level1].sample1DCompare(sampler, levelFilter, ref, s, offset); return t0*(1.0f - f) + t1*f; } default: DE_ASSERT(DE_FALSE); return 0.0f; } } float sampleLevelArray2DCompare (const ConstPixelBufferAccess* levels, int numLevels, const Sampler& sampler, float ref, float s, float t, float lod, const IVec3& offset) { bool magnified = lod <= sampler.lodThreshold; Sampler::FilterMode filterMode = magnified ? sampler.magFilter : sampler.minFilter; switch (filterMode) { case Sampler::NEAREST: return levels[0].sample2DCompare(sampler, filterMode, ref, s, t, offset); case Sampler::LINEAR: return levels[0].sample2DCompare(sampler, filterMode, ref, s, t, offset); case Sampler::NEAREST_MIPMAP_NEAREST: case Sampler::LINEAR_MIPMAP_NEAREST: { int maxLevel = (int)numLevels-1; int level = deClamp32((int)deFloatCeil(lod + 0.5f) - 1, 0, maxLevel); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_NEAREST) ? Sampler::LINEAR : Sampler::NEAREST; return levels[level].sample2DCompare(sampler, levelFilter, ref, s, t, offset); } case Sampler::NEAREST_MIPMAP_LINEAR: case Sampler::LINEAR_MIPMAP_LINEAR: { int maxLevel = (int)numLevels-1; int level0 = deClamp32((int)deFloatFloor(lod), 0, maxLevel); int level1 = de::min(maxLevel, level0 + 1); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_LINEAR) ? Sampler::LINEAR : Sampler::NEAREST; float f = deFloatFrac(lod); float t0 = levels[level0].sample2DCompare(sampler, levelFilter, ref, s, t, offset); float t1 = levels[level1].sample2DCompare(sampler, levelFilter, ref, s, t, offset); return t0*(1.0f - f) + t1*f; } default: DE_ASSERT(DE_FALSE); return 0.0f; } } static Vec4 fetchGatherArray2DOffsets (const ConstPixelBufferAccess& src, const Sampler& sampler, float s, float t, int depth, int componentNdx, const IVec2 (&offsets)[4]) { DE_ASSERT(de::inBounds(componentNdx, 0, 4)); const int w = src.getWidth(); const int h = src.getHeight(); const float u = unnormalize(sampler.wrapS, s, w); const float v = unnormalize(sampler.wrapT, t, h); const int x0 = deFloorFloatToInt32(u-0.5f); const int y0 = deFloorFloatToInt32(v-0.5f); Vec4 result; for (int i = 0; i < 4; i++) { const int sampleX = wrap(sampler.wrapS, x0 + offsets[i].x(), w); const int sampleY = wrap(sampler.wrapT, y0 + offsets[i].y(), h); Vec4 pixel; if (deInBounds32(sampleX, 0, w) && deInBounds32(sampleY, 0, h)) pixel = lookup(src, sampleX, sampleY, depth); else pixel = lookupBorder(src.getFormat(), sampler); result[i] = pixel[componentNdx]; } return result; } Vec4 gatherArray2DOffsets (const ConstPixelBufferAccess& src, const Sampler& sampler, float s, float t, int depth, int componentNdx, const IVec2 (&offsets)[4]) { DE_ASSERT(sampler.compare == Sampler::COMPAREMODE_NONE); DE_ASSERT(de::inBounds(componentNdx, 0, 4)); return fetchGatherArray2DOffsets(src, sampler, s, t, depth, componentNdx, offsets); } Vec4 gatherArray2DOffsetsCompare (const ConstPixelBufferAccess& src, const Sampler& sampler, float ref, float s, float t, int depth, const IVec2 (&offsets)[4]) { DE_ASSERT(sampler.compare != Sampler::COMPAREMODE_NONE); DE_ASSERT(src.getFormat().order == TextureFormat::D || src.getFormat().order == TextureFormat::DS); DE_ASSERT(sampler.compareChannel == 0); const bool isFixedPoint = isFixedPointDepthTextureFormat(src.getFormat()); const Vec4 gathered = fetchGatherArray2DOffsets(src, sampler, s, t, depth, 0 /* component 0: depth */, offsets); Vec4 result; for (int i = 0; i < 4; i++) result[i] = execCompare(gathered, sampler.compare, i, ref, isFixedPoint); return result; } static Vec4 sampleCubeSeamlessNearest (const ConstPixelBufferAccess& faceAccess, const Sampler& sampler, float s, float t, int depth) { Sampler clampingSampler = sampler; clampingSampler.wrapS = Sampler::CLAMP_TO_EDGE; clampingSampler.wrapT = Sampler::CLAMP_TO_EDGE; return faceAccess.sample2D(clampingSampler, Sampler::NEAREST, s, t, depth); } CubeFace selectCubeFace (const Vec3& coords) { const float x = coords.x(); const float y = coords.y(); const float z = coords.z(); const float ax = deFloatAbs(x); const float ay = deFloatAbs(y); const float az = deFloatAbs(z); if (ay < ax && az < ax) return x >= 0.0f ? CUBEFACE_POSITIVE_X : CUBEFACE_NEGATIVE_X; else if (ax < ay && az < ay) return y >= 0.0f ? CUBEFACE_POSITIVE_Y : CUBEFACE_NEGATIVE_Y; else if (ax < az && ay < az) return z >= 0.0f ? CUBEFACE_POSITIVE_Z : CUBEFACE_NEGATIVE_Z; else { // Some of the components are equal. Use tie-breaking rule. if (ax == ay) { if (ax < az) return z >= 0.0f ? CUBEFACE_POSITIVE_Z : CUBEFACE_NEGATIVE_Z; else return x >= 0.0f ? CUBEFACE_POSITIVE_X : CUBEFACE_NEGATIVE_X; } else if (ax == az) { if (az < ay) return y >= 0.0f ? CUBEFACE_POSITIVE_Y : CUBEFACE_NEGATIVE_Y; else return z >= 0.0f ? CUBEFACE_POSITIVE_Z : CUBEFACE_NEGATIVE_Z; } else if (ay == az) { if (ay < ax) return x >= 0.0f ? CUBEFACE_POSITIVE_X : CUBEFACE_NEGATIVE_X; else return y >= 0.0f ? CUBEFACE_POSITIVE_Y : CUBEFACE_NEGATIVE_Y; } else return x >= 0.0f ? CUBEFACE_POSITIVE_X : CUBEFACE_NEGATIVE_X; } } Vec2 projectToFace (CubeFace face, const Vec3& coord) { const float rx = coord.x(); const float ry = coord.y(); const float rz = coord.z(); float sc = 0.0f; float tc = 0.0f; float ma = 0.0f; float s; float t; switch (face) { case CUBEFACE_NEGATIVE_X: sc = +rz; tc = -ry; ma = -rx; break; case CUBEFACE_POSITIVE_X: sc = -rz; tc = -ry; ma = +rx; break; case CUBEFACE_NEGATIVE_Y: sc = +rx; tc = -rz; ma = -ry; break; case CUBEFACE_POSITIVE_Y: sc = +rx; tc = +rz; ma = +ry; break; case CUBEFACE_NEGATIVE_Z: sc = -rx; tc = -ry; ma = -rz; break; case CUBEFACE_POSITIVE_Z: sc = +rx; tc = -ry; ma = +rz; break; default: DE_ASSERT(DE_FALSE); } // Compute s, t s = ((sc / ma) + 1.0f) / 2.0f; t = ((tc / ma) + 1.0f) / 2.0f; return Vec2(s, t); } CubeFaceFloatCoords getCubeFaceCoords (const Vec3& coords) { const CubeFace face = selectCubeFace(coords); return CubeFaceFloatCoords(face, projectToFace(face, coords)); } // Checks if origCoords.coords is in bounds defined by size; if not, return a CubeFaceIntCoords with face set to the appropriate neighboring face and coords transformed accordingly. // \note If both x and y in origCoords.coords are out of bounds, this returns with face CUBEFACE_LAST, signifying that there is no unique neighboring face. CubeFaceIntCoords remapCubeEdgeCoords (const CubeFaceIntCoords& origCoords, int size) { bool uInBounds = de::inBounds(origCoords.s, 0, size); bool vInBounds = de::inBounds(origCoords.t, 0, size); if (uInBounds && vInBounds) return origCoords; if (!uInBounds && !vInBounds) return CubeFaceIntCoords(CUBEFACE_LAST, -1, -1); IVec2 coords(wrap(Sampler::CLAMP_TO_BORDER, origCoords.s, size), wrap(Sampler::CLAMP_TO_BORDER, origCoords.t, size)); IVec3 canonizedCoords; // Map the uv coordinates to canonized 3d coordinates. switch (origCoords.face) { case CUBEFACE_NEGATIVE_X: canonizedCoords = IVec3(0, size-1-coords.y(), coords.x()); break; case CUBEFACE_POSITIVE_X: canonizedCoords = IVec3(size-1, size-1-coords.y(), size-1-coords.x()); break; case CUBEFACE_NEGATIVE_Y: canonizedCoords = IVec3(coords.x(), 0, size-1-coords.y()); break; case CUBEFACE_POSITIVE_Y: canonizedCoords = IVec3(coords.x(), size-1, coords.y()); break; case CUBEFACE_NEGATIVE_Z: canonizedCoords = IVec3(size-1-coords.x(), size-1-coords.y(), 0); break; case CUBEFACE_POSITIVE_Z: canonizedCoords = IVec3(coords.x(), size-1-coords.y(), size-1); break; default: DE_ASSERT(false); } // Find an appropriate face to re-map the coordinates to. if (canonizedCoords.x() == -1) return CubeFaceIntCoords(CUBEFACE_NEGATIVE_X, IVec2(canonizedCoords.z(), size-1-canonizedCoords.y())); if (canonizedCoords.x() == size) return CubeFaceIntCoords(CUBEFACE_POSITIVE_X, IVec2(size-1-canonizedCoords.z(), size-1-canonizedCoords.y())); if (canonizedCoords.y() == -1) return CubeFaceIntCoords(CUBEFACE_NEGATIVE_Y, IVec2(canonizedCoords.x(), size-1-canonizedCoords.z())); if (canonizedCoords.y() == size) return CubeFaceIntCoords(CUBEFACE_POSITIVE_Y, IVec2(canonizedCoords.x(), canonizedCoords.z())); if (canonizedCoords.z() == -1) return CubeFaceIntCoords(CUBEFACE_NEGATIVE_Z, IVec2(size-1-canonizedCoords.x(), size-1-canonizedCoords.y())); if (canonizedCoords.z() == size) return CubeFaceIntCoords(CUBEFACE_POSITIVE_Z, IVec2(canonizedCoords.x(), size-1-canonizedCoords.y())); DE_ASSERT(false); return CubeFaceIntCoords(CUBEFACE_LAST, IVec2(-1)); } static void getCubeLinearSamples (const ConstPixelBufferAccess (&faceAccesses)[CUBEFACE_LAST], CubeFace baseFace, float u, float v, int depth, Vec4 (&dst)[4]) { DE_ASSERT(faceAccesses[0].getWidth() == faceAccesses[0].getHeight()); int size = faceAccesses[0].getWidth(); int x0 = deFloorFloatToInt32(u-0.5f); int x1 = x0+1; int y0 = deFloorFloatToInt32(v-0.5f); int y1 = y0+1; IVec2 baseSampleCoords[4] = { IVec2(x0, y0), IVec2(x1, y0), IVec2(x0, y1), IVec2(x1, y1) }; Vec4 sampleColors[4]; bool hasBothCoordsOutOfBounds[4]; //!< Whether correctCubeFace() returns CUBEFACE_LAST, i.e. both u and v are out of bounds. // Find correct faces and coordinates for out-of-bounds sample coordinates. for (int i = 0; i < 4; i++) { CubeFaceIntCoords coords = remapCubeEdgeCoords(CubeFaceIntCoords(baseFace, baseSampleCoords[i]), size); hasBothCoordsOutOfBounds[i] = coords.face == CUBEFACE_LAST; if (!hasBothCoordsOutOfBounds[i]) sampleColors[i] = lookup(faceAccesses[coords.face], coords.s, coords.t, depth); } // If a sample was out of bounds in both u and v, we get its color from the average of the three other samples. // \note This averaging behavior is not required by the GLES3 spec (though it is recommended). GLES3 spec only // requires that if the three other samples all have the same color, then the doubly-out-of-bounds sample // must have this color as well. { int bothOutOfBoundsNdx = -1; for (int i = 0; i < 4; i++) { if (hasBothCoordsOutOfBounds[i]) { DE_ASSERT(bothOutOfBoundsNdx < 0); // Only one sample can be out of bounds in both u and v. bothOutOfBoundsNdx = i; } } if (bothOutOfBoundsNdx != -1) { sampleColors[bothOutOfBoundsNdx] = Vec4(0.0f); for (int i = 0; i < 4; i++) if (i != bothOutOfBoundsNdx) sampleColors[bothOutOfBoundsNdx] += sampleColors[i]; sampleColors[bothOutOfBoundsNdx] = sampleColors[bothOutOfBoundsNdx] * (1.0f/3.0f); } } for (int i = 0; i < DE_LENGTH_OF_ARRAY(sampleColors); i++) dst[i] = sampleColors[i]; } // \todo [2014-02-19 pyry] Optimize faceAccesses static Vec4 sampleCubeSeamlessLinear (const ConstPixelBufferAccess (&faceAccesses)[CUBEFACE_LAST], CubeFace baseFace, const Sampler& sampler, float s, float t, int depth) { DE_ASSERT(faceAccesses[0].getWidth() == faceAccesses[0].getHeight()); int size = faceAccesses[0].getWidth(); // Non-normalized coordinates. float u = s; float v = t; if (sampler.normalizedCoords) { u = unnormalize(sampler.wrapS, s, size); v = unnormalize(sampler.wrapT, t, size); } // Get sample colors. Vec4 sampleColors[4]; getCubeLinearSamples(faceAccesses, baseFace, u, v, depth, sampleColors); // Interpolate. float a = deFloatFrac(u-0.5f); float b = deFloatFrac(v-0.5f); return (sampleColors[0]*(1.0f-a)*(1.0f-b)) + (sampleColors[1]*( a)*(1.0f-b)) + (sampleColors[2]*(1.0f-a)*( b)) + (sampleColors[3]*( a)*( b)); } static Vec4 sampleLevelArrayCubeSeamless (const ConstPixelBufferAccess* const (&faces)[CUBEFACE_LAST], int numLevels, CubeFace face, const Sampler& sampler, float s, float t, int depth, float lod) { bool magnified = lod <= sampler.lodThreshold; Sampler::FilterMode filterMode = magnified ? sampler.magFilter : sampler.minFilter; switch (filterMode) { case Sampler::NEAREST: return sampleCubeSeamlessNearest(faces[face][0], sampler, s, t, depth); case Sampler::LINEAR: { ConstPixelBufferAccess faceAccesses[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) faceAccesses[i] = faces[i][0]; return sampleCubeSeamlessLinear(faceAccesses, face, sampler, s, t, depth); } case Sampler::NEAREST_MIPMAP_NEAREST: case Sampler::LINEAR_MIPMAP_NEAREST: { int maxLevel = (int)numLevels-1; int level = deClamp32((int)deFloatCeil(lod + 0.5f) - 1, 0, maxLevel); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_NEAREST) ? Sampler::LINEAR : Sampler::NEAREST; if (levelFilter == Sampler::NEAREST) return sampleCubeSeamlessNearest(faces[face][level], sampler, s, t, depth); else { DE_ASSERT(levelFilter == Sampler::LINEAR); ConstPixelBufferAccess faceAccesses[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) faceAccesses[i] = faces[i][level]; return sampleCubeSeamlessLinear(faceAccesses, face, sampler, s, t, depth); } } case Sampler::NEAREST_MIPMAP_LINEAR: case Sampler::LINEAR_MIPMAP_LINEAR: { int maxLevel = (int)numLevels-1; int level0 = deClamp32((int)deFloatFloor(lod), 0, maxLevel); int level1 = de::min(maxLevel, level0 + 1); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_LINEAR) ? Sampler::LINEAR : Sampler::NEAREST; float f = deFloatFrac(lod); Vec4 t0; Vec4 t1; if (levelFilter == Sampler::NEAREST) { t0 = sampleCubeSeamlessNearest(faces[face][level0], sampler, s, t, depth); t1 = sampleCubeSeamlessNearest(faces[face][level1], sampler, s, t, depth); } else { DE_ASSERT(levelFilter == Sampler::LINEAR); ConstPixelBufferAccess faceAccesses0[CUBEFACE_LAST]; ConstPixelBufferAccess faceAccesses1[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) { faceAccesses0[i] = faces[i][level0]; faceAccesses1[i] = faces[i][level1]; } t0 = sampleCubeSeamlessLinear(faceAccesses0, face, sampler, s, t, depth); t1 = sampleCubeSeamlessLinear(faceAccesses1, face, sampler, s, t, depth); } return t0*(1.0f - f) + t1*f; } default: DE_ASSERT(DE_FALSE); return Vec4(0.0f); } } static float sampleCubeSeamlessNearestCompare (const ConstPixelBufferAccess& faceAccess, const Sampler& sampler, float ref, float s, float t, int depth = 0) { Sampler clampingSampler = sampler; clampingSampler.wrapS = Sampler::CLAMP_TO_EDGE; clampingSampler.wrapT = Sampler::CLAMP_TO_EDGE; return faceAccess.sample2DCompare(clampingSampler, Sampler::NEAREST, ref, s, t, IVec3(0, 0, depth)); } static float sampleCubeSeamlessLinearCompare (const ConstPixelBufferAccess (&faceAccesses)[CUBEFACE_LAST], CubeFace baseFace, const Sampler& sampler, float ref, float s, float t) { DE_ASSERT(faceAccesses[0].getWidth() == faceAccesses[0].getHeight()); int size = faceAccesses[0].getWidth(); // Non-normalized coordinates. float u = s; float v = t; if (sampler.normalizedCoords) { u = unnormalize(sampler.wrapS, s, size); v = unnormalize(sampler.wrapT, t, size); } int x0 = deFloorFloatToInt32(u-0.5f); int x1 = x0+1; int y0 = deFloorFloatToInt32(v-0.5f); int y1 = y0+1; IVec2 baseSampleCoords[4] = { IVec2(x0, y0), IVec2(x1, y0), IVec2(x0, y1), IVec2(x1, y1) }; float sampleRes[4]; bool hasBothCoordsOutOfBounds[4]; //!< Whether correctCubeFace() returns CUBEFACE_LAST, i.e. both u and v are out of bounds. // Find correct faces and coordinates for out-of-bounds sample coordinates. for (int i = 0; i < 4; i++) { CubeFaceIntCoords coords = remapCubeEdgeCoords(CubeFaceIntCoords(baseFace, baseSampleCoords[i]), size); hasBothCoordsOutOfBounds[i] = coords.face == CUBEFACE_LAST; if (!hasBothCoordsOutOfBounds[i]) { const bool isFixedPointDepth = isFixedPointDepthTextureFormat(faceAccesses[coords.face].getFormat()); sampleRes[i] = execCompare(faceAccesses[coords.face].getPixel(coords.s, coords.t), sampler.compare, sampler.compareChannel, ref, isFixedPointDepth); } } // If a sample was out of bounds in both u and v, we get its color from the average of the three other samples. // \note This averaging behavior is not required by the GLES3 spec (though it is recommended). GLES3 spec only // requires that if the three other samples all have the same color, then the doubly-out-of-bounds sample // must have this color as well. { int bothOutOfBoundsNdx = -1; for (int i = 0; i < 4; i++) { if (hasBothCoordsOutOfBounds[i]) { DE_ASSERT(bothOutOfBoundsNdx < 0); // Only one sample can be out of bounds in both u and v. bothOutOfBoundsNdx = i; } } if (bothOutOfBoundsNdx != -1) { sampleRes[bothOutOfBoundsNdx] = 0.0f; for (int i = 0; i < 4; i++) if (i != bothOutOfBoundsNdx) sampleRes[bothOutOfBoundsNdx] += sampleRes[i]; sampleRes[bothOutOfBoundsNdx] = sampleRes[bothOutOfBoundsNdx] * (1.0f/3.0f); } } // Interpolate. float a = deFloatFrac(u-0.5f); float b = deFloatFrac(v-0.5f); return (sampleRes[0]*(1.0f-a)*(1.0f-b)) + (sampleRes[1]*( a)*(1.0f-b)) + (sampleRes[2]*(1.0f-a)*( b)) + (sampleRes[3]*( a)*( b)); } static float sampleLevelArrayCubeSeamlessCompare (const ConstPixelBufferAccess* const (&faces)[CUBEFACE_LAST], int numLevels, CubeFace face, const Sampler& sampler, float ref, float s, float t, float lod) { bool magnified = lod <= sampler.lodThreshold; Sampler::FilterMode filterMode = magnified ? sampler.magFilter : sampler.minFilter; switch (filterMode) { case Sampler::NEAREST: return sampleCubeSeamlessNearestCompare(faces[face][0], sampler, ref, s, t); case Sampler::LINEAR: { ConstPixelBufferAccess faceAccesses[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) faceAccesses[i] = faces[i][0]; return sampleCubeSeamlessLinearCompare(faceAccesses, face, sampler, ref, s, t); } case Sampler::NEAREST_MIPMAP_NEAREST: case Sampler::LINEAR_MIPMAP_NEAREST: { int maxLevel = (int)numLevels-1; int level = deClamp32((int)deFloatCeil(lod + 0.5f) - 1, 0, maxLevel); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_NEAREST) ? Sampler::LINEAR : Sampler::NEAREST; if (levelFilter == Sampler::NEAREST) return sampleCubeSeamlessNearestCompare(faces[face][level], sampler, ref, s, t); else { DE_ASSERT(levelFilter == Sampler::LINEAR); ConstPixelBufferAccess faceAccesses[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) faceAccesses[i] = faces[i][level]; return sampleCubeSeamlessLinearCompare(faceAccesses, face, sampler, ref, s, t); } } case Sampler::NEAREST_MIPMAP_LINEAR: case Sampler::LINEAR_MIPMAP_LINEAR: { int maxLevel = (int)numLevels-1; int level0 = deClamp32((int)deFloatFloor(lod), 0, maxLevel); int level1 = de::min(maxLevel, level0 + 1); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_LINEAR) ? Sampler::LINEAR : Sampler::NEAREST; float f = deFloatFrac(lod); float t0; float t1; if (levelFilter == Sampler::NEAREST) { t0 = sampleCubeSeamlessNearestCompare(faces[face][level0], sampler, ref, s, t); t1 = sampleCubeSeamlessNearestCompare(faces[face][level1], sampler, ref, s, t); } else { DE_ASSERT(levelFilter == Sampler::LINEAR); ConstPixelBufferAccess faceAccesses0[CUBEFACE_LAST]; ConstPixelBufferAccess faceAccesses1[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) { faceAccesses0[i] = faces[i][level0]; faceAccesses1[i] = faces[i][level1]; } t0 = sampleCubeSeamlessLinearCompare(faceAccesses0, face, sampler, ref, s, t); t1 = sampleCubeSeamlessLinearCompare(faceAccesses1, face, sampler, ref, s, t); } return t0*(1.0f - f) + t1*f; } default: DE_ASSERT(DE_FALSE); return 0.0f; } } // Cube map array sampling static inline ConstPixelBufferAccess getCubeArrayFaceAccess (const ConstPixelBufferAccess* const levels, int levelNdx, int slice, CubeFace face) { const ConstPixelBufferAccess& level = levels[levelNdx]; const int depth = (slice * 6) + getCubeArrayFaceIndex(face); return getSubregion(level, 0, 0, depth, level.getWidth(), level.getHeight(), 1); } static Vec4 sampleCubeArraySeamless (const ConstPixelBufferAccess* const levels, int numLevels, int slice, CubeFace face, const Sampler& sampler, float s, float t, float lod) { const int faceDepth = (slice * 6) + getCubeArrayFaceIndex(face); const bool magnified = lod <= sampler.lodThreshold; const Sampler::FilterMode filterMode = magnified ? sampler.magFilter : sampler.minFilter; switch (filterMode) { case Sampler::NEAREST: return sampleCubeSeamlessNearest(levels[0], sampler, s, t, faceDepth); case Sampler::LINEAR: { ConstPixelBufferAccess faceAccesses[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) faceAccesses[i] = getCubeArrayFaceAccess(levels, 0, slice, (CubeFace)i); return sampleCubeSeamlessLinear(faceAccesses, face, sampler, s, t, 0); } case Sampler::NEAREST_MIPMAP_NEAREST: case Sampler::LINEAR_MIPMAP_NEAREST: { int maxLevel = (int)numLevels-1; int level = deClamp32((int)deFloatCeil(lod + 0.5f) - 1, 0, maxLevel); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_NEAREST) ? Sampler::LINEAR : Sampler::NEAREST; if (levelFilter == Sampler::NEAREST) return sampleCubeSeamlessNearest(levels[level], sampler, s, t, faceDepth); else { DE_ASSERT(levelFilter == Sampler::LINEAR); ConstPixelBufferAccess faceAccesses[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) faceAccesses[i] = getCubeArrayFaceAccess(levels, level, slice, (CubeFace)i); return sampleCubeSeamlessLinear(faceAccesses, face, sampler, s, t, 0); } } case Sampler::NEAREST_MIPMAP_LINEAR: case Sampler::LINEAR_MIPMAP_LINEAR: { int maxLevel = (int)numLevels-1; int level0 = deClamp32((int)deFloatFloor(lod), 0, maxLevel); int level1 = de::min(maxLevel, level0 + 1); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_LINEAR) ? Sampler::LINEAR : Sampler::NEAREST; float f = deFloatFrac(lod); Vec4 t0; Vec4 t1; if (levelFilter == Sampler::NEAREST) { t0 = sampleCubeSeamlessNearest(levels[level0], sampler, s, t, faceDepth); t1 = sampleCubeSeamlessNearest(levels[level1], sampler, s, t, faceDepth); } else { DE_ASSERT(levelFilter == Sampler::LINEAR); ConstPixelBufferAccess faceAccesses0[CUBEFACE_LAST]; ConstPixelBufferAccess faceAccesses1[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) { faceAccesses0[i] = getCubeArrayFaceAccess(levels, level0, slice, (CubeFace)i); faceAccesses1[i] = getCubeArrayFaceAccess(levels, level1, slice, (CubeFace)i); } t0 = sampleCubeSeamlessLinear(faceAccesses0, face, sampler, s, t, 0); t1 = sampleCubeSeamlessLinear(faceAccesses1, face, sampler, s, t, 0); } return t0*(1.0f - f) + t1*f; } default: DE_ASSERT(DE_FALSE); return Vec4(0.0f); } } static float sampleCubeArraySeamlessCompare (const ConstPixelBufferAccess* const levels, int numLevels, int slice, CubeFace face, const Sampler& sampler, float ref, float s, float t, float lod) { const int faceDepth = (slice * 6) + getCubeArrayFaceIndex(face); const bool magnified = lod <= sampler.lodThreshold; Sampler::FilterMode filterMode = magnified ? sampler.magFilter : sampler.minFilter; switch (filterMode) { case Sampler::NEAREST: return sampleCubeSeamlessNearestCompare(levels[0], sampler, ref, s, t, faceDepth); case Sampler::LINEAR: { ConstPixelBufferAccess faceAccesses[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) faceAccesses[i] = getCubeArrayFaceAccess(levels, 0, slice, (CubeFace)i); return sampleCubeSeamlessLinearCompare(faceAccesses, face, sampler, ref, s, t); } case Sampler::NEAREST_MIPMAP_NEAREST: case Sampler::LINEAR_MIPMAP_NEAREST: { int maxLevel = (int)numLevels-1; int level = deClamp32((int)deFloatCeil(lod + 0.5f) - 1, 0, maxLevel); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_NEAREST) ? Sampler::LINEAR : Sampler::NEAREST; if (levelFilter == Sampler::NEAREST) return sampleCubeSeamlessNearestCompare(levels[level], sampler, ref, s, t, faceDepth); else { DE_ASSERT(levelFilter == Sampler::LINEAR); ConstPixelBufferAccess faceAccesses[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) faceAccesses[i] = getCubeArrayFaceAccess(levels, level, slice, (CubeFace)i); return sampleCubeSeamlessLinearCompare(faceAccesses, face, sampler, ref, s, t); } } case Sampler::NEAREST_MIPMAP_LINEAR: case Sampler::LINEAR_MIPMAP_LINEAR: { int maxLevel = (int)numLevels-1; int level0 = deClamp32((int)deFloatFloor(lod), 0, maxLevel); int level1 = de::min(maxLevel, level0 + 1); Sampler::FilterMode levelFilter = (filterMode == Sampler::LINEAR_MIPMAP_LINEAR) ? Sampler::LINEAR : Sampler::NEAREST; float f = deFloatFrac(lod); float t0; float t1; if (levelFilter == Sampler::NEAREST) { t0 = sampleCubeSeamlessNearestCompare(levels[level0], sampler, ref, s, t, faceDepth); t1 = sampleCubeSeamlessNearestCompare(levels[level1], sampler, ref, s, t, faceDepth); } else { DE_ASSERT(levelFilter == Sampler::LINEAR); ConstPixelBufferAccess faceAccesses0[CUBEFACE_LAST]; ConstPixelBufferAccess faceAccesses1[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) { faceAccesses0[i] = getCubeArrayFaceAccess(levels, level0, slice, (CubeFace)i); faceAccesses1[i] = getCubeArrayFaceAccess(levels, level1, slice, (CubeFace)i); } t0 = sampleCubeSeamlessLinearCompare(faceAccesses0, face, sampler, ref, s, t); t1 = sampleCubeSeamlessLinearCompare(faceAccesses1, face, sampler, ref, s, t); } return t0*(1.0f - f) + t1*f; } default: DE_ASSERT(DE_FALSE); return 0.0f; } } inline int computeMipPyramidLevels (int size) { return deLog2Floor32(size)+1; } inline int computeMipPyramidLevels (int width, int height) { return deLog2Floor32(de::max(width, height))+1; } inline int computeMipPyramidLevels (int width, int height, int depth) { return deLog2Floor32(de::max(width, de::max(height, depth)))+1; } inline int getMipPyramidLevelSize (int baseLevelSize, int levelNdx) { return de::max(baseLevelSize >> levelNdx, 1); } // TextureLevelPyramid TextureLevelPyramid::TextureLevelPyramid (const TextureFormat& format, int numLevels) : m_format (format) , m_data (numLevels) , m_access (numLevels) { } TextureLevelPyramid::TextureLevelPyramid (const TextureLevelPyramid& other) : m_format (other.m_format) , m_data (other.getNumLevels()) , m_access (other.getNumLevels()) { for (int levelNdx = 0; levelNdx < other.getNumLevels(); levelNdx++) { if (!other.isLevelEmpty(levelNdx)) { const tcu::ConstPixelBufferAccess& srcLevel = other.getLevel(levelNdx); m_data[levelNdx] = other.m_data[levelNdx]; m_access[levelNdx] = PixelBufferAccess(srcLevel.getFormat(), srcLevel.getWidth(), srcLevel.getHeight(), srcLevel.getDepth(), m_data[levelNdx].getPtr()); } } } TextureLevelPyramid& TextureLevelPyramid::operator= (const TextureLevelPyramid& other) { if (this == &other) return *this; m_format = other.m_format; m_data.resize(other.getNumLevels()); m_access.resize(other.getNumLevels()); for (int levelNdx = 0; levelNdx < other.getNumLevels(); levelNdx++) { if (!other.isLevelEmpty(levelNdx)) { const tcu::ConstPixelBufferAccess& srcLevel = other.getLevel(levelNdx); m_data[levelNdx] = other.m_data[levelNdx]; m_access[levelNdx] = PixelBufferAccess(srcLevel.getFormat(), srcLevel.getWidth(), srcLevel.getHeight(), srcLevel.getDepth(), m_data[levelNdx].getPtr()); } else if (!isLevelEmpty(levelNdx)) clearLevel(levelNdx); } return *this; } TextureLevelPyramid::~TextureLevelPyramid (void) { } void TextureLevelPyramid::allocLevel (int levelNdx, int width, int height, int depth) { const int size = m_format.getPixelSize()*width*height*depth; DE_ASSERT(isLevelEmpty(levelNdx)); m_data[levelNdx].setStorage(size); m_access[levelNdx] = PixelBufferAccess(m_format, width, height, depth, m_data[levelNdx].getPtr()); } void TextureLevelPyramid::clearLevel (int levelNdx) { DE_ASSERT(!isLevelEmpty(levelNdx)); m_data[levelNdx].clear(); m_access[levelNdx] = PixelBufferAccess(); } // Texture1D Texture1D::Texture1D (const TextureFormat& format, int width) : TextureLevelPyramid (format, computeMipPyramidLevels(width)) , m_width (width) , m_view (getNumLevels(), getLevels()) { } Texture1D::Texture1D (const Texture1D& other) : TextureLevelPyramid (other) , m_width (other.m_width) , m_view (getNumLevels(), getLevels()) { } Texture1D& Texture1D::operator= (const Texture1D& other) { if (this == &other) return *this; TextureLevelPyramid::operator=(other); m_width = other.m_width; m_view = Texture1DView(getNumLevels(), getLevels()); return *this; } Texture1D::~Texture1D (void) { } void Texture1D::allocLevel (int levelNdx) { DE_ASSERT(de::inBounds(levelNdx, 0, getNumLevels())); const int width = getMipPyramidLevelSize(m_width, levelNdx); TextureLevelPyramid::allocLevel(levelNdx, width, 1, 1); } // Texture2D Texture2D::Texture2D (const TextureFormat& format, int width, int height) : TextureLevelPyramid (format, computeMipPyramidLevels(width, height)) , m_width (width) , m_height (height) , m_view (getNumLevels(), getLevels()) { } Texture2D::Texture2D (const Texture2D& other) : TextureLevelPyramid (other) , m_width (other.m_width) , m_height (other.m_height) , m_view (getNumLevels(), getLevels()) { } Texture2D& Texture2D::operator= (const Texture2D& other) { if (this == &other) return *this; TextureLevelPyramid::operator=(other); m_width = other.m_width; m_height = other.m_height; m_view = Texture2DView(getNumLevels(), getLevels()); return *this; } Texture2D::~Texture2D (void) { } void Texture2D::allocLevel (int levelNdx) { DE_ASSERT(de::inBounds(levelNdx, 0, getNumLevels())); const int width = getMipPyramidLevelSize(m_width, levelNdx); const int height = getMipPyramidLevelSize(m_height, levelNdx); TextureLevelPyramid::allocLevel(levelNdx, width, height, 1); } // TextureCubeView TextureCubeView::TextureCubeView (void) : m_numLevels(0) { for (int ndx = 0; ndx < CUBEFACE_LAST; ndx++) m_levels[ndx] = DE_NULL; } TextureCubeView::TextureCubeView (int numLevels, const ConstPixelBufferAccess* const (&levels) [CUBEFACE_LAST]) : m_numLevels(numLevels) { for (int ndx = 0; ndx < CUBEFACE_LAST; ndx++) m_levels[ndx] = levels[ndx]; } tcu::Vec4 TextureCubeView::sample (const Sampler& sampler, float s, float t, float r, float lod) const { DE_ASSERT(sampler.compare == Sampler::COMPAREMODE_NONE); // Computes (face, s, t). const CubeFaceFloatCoords coords = getCubeFaceCoords(Vec3(s, t, r)); if (sampler.seamlessCubeMap) return sampleLevelArrayCubeSeamless(m_levels, m_numLevels, coords.face, sampler, coords.s, coords.t, 0 /* depth */, lod); else return sampleLevelArray2D(m_levels[coords.face], m_numLevels, sampler, coords.s, coords.t, 0 /* depth */, lod); } float TextureCubeView::sampleCompare (const Sampler& sampler, float ref, float s, float t, float r, float lod) const { DE_ASSERT(sampler.compare != Sampler::COMPAREMODE_NONE); // Computes (face, s, t). const CubeFaceFloatCoords coords = getCubeFaceCoords(Vec3(s, t, r)); if (sampler.seamlessCubeMap) return sampleLevelArrayCubeSeamlessCompare(m_levels, m_numLevels, coords.face, sampler, ref, coords.s, coords.t, lod); else return sampleLevelArray2DCompare(m_levels[coords.face], m_numLevels, sampler, ref, coords.s, coords.t, lod, IVec3(0, 0, 0)); } Vec4 TextureCubeView::gather (const Sampler& sampler, float s, float t, float r, int componentNdx) const { DE_ASSERT(sampler.compare == Sampler::COMPAREMODE_NONE); ConstPixelBufferAccess faceAccesses[CUBEFACE_LAST]; for (int i = 0; i < (int)CUBEFACE_LAST; i++) faceAccesses[i] = m_levels[i][0]; const CubeFaceFloatCoords coords = getCubeFaceCoords(Vec3(s, t, r)); const int size = faceAccesses[0].getWidth(); // Non-normalized coordinates. float u = coords.s; float v = coords.t; if (sampler.normalizedCoords) { u = unnormalize(sampler.wrapS, coords.s, size); v = unnormalize(sampler.wrapT, coords.t, size); } Vec4 sampleColors[4]; getCubeLinearSamples(faceAccesses, coords.face, u, v, 0, sampleColors); const int sampleIndices[4] = { 2, 3, 1, 0 }; // \note Gather returns the samples in a non-obvious order. Vec4 result; for (int i = 0; i < 4; i++) result[i] = sampleColors[sampleIndices[i]][componentNdx]; return result; } Vec4 TextureCubeView::gatherCompare (const Sampler& sampler, float ref, float s, float t, float r) const { DE_ASSERT(sampler.compare != Sampler::COMPAREMODE_NONE); DE_ASSERT(m_levels[0][0].getFormat().order == TextureFormat::D || m_levels[0][0].getFormat().order == TextureFormat::DS); DE_ASSERT(sampler.compareChannel == 0); Sampler noCompareSampler = sampler; noCompareSampler.compare = Sampler::COMPAREMODE_NONE; const Vec4 gathered = gather(noCompareSampler, s, t, r, 0 /* component 0: depth */); const bool isFixedPoint = isFixedPointDepthTextureFormat(m_levels[0][0].getFormat()); Vec4 result; for (int i = 0; i < 4; i++) result[i] = execCompare(gathered, sampler.compare, i, ref, isFixedPoint); return result; } // TextureCube TextureCube::TextureCube (const TextureFormat& format, int size) : m_format (format) , m_size (size) { const int numLevels = computeMipPyramidLevels(m_size); const ConstPixelBufferAccess* levels[CUBEFACE_LAST]; for (int face = 0; face < CUBEFACE_LAST; face++) { m_data[face].resize(numLevels); m_access[face].resize(numLevels); levels[face] = &m_access[face][0]; } m_view = TextureCubeView(numLevels, levels); } TextureCube::TextureCube (const TextureCube& other) : m_format (other.m_format) , m_size (other.m_size) { const int numLevels = computeMipPyramidLevels(m_size); const ConstPixelBufferAccess* levels[CUBEFACE_LAST]; for (int face = 0; face < CUBEFACE_LAST; face++) { m_data[face].resize(numLevels); m_access[face].resize(numLevels); levels[face] = &m_access[face][0]; } m_view = TextureCubeView(numLevels, levels); for (int levelNdx = 0; levelNdx < numLevels; levelNdx++) { for (int face = 0; face < CUBEFACE_LAST; face++) { if (!other.isLevelEmpty((CubeFace)face, levelNdx)) { allocLevel((CubeFace)face, levelNdx); copy(getLevelFace(levelNdx, (CubeFace)face), other.getLevelFace(levelNdx, (CubeFace)face)); } } } } TextureCube& TextureCube::operator= (const TextureCube& other) { if (this == &other) return *this; const int numLevels = computeMipPyramidLevels(other.m_size); const ConstPixelBufferAccess* levels[CUBEFACE_LAST]; for (int face = 0; face < CUBEFACE_LAST; face++) { m_data[face].resize(numLevels); m_access[face].resize(numLevels); levels[face] = &m_access[face][0]; } m_format = other.m_format; m_size = other.m_size; m_view = TextureCubeView(numLevels, levels); for (int levelNdx = 0; levelNdx < numLevels; levelNdx++) { for (int face = 0; face < CUBEFACE_LAST; face++) { if (!isLevelEmpty((CubeFace)face, levelNdx)) clearLevel((CubeFace)face, levelNdx); if (!other.isLevelEmpty((CubeFace)face, levelNdx)) { allocLevel((CubeFace)face, levelNdx); copy(getLevelFace(levelNdx, (CubeFace)face), other.getLevelFace(levelNdx, (CubeFace)face)); } } } return *this; } TextureCube::~TextureCube (void) { } void TextureCube::allocLevel (tcu::CubeFace face, int levelNdx) { const int size = getMipPyramidLevelSize(m_size, levelNdx); const int dataSize = m_format.getPixelSize()*size*size; DE_ASSERT(isLevelEmpty(face, levelNdx)); m_data[face][levelNdx].setStorage(dataSize); m_access[face][levelNdx] = PixelBufferAccess(m_format, size, size, 1, m_data[face][levelNdx].getPtr()); } void TextureCube::clearLevel (tcu::CubeFace face, int levelNdx) { DE_ASSERT(!isLevelEmpty(face, levelNdx)); m_data[face][levelNdx].clear(); m_access[face][levelNdx] = PixelBufferAccess(); } // Texture1DArrayView Texture1DArrayView::Texture1DArrayView (int numLevels, const ConstPixelBufferAccess* levels) : m_numLevels (numLevels) , m_levels (levels) { } inline int Texture1DArrayView::selectLayer (float r) const { DE_ASSERT(m_numLevels > 0 && m_levels); return de::clamp(deFloorFloatToInt32(r + 0.5f), 0, m_levels[0].getHeight()-1); } Vec4 Texture1DArrayView::sample (const Sampler& sampler, float s, float t, float lod) const { return sampleLevelArray1D(m_levels, m_numLevels, sampler, s, selectLayer(t), lod); } Vec4 Texture1DArrayView::sampleOffset (const Sampler& sampler, float s, float t, float lod, deInt32 offset) const { return sampleLevelArray1DOffset(m_levels, m_numLevels, sampler, s, lod, IVec2(offset, selectLayer(t))); } float Texture1DArrayView::sampleCompare (const Sampler& sampler, float ref, float s, float t, float lod) const { return sampleLevelArray1DCompare(m_levels, m_numLevels, sampler, ref, s, lod, IVec2(0, selectLayer(t))); } float Texture1DArrayView::sampleCompareOffset (const Sampler& sampler, float ref, float s, float t, float lod, deInt32 offset) const { return sampleLevelArray1DCompare(m_levels, m_numLevels, sampler, ref, s, lod, IVec2(offset, selectLayer(t))); } // Texture2DArrayView Texture2DArrayView::Texture2DArrayView (int numLevels, const ConstPixelBufferAccess* levels) : m_numLevels (numLevels) , m_levels (levels) { } inline int Texture2DArrayView::selectLayer (float r) const { DE_ASSERT(m_numLevels > 0 && m_levels); return de::clamp(deFloorFloatToInt32(r + 0.5f), 0, m_levels[0].getDepth()-1); } Vec4 Texture2DArrayView::sample (const Sampler& sampler, float s, float t, float r, float lod) const { return sampleLevelArray2D(m_levels, m_numLevels, sampler, s, t, selectLayer(r), lod); } float Texture2DArrayView::sampleCompare (const Sampler& sampler, float ref, float s, float t, float r, float lod) const { return sampleLevelArray2DCompare(m_levels, m_numLevels, sampler, ref, s, t, lod, IVec3(0, 0, selectLayer(r))); } Vec4 Texture2DArrayView::sampleOffset (const Sampler& sampler, float s, float t, float r, float lod, const IVec2& offset) const { return sampleLevelArray2DOffset(m_levels, m_numLevels, sampler, s, t, lod, IVec3(offset.x(), offset.y(), selectLayer(r))); } float Texture2DArrayView::sampleCompareOffset (const Sampler& sampler, float ref, float s, float t, float r, float lod, const IVec2& offset) const { return sampleLevelArray2DCompare(m_levels, m_numLevels, sampler, ref, s, t, lod, IVec3(offset.x(), offset.y(), selectLayer(r))); } Vec4 Texture2DArrayView::gatherOffsets (const Sampler& sampler, float s, float t, float r, int componentNdx, const IVec2 (&offsets)[4]) const { return gatherArray2DOffsets(m_levels[0], sampler, s, t, selectLayer(r), componentNdx, offsets); } Vec4 Texture2DArrayView::gatherOffsetsCompare (const Sampler& sampler, float ref, float s, float t, float r, const IVec2 (&offsets)[4]) const { return gatherArray2DOffsetsCompare(m_levels[0], sampler, ref, s, t, selectLayer(r), offsets); } // Texture1DArray Texture1DArray::Texture1DArray (const TextureFormat& format, int width, int numLayers) : TextureLevelPyramid (format, computeMipPyramidLevels(width)) , m_width (width) , m_numLayers (numLayers) , m_view (getNumLevels(), getLevels()) { } Texture1DArray::Texture1DArray (const Texture1DArray& other) : TextureLevelPyramid (other) , m_width (other.m_width) , m_numLayers (other.m_numLayers) , m_view (getNumLevels(), getLevels()) { } Texture1DArray& Texture1DArray::operator= (const Texture1DArray& other) { if (this == &other) return *this; TextureLevelPyramid::operator=(other); m_width = other.m_width; m_numLayers = other.m_numLayers; m_view = Texture1DArrayView(getNumLevels(), getLevels()); return *this; } Texture1DArray::~Texture1DArray (void) { } void Texture1DArray::allocLevel (int levelNdx) { DE_ASSERT(de::inBounds(levelNdx, 0, getNumLevels())); const int width = getMipPyramidLevelSize(m_width, levelNdx); TextureLevelPyramid::allocLevel(levelNdx, width, m_numLayers, 1); } // Texture2DArray Texture2DArray::Texture2DArray (const TextureFormat& format, int width, int height, int numLayers) : TextureLevelPyramid (format, computeMipPyramidLevels(width, height)) , m_width (width) , m_height (height) , m_numLayers (numLayers) , m_view (getNumLevels(), getLevels()) { } Texture2DArray::Texture2DArray (const Texture2DArray& other) : TextureLevelPyramid (other) , m_width (other.m_width) , m_height (other.m_height) , m_numLayers (other.m_numLayers) , m_view (getNumLevels(), getLevels()) { } Texture2DArray& Texture2DArray::operator= (const Texture2DArray& other) { if (this == &other) return *this; TextureLevelPyramid::operator=(other); m_width = other.m_width; m_height = other.m_height; m_numLayers = other.m_numLayers; m_view = Texture2DArrayView(getNumLevels(), getLevels()); return *this; } Texture2DArray::~Texture2DArray (void) { } void Texture2DArray::allocLevel (int levelNdx) { DE_ASSERT(de::inBounds(levelNdx, 0, getNumLevels())); const int width = getMipPyramidLevelSize(m_width, levelNdx); const int height = getMipPyramidLevelSize(m_height, levelNdx); TextureLevelPyramid::allocLevel(levelNdx, width, height, m_numLayers); } // Texture3DView Texture3DView::Texture3DView (int numLevels, const ConstPixelBufferAccess* levels) : m_numLevels (numLevels) , m_levels (levels) { } // Texture3D Texture3D::Texture3D (const TextureFormat& format, int width, int height, int depth) : TextureLevelPyramid (format, computeMipPyramidLevels(width, height, depth)) , m_width (width) , m_height (height) , m_depth (depth) , m_view (getNumLevels(), getLevels()) { } Texture3D::Texture3D (const Texture3D& other) : TextureLevelPyramid (other) , m_width (other.m_width) , m_height (other.m_height) , m_depth (other.m_depth) , m_view (getNumLevels(), getLevels()) { } Texture3D& Texture3D::operator= (const Texture3D& other) { if (this == &other) return *this; TextureLevelPyramid::operator=(other); m_width = other.m_width; m_height = other.m_height; m_depth = other.m_depth; m_view = Texture3DView(getNumLevels(), getLevels()); return *this; } Texture3D::~Texture3D (void) { } void Texture3D::allocLevel (int levelNdx) { DE_ASSERT(de::inBounds(levelNdx, 0, getNumLevels())); const int width = getMipPyramidLevelSize(m_width, levelNdx); const int height = getMipPyramidLevelSize(m_height, levelNdx); const int depth = getMipPyramidLevelSize(m_depth, levelNdx); TextureLevelPyramid::allocLevel(levelNdx, width, height, depth); } // TextureCubeArrayView TextureCubeArrayView::TextureCubeArrayView (int numLevels, const ConstPixelBufferAccess* levels) : m_numLevels (numLevels) , m_levels (levels) { } inline int TextureCubeArrayView::selectLayer (float q) const { DE_ASSERT(m_numLevels > 0 && m_levels); DE_ASSERT((m_levels[0].getDepth() % 6) == 0); return de::clamp(deFloorFloatToInt32(q + 0.5f), 0, (m_levels[0].getDepth() / 6)-1); } tcu::Vec4 TextureCubeArrayView::sample (const Sampler& sampler, float s, float t, float r, float q, float lod) const { const CubeFaceFloatCoords coords = getCubeFaceCoords(Vec3(s, t, r)); const int layer = selectLayer(q); const int faceDepth = (layer * 6) + getCubeArrayFaceIndex(coords.face); DE_ASSERT(sampler.compare == Sampler::COMPAREMODE_NONE); if (sampler.seamlessCubeMap) return sampleCubeArraySeamless(m_levels, m_numLevels, layer, coords.face, sampler, coords.s, coords.t, lod); else return sampleLevelArray2D(m_levels, m_numLevels, sampler, coords.s, coords.t, faceDepth, lod); } float TextureCubeArrayView::sampleCompare (const Sampler& sampler, float ref, float s, float t, float r, float q, float lod) const { const CubeFaceFloatCoords coords = getCubeFaceCoords(Vec3(s, t, r)); const int layer = selectLayer(q); const int faceDepth = (layer * 6) + getCubeArrayFaceIndex(coords.face); DE_ASSERT(sampler.compare != Sampler::COMPAREMODE_NONE); if (sampler.seamlessCubeMap) return sampleCubeArraySeamlessCompare(m_levels, m_numLevels, layer, coords.face, sampler, ref, coords.s, coords.t, lod); else return sampleLevelArray2DCompare(m_levels, m_numLevels, sampler, ref, coords.s, coords.t, lod, IVec3(0, 0, faceDepth)); } // TextureCubeArray TextureCubeArray::TextureCubeArray (const TextureFormat& format, int size, int depth) : TextureLevelPyramid (format, computeMipPyramidLevels(size)) , m_size (size) , m_depth (depth) , m_view (getNumLevels(), getLevels()) { DE_ASSERT(m_depth % 6 == 0); } TextureCubeArray::TextureCubeArray (const TextureCubeArray& other) : TextureLevelPyramid (other) , m_size (other.m_size) , m_depth (other.m_depth) , m_view (getNumLevels(), getLevels()) { DE_ASSERT(m_depth % 6 == 0); } TextureCubeArray& TextureCubeArray::operator= (const TextureCubeArray& other) { if (this == &other) return *this; TextureLevelPyramid::operator=(other); m_size = other.m_size; m_depth = other.m_depth; m_view = TextureCubeArrayView(getNumLevels(), getLevels()); DE_ASSERT(m_depth % 6 == 0); return *this; } TextureCubeArray::~TextureCubeArray (void) { } void TextureCubeArray::allocLevel (int levelNdx) { DE_ASSERT(de::inBounds(levelNdx, 0, getNumLevels())); const int size = getMipPyramidLevelSize(m_size, levelNdx); TextureLevelPyramid::allocLevel(levelNdx, size, size, m_depth); } std::ostream& operator<< (std::ostream& str, TextureFormat::ChannelOrder order) { const char* const orderStrings[] = { "R", "A", "I", "L", "LA", "RG", "RA", "RGB", "RGBA", "ARGB", "BGRA", "sR", "sRG", "sRGB", "sRGBA", "D", "S", "DS" }; return str << de::getSizedArrayElement<TextureFormat::CHANNELORDER_LAST>(orderStrings, order); } std::ostream& operator<< (std::ostream& str, TextureFormat::ChannelType type) { const char* const typeStrings[] = { "SNORM_INT8", "SNORM_INT16", "SNORM_INT32", "UNORM_INT8", "UNORM_INT16", "UNORM_INT24", "UNORM_INT32", "UNORM_SHORT_565", "UNORM_SHORT_555", "UNORM_SHORT_4444", "UNORM_SHORT_5551", "UNORM_INT_101010", "UNORM_INT_1010102_REV", "UNSIGNED_INT_1010102_REV", "UNSIGNED_INT_11F_11F_10F_REV", "UNSIGNED_INT_999_E5_REV", "UNSIGNED_INT_24_8", "SIGNED_INT8", "SIGNED_INT16", "SIGNED_INT32", "UNSIGNED_INT8", "UNSIGNED_INT16", "UNSIGNED_INT24", "UNSIGNED_INT32", "HALF_FLOAT", "FLOAT", "FLOAT_UNSIGNED_INT_24_8_REV" }; return str << de::getSizedArrayElement<TextureFormat::CHANNELTYPE_LAST>(typeStrings, type); } std::ostream& operator<< (std::ostream& str, CubeFace face) { switch (face) { case CUBEFACE_NEGATIVE_X: return str << "CUBEFACE_NEGATIVE_X"; case CUBEFACE_POSITIVE_X: return str << "CUBEFACE_POSITIVE_X"; case CUBEFACE_NEGATIVE_Y: return str << "CUBEFACE_NEGATIVE_Y"; case CUBEFACE_POSITIVE_Y: return str << "CUBEFACE_POSITIVE_Y"; case CUBEFACE_NEGATIVE_Z: return str << "CUBEFACE_NEGATIVE_Z"; case CUBEFACE_POSITIVE_Z: return str << "CUBEFACE_POSITIVE_Z"; case CUBEFACE_LAST: return str << "CUBEFACE_LAST"; default: return str << "UNKNOWN(" << (int)face << ")"; } } std::ostream& operator<< (std::ostream& str, TextureFormat format) { return str << format.order << ", " << format.type << ""; } std::ostream& operator<< (std::ostream& str, const ConstPixelBufferAccess& access) { return str << "format = (" << access.getFormat() << "), size = " << access.getWidth() << " x " << access.getHeight() << " x " << access.getDepth() << ", pitch = " << access.getRowPitch() << " / " << access.getSlicePitch(); } } // tcu