// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSELU_GEMM_KERNEL_H #define EIGEN_SPARSELU_GEMM_KERNEL_H namespace Eigen { namespace internal { /** \internal * A general matrix-matrix product kernel optimized for the SparseLU factorization. * - A, B, and C must be column major * - lda and ldc must be multiples of the respective packet size * - C must have the same alignment as A */ template<typename Scalar,typename Index> EIGEN_DONT_INLINE void sparselu_gemm(Index m, Index n, Index d, const Scalar* A, Index lda, const Scalar* B, Index ldb, Scalar* C, Index ldc) { using namespace Eigen::internal; typedef typename packet_traits<Scalar>::type Packet; enum { NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, PacketSize = packet_traits<Scalar>::size, PM = 8, // peeling in M RN = 2, // register blocking RK = NumberOfRegisters>=16 ? 4 : 2, // register blocking BM = 4096/sizeof(Scalar), // number of rows of A-C per chunk SM = PM*PacketSize // step along M }; Index d_end = (d/RK)*RK; // number of columns of A (rows of B) suitable for full register blocking Index n_end = (n/RN)*RN; // number of columns of B-C suitable for processing RN columns at once Index i0 = internal::first_aligned(A,m); eigen_internal_assert(((lda%PacketSize)==0) && ((ldc%PacketSize)==0) && (i0==internal::first_aligned(C,m))); // handle the non aligned rows of A and C without any optimization: for(Index i=0; i<i0; ++i) { for(Index j=0; j<n; ++j) { Scalar c = C[i+j*ldc]; for(Index k=0; k<d; ++k) c += B[k+j*ldb] * A[i+k*lda]; C[i+j*ldc] = c; } } // process the remaining rows per chunk of BM rows for(Index ib=i0; ib<m; ib+=BM) { Index actual_b = std::min<Index>(BM, m-ib); // actual number of rows Index actual_b_end1 = (actual_b/SM)*SM; // actual number of rows suitable for peeling Index actual_b_end2 = (actual_b/PacketSize)*PacketSize; // actual number of rows suitable for vectorization // Let's process two columns of B-C at once for(Index j=0; j<n_end; j+=RN) { const Scalar* Bc0 = B+(j+0)*ldb; const Scalar* Bc1 = B+(j+1)*ldb; for(Index k=0; k<d_end; k+=RK) { // load and expand a RN x RK block of B Packet b00, b10, b20, b30, b01, b11, b21, b31; b00 = pset1<Packet>(Bc0[0]); b10 = pset1<Packet>(Bc0[1]); if(RK==4) b20 = pset1<Packet>(Bc0[2]); if(RK==4) b30 = pset1<Packet>(Bc0[3]); b01 = pset1<Packet>(Bc1[0]); b11 = pset1<Packet>(Bc1[1]); if(RK==4) b21 = pset1<Packet>(Bc1[2]); if(RK==4) b31 = pset1<Packet>(Bc1[3]); Packet a0, a1, a2, a3, c0, c1, t0, t1; const Scalar* A0 = A+ib+(k+0)*lda; const Scalar* A1 = A+ib+(k+1)*lda; const Scalar* A2 = A+ib+(k+2)*lda; const Scalar* A3 = A+ib+(k+3)*lda; Scalar* C0 = C+ib+(j+0)*ldc; Scalar* C1 = C+ib+(j+1)*ldc; a0 = pload<Packet>(A0); a1 = pload<Packet>(A1); if(RK==4) { a2 = pload<Packet>(A2); a3 = pload<Packet>(A3); } else { // workaround "may be used uninitialized in this function" warning a2 = a3 = a0; } #define KMADD(c, a, b, tmp) {tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);} #define WORK(I) \ c0 = pload<Packet>(C0+i+(I)*PacketSize); \ c1 = pload<Packet>(C1+i+(I)*PacketSize); \ KMADD(c0, a0, b00, t0) \ KMADD(c1, a0, b01, t1) \ a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \ KMADD(c0, a1, b10, t0) \ KMADD(c1, a1, b11, t1) \ a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \ if(RK==4) KMADD(c0, a2, b20, t0) \ if(RK==4) KMADD(c1, a2, b21, t1) \ if(RK==4) a2 = pload<Packet>(A2+i+(I+1)*PacketSize); \ if(RK==4) KMADD(c0, a3, b30, t0) \ if(RK==4) KMADD(c1, a3, b31, t1) \ if(RK==4) a3 = pload<Packet>(A3+i+(I+1)*PacketSize); \ pstore(C0+i+(I)*PacketSize, c0); \ pstore(C1+i+(I)*PacketSize, c1) // process rows of A' - C' with aggressive vectorization and peeling for(Index i=0; i<actual_b_end1; i+=PacketSize*8) { EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL1"); prefetch((A0+i+(5)*PacketSize)); prefetch((A1+i+(5)*PacketSize)); if(RK==4) prefetch((A2+i+(5)*PacketSize)); if(RK==4) prefetch((A3+i+(5)*PacketSize)); WORK(0); WORK(1); WORK(2); WORK(3); WORK(4); WORK(5); WORK(6); WORK(7); } // process the remaining rows with vectorization only for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize) { WORK(0); } #undef WORK // process the remaining rows without vectorization for(Index i=actual_b_end2; i<actual_b; ++i) { if(RK==4) { C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3]; C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1]+A2[i]*Bc1[2]+A3[i]*Bc1[3]; } else { C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]; C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1]; } } Bc0 += RK; Bc1 += RK; } // peeled loop on k } // peeled loop on the columns j // process the last column (we now perform a matrux-vector product) if((n-n_end)>0) { const Scalar* Bc0 = B+(n-1)*ldb; for(Index k=0; k<d_end; k+=RK) { // load and expand a 1 x RK block of B Packet b00, b10, b20, b30; b00 = pset1<Packet>(Bc0[0]); b10 = pset1<Packet>(Bc0[1]); if(RK==4) b20 = pset1<Packet>(Bc0[2]); if(RK==4) b30 = pset1<Packet>(Bc0[3]); Packet a0, a1, a2, a3, c0, t0/*, t1*/; const Scalar* A0 = A+ib+(k+0)*lda; const Scalar* A1 = A+ib+(k+1)*lda; const Scalar* A2 = A+ib+(k+2)*lda; const Scalar* A3 = A+ib+(k+3)*lda; Scalar* C0 = C+ib+(n_end)*ldc; a0 = pload<Packet>(A0); a1 = pload<Packet>(A1); if(RK==4) { a2 = pload<Packet>(A2); a3 = pload<Packet>(A3); } else { // workaround "may be used uninitialized in this function" warning a2 = a3 = a0; } #define WORK(I) \ c0 = pload<Packet>(C0+i+(I)*PacketSize); \ KMADD(c0, a0, b00, t0) \ a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \ KMADD(c0, a1, b10, t0) \ a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \ if(RK==4) KMADD(c0, a2, b20, t0) \ if(RK==4) a2 = pload<Packet>(A2+i+(I+1)*PacketSize); \ if(RK==4) KMADD(c0, a3, b30, t0) \ if(RK==4) a3 = pload<Packet>(A3+i+(I+1)*PacketSize); \ pstore(C0+i+(I)*PacketSize, c0); // agressive vectorization and peeling for(Index i=0; i<actual_b_end1; i+=PacketSize*8) { EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL2"); WORK(0); WORK(1); WORK(2); WORK(3); WORK(4); WORK(5); WORK(6); WORK(7); } // vectorization only for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize) { WORK(0); } // remaining scalars for(Index i=actual_b_end2; i<actual_b; ++i) { if(RK==4) C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3]; else C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]; } Bc0 += RK; #undef WORK } } // process the last columns of A, corresponding to the last rows of B Index rd = d-d_end; if(rd>0) { for(Index j=0; j<n; ++j) { enum { Alignment = PacketSize>1 ? Aligned : 0 }; typedef Map<Matrix<Scalar,Dynamic,1>, Alignment > MapVector; typedef Map<const Matrix<Scalar,Dynamic,1>, Alignment > ConstMapVector; if(rd==1) MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b); else if(rd==2) MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b) + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b); else MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b) + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b) + B[2+d_end+j*ldb] * ConstMapVector(A+(d_end+2)*lda+ib, actual_b); } } } // blocking on the rows of A and C } #undef KMADD } // namespace internal } // namespace Eigen #endif // EIGEN_SPARSELU_GEMM_KERNEL_H