// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIX_POWER #define EIGEN_MATRIX_POWER namespace Eigen { template<typename MatrixType> class MatrixPower; template<typename MatrixType> class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> > { public: typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p) { } template<typename ResultType> inline void evalTo(ResultType& res) const { m_pow.compute(res, m_p); } Index rows() const { return m_pow.rows(); } Index cols() const { return m_pow.cols(); } private: MatrixPower<MatrixType>& m_pow; const RealScalar m_p; MatrixPowerRetval& operator=(const MatrixPowerRetval&); }; template<typename MatrixType> class MatrixPowerAtomic { private: enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef std::complex<RealScalar> ComplexScalar; typedef typename MatrixType::Index Index; typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType; const MatrixType& m_A; RealScalar m_p; void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const; void compute2x2(MatrixType& res, RealScalar p) const; void computeBig(MatrixType& res) const; static int getPadeDegree(float normIminusT); static int getPadeDegree(double normIminusT); static int getPadeDegree(long double normIminusT); static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p); static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p); public: MatrixPowerAtomic(const MatrixType& T, RealScalar p); void compute(MatrixType& res) const; }; template<typename MatrixType> MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) : m_A(T), m_p(p) { eigen_assert(T.rows() == T.cols()); } template<typename MatrixType> void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const { res.resizeLike(m_A); switch (m_A.rows()) { case 0: break; case 1: res(0,0) = std::pow(m_A(0,0), m_p); break; case 2: compute2x2(res, m_p); break; default: computeBig(res); } } template<typename MatrixType> void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const { int i = degree<<1; res = (m_p-degree) / ((i-1)<<1) * IminusT; for (--i; i; --i) { res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>() .solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval(); } res += MatrixType::Identity(IminusT.rows(), IminusT.cols()); } // This function assumes that res has the correct size (see bug 614) template<typename MatrixType> void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const { using std::abs; using std::pow; res.coeffRef(0,0) = pow(m_A.coeff(0,0), p); for (Index i=1; i < m_A.cols(); ++i) { res.coeffRef(i,i) = pow(m_A.coeff(i,i), p); if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i)) res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1); else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1))) res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1)); else res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p); res.coeffRef(i-1,i) *= m_A.coeff(i-1,i); } } template<typename MatrixType> void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const { const int digits = std::numeric_limits<RealScalar>::digits; const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision digits <= 53? 2.789358995219730e-1: // double precision digits <= 64? 2.4471944416607995472e-1L: // extended precision digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double 9.134603732914548552537150753385375e-2L; // quadruple precision MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>(); RealScalar normIminusT; int degree, degree2, numberOfSquareRoots = 0; bool hasExtraSquareRoot = false; /* FIXME * For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite * loop. We should move 0 eigenvalues to bottom right corner. We need not * worry about tiny values (e.g. 1e-300) because they will reach 1 if * repetitively sqrt'ed. * * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the * bottom right corner. * * [ T A ]^p [ T^p (T^-1 T^p A) ] * [ ] = [ ] * [ 0 0 ] [ 0 0 ] */ for (Index i=0; i < m_A.cols(); ++i) eigen_assert(m_A(i,i) != RealScalar(0)); while (true) { IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T; normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff(); if (normIminusT < maxNormForPade) { degree = getPadeDegree(normIminusT); degree2 = getPadeDegree(normIminusT/2); if (degree - degree2 <= 1 || hasExtraSquareRoot) break; hasExtraSquareRoot = true; } MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT); T = sqrtT.template triangularView<Upper>(); ++numberOfSquareRoots; } computePade(degree, IminusT, res); for (; numberOfSquareRoots; --numberOfSquareRoots) { compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots)); res = res.template triangularView<Upper>() * res; } compute2x2(res, m_p); } template<typename MatrixType> inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT) { const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f }; int degree = 3; for (; degree <= 4; ++degree) if (normIminusT <= maxNormForPade[degree - 3]) break; return degree; } template<typename MatrixType> inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT) { const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1, 1.999045567181744e-1, 2.789358995219730e-1 }; int degree = 3; for (; degree <= 7; ++degree) if (normIminusT <= maxNormForPade[degree - 3]) break; return degree; } template<typename MatrixType> inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT) { #if LDBL_MANT_DIG == 53 const int maxPadeDegree = 7; const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L, 1.999045567181744e-1L, 2.789358995219730e-1L }; #elif LDBL_MANT_DIG <= 64 const int maxPadeDegree = 8; const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L, 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L }; #elif LDBL_MANT_DIG <= 106 const int maxPadeDegree = 10; const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ , 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L, 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L, 1.1016843812851143391275867258512e-1L }; #else const int maxPadeDegree = 10; const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ , 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L, 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L, 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L, 9.134603732914548552537150753385375e-2L }; #endif int degree = 3; for (; degree <= maxPadeDegree; ++degree) if (normIminusT <= maxNormForPade[degree - 3]) break; return degree; } template<typename MatrixType> inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p) { ComplexScalar logCurr = std::log(curr); ComplexScalar logPrev = std::log(prev); int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI)); ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber); return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev); } template<typename MatrixType> inline typename MatrixPowerAtomic<MatrixType>::RealScalar MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p) { RealScalar w = numext::atanh2(curr - prev, curr + prev); return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev); } /** * \ingroup MatrixFunctions_Module * * \brief Class for computing matrix powers. * * \tparam MatrixType type of the base, expected to be an instantiation * of the Matrix class template. * * This class is capable of computing real/complex matrices raised to * an arbitrary real power. Meanwhile, it saves the result of Schur * decomposition if an non-integral power has even been calculated. * Therefore, if you want to compute multiple (>= 2) matrix powers * for the same matrix, using the class directly is more efficient than * calling MatrixBase::pow(). * * Example: * \include MatrixPower_optimal.cpp * Output: \verbinclude MatrixPower_optimal.out */ template<typename MatrixType> class MatrixPower { private: enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; public: /** * \brief Constructor. * * \param[in] A the base of the matrix power. * * The class stores a reference to A, so it should not be changed * (or destroyed) before evaluation. */ explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0) { eigen_assert(A.rows() == A.cols()); } /** * \brief Returns the matrix power. * * \param[in] p exponent, a real scalar. * \return The expression \f$ A^p \f$, where A is specified in the * constructor. */ const MatrixPowerRetval<MatrixType> operator()(RealScalar p) { return MatrixPowerRetval<MatrixType>(*this, p); } /** * \brief Compute the matrix power. * * \param[in] p exponent, a real scalar. * \param[out] res \f$ A^p \f$ where A is specified in the * constructor. */ template<typename ResultType> void compute(ResultType& res, RealScalar p); Index rows() const { return m_A.rows(); } Index cols() const { return m_A.cols(); } private: typedef std::complex<RealScalar> ComplexScalar; typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix; typename MatrixType::Nested m_A; MatrixType m_tmp; ComplexMatrix m_T, m_U, m_fT; RealScalar m_conditionNumber; RealScalar modfAndInit(RealScalar, RealScalar*); template<typename ResultType> void computeIntPower(ResultType&, RealScalar); template<typename ResultType> void computeFracPower(ResultType&, RealScalar); template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> static void revertSchur( Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, const ComplexMatrix& T, const ComplexMatrix& U); template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> static void revertSchur( Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, const ComplexMatrix& T, const ComplexMatrix& U); }; template<typename MatrixType> template<typename ResultType> void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p) { switch (cols()) { case 0: break; case 1: res(0,0) = std::pow(m_A.coeff(0,0), p); break; default: RealScalar intpart, x = modfAndInit(p, &intpart); computeIntPower(res, intpart); computeFracPower(res, x); } } template<typename MatrixType> typename MatrixPower<MatrixType>::RealScalar MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart) { typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray; *intpart = std::floor(x); RealScalar res = x - *intpart; if (!m_conditionNumber && res) { const ComplexSchur<MatrixType> schurOfA(m_A); m_T = schurOfA.matrixT(); m_U = schurOfA.matrixU(); const RealArray absTdiag = m_T.diagonal().array().abs(); m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff(); } if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) { --res; ++*intpart; } return res; } template<typename MatrixType> template<typename ResultType> void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p) { RealScalar pp = std::abs(p); if (p<0) m_tmp = m_A.inverse(); else m_tmp = m_A; res = MatrixType::Identity(rows(), cols()); while (pp >= 1) { if (std::fmod(pp, 2) >= 1) res = m_tmp * res; m_tmp *= m_tmp; pp /= 2; } } template<typename MatrixType> template<typename ResultType> void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p) { if (p) { eigen_assert(m_conditionNumber); MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT); revertSchur(m_tmp, m_fT, m_U); res = m_tmp * res; } } template<typename MatrixType> template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> inline void MatrixPower<MatrixType>::revertSchur( Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, const ComplexMatrix& T, const ComplexMatrix& U) { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); } template<typename MatrixType> template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> inline void MatrixPower<MatrixType>::revertSchur( Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, const ComplexMatrix& T, const ComplexMatrix& U) { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); } /** * \ingroup MatrixFunctions_Module * * \brief Proxy for the matrix power of some matrix (expression). * * \tparam Derived type of the base, a matrix (expression). * * This class holds the arguments to the matrix power until it is * assigned or evaluated for some other reason (so the argument * should not be changed in the meantime). It is the return type of * MatrixBase::pow() and related functions and most of the * time this is the only way it is used. */ template<typename Derived> class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> > { public: typedef typename Derived::PlainObject PlainObject; typedef typename Derived::RealScalar RealScalar; typedef typename Derived::Index Index; /** * \brief Constructor. * * \param[in] A %Matrix (expression), the base of the matrix power. * \param[in] p scalar, the exponent of the matrix power. */ MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p) { } /** * \brief Compute the matrix power. * * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the * constructor. */ template<typename ResultType> inline void evalTo(ResultType& res) const { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); } Index rows() const { return m_A.rows(); } Index cols() const { return m_A.cols(); } private: const Derived& m_A; const RealScalar m_p; MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&); }; namespace internal { template<typename MatrixPowerType> struct traits< MatrixPowerRetval<MatrixPowerType> > { typedef typename MatrixPowerType::PlainObject ReturnType; }; template<typename Derived> struct traits< MatrixPowerReturnValue<Derived> > { typedef typename Derived::PlainObject ReturnType; }; } template<typename Derived> const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const { return MatrixPowerReturnValue<Derived>(derived(), p); } } // namespace Eigen #endif // EIGEN_MATRIX_POWER