// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_RANDOMSETTER_H #define EIGEN_RANDOMSETTER_H namespace Eigen { /** Represents a std::map * * \see RandomSetter */ template<typename Scalar> struct StdMapTraits { typedef int KeyType; typedef std::map<KeyType,Scalar> Type; enum { IsSorted = 1 }; static void setInvalidKey(Type&, const KeyType&) {} }; #ifdef EIGEN_UNORDERED_MAP_SUPPORT /** Represents a std::unordered_map * * To use it you need to both define EIGEN_UNORDERED_MAP_SUPPORT and include the unordered_map header file * yourself making sure that unordered_map is defined in the std namespace. * * For instance, with current version of gcc you can either enable C++0x standard (-std=c++0x) or do: * \code * #include <tr1/unordered_map> * #define EIGEN_UNORDERED_MAP_SUPPORT * namespace std { * using std::tr1::unordered_map; * } * \endcode * * \see RandomSetter */ template<typename Scalar> struct StdUnorderedMapTraits { typedef int KeyType; typedef std::unordered_map<KeyType,Scalar> Type; enum { IsSorted = 0 }; static void setInvalidKey(Type&, const KeyType&) {} }; #endif // EIGEN_UNORDERED_MAP_SUPPORT #ifdef _DENSE_HASH_MAP_H_ /** Represents a google::dense_hash_map * * \see RandomSetter */ template<typename Scalar> struct GoogleDenseHashMapTraits { typedef int KeyType; typedef google::dense_hash_map<KeyType,Scalar> Type; enum { IsSorted = 0 }; static void setInvalidKey(Type& map, const KeyType& k) { map.set_empty_key(k); } }; #endif #ifdef _SPARSE_HASH_MAP_H_ /** Represents a google::sparse_hash_map * * \see RandomSetter */ template<typename Scalar> struct GoogleSparseHashMapTraits { typedef int KeyType; typedef google::sparse_hash_map<KeyType,Scalar> Type; enum { IsSorted = 0 }; static void setInvalidKey(Type&, const KeyType&) {} }; #endif /** \class RandomSetter * * \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access * * \param SparseMatrixType the type of the sparse matrix we are updating * \param MapTraits a traits class representing the map implementation used for the temporary sparse storage. * Its default value depends on the system. * \param OuterPacketBits defines the number of rows (or columns) manage by a single map object * as a power of two exponent. * * This class temporarily represents a sparse matrix object using a generic map implementation allowing for * efficient random access. The conversion from the compressed representation to a hash_map object is performed * in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy * suggest the use of nested blocks as in this example: * * \code * SparseMatrix<double> m(rows,cols); * { * RandomSetter<SparseMatrix<double> > w(m); * // don't use m but w instead with read/write random access to the coefficients: * for(;;) * w(rand(),rand()) = rand; * } * // when w is deleted, the data are copied back to m * // and m is ready to use. * \endcode * * Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would * involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter * use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order. * To reach optimal performance, this value should be adjusted according to the average number of nonzeros * per rows/columns. * * The possible values for the template parameter MapTraits are: * - \b StdMapTraits: corresponds to std::map. (does not perform very well) * - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC) * - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption) * - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance) * * The default map implementation depends on the availability, and the preferred order is: * GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits. * * For performance and memory consumption reasons it is highly recommended to use one of * the Google's hash_map implementation. To enable the support for them, you have two options: * - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header * - define EIGEN_GOOGLEHASH_SUPPORT * In the later case the inclusion of <google/dense_hash_map> is made for you. * * \see http://code.google.com/p/google-sparsehash/ */ template<typename SparseMatrixType, template <typename T> class MapTraits = #if defined _DENSE_HASH_MAP_H_ GoogleDenseHashMapTraits #elif defined _HASH_MAP GnuHashMapTraits #else StdMapTraits #endif ,int OuterPacketBits = 6> class RandomSetter { typedef typename SparseMatrixType::Scalar Scalar; typedef typename SparseMatrixType::Index Index; struct ScalarWrapper { ScalarWrapper() : value(0) {} Scalar value; }; typedef typename MapTraits<ScalarWrapper>::KeyType KeyType; typedef typename MapTraits<ScalarWrapper>::Type HashMapType; static const int OuterPacketMask = (1 << OuterPacketBits) - 1; enum { SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted, TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0, SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor }; public: /** Constructs a random setter object from the sparse matrix \a target * * Note that the initial value of \a target are imported. If you want to re-set * a sparse matrix from scratch, then you must set it to zero first using the * setZero() function. */ inline RandomSetter(SparseMatrixType& target) : mp_target(&target) { const Index outerSize = SwapStorage ? target.innerSize() : target.outerSize(); const Index innerSize = SwapStorage ? target.outerSize() : target.innerSize(); m_outerPackets = outerSize >> OuterPacketBits; if (outerSize&OuterPacketMask) m_outerPackets += 1; m_hashmaps = new HashMapType[m_outerPackets]; // compute number of bits needed to store inner indices Index aux = innerSize - 1; m_keyBitsOffset = 0; while (aux) { ++m_keyBitsOffset; aux = aux >> 1; } KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset)); for (Index k=0; k<m_outerPackets; ++k) MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik); // insert current coeffs for (Index j=0; j<mp_target->outerSize(); ++j) for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it) (*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value(); } /** Destructor updating back the sparse matrix target */ ~RandomSetter() { KeyType keyBitsMask = (1<<m_keyBitsOffset)-1; if (!SwapStorage) // also means the map is sorted { mp_target->setZero(); mp_target->makeCompressed(); mp_target->reserve(nonZeros()); Index prevOuter = -1; for (Index k=0; k<m_outerPackets; ++k) { const Index outerOffset = (1<<OuterPacketBits) * k; typename HashMapType::iterator end = m_hashmaps[k].end(); for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it) { const Index outer = (it->first >> m_keyBitsOffset) + outerOffset; const Index inner = it->first & keyBitsMask; if (prevOuter!=outer) { for (Index j=prevOuter+1;j<=outer;++j) mp_target->startVec(j); prevOuter = outer; } mp_target->insertBackByOuterInner(outer, inner) = it->second.value; } } mp_target->finalize(); } else { VectorXi positions(mp_target->outerSize()); positions.setZero(); // pass 1 for (Index k=0; k<m_outerPackets; ++k) { typename HashMapType::iterator end = m_hashmaps[k].end(); for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it) { const Index outer = it->first & keyBitsMask; ++positions[outer]; } } // prefix sum Index count = 0; for (Index j=0; j<mp_target->outerSize(); ++j) { Index tmp = positions[j]; mp_target->outerIndexPtr()[j] = count; positions[j] = count; count += tmp; } mp_target->makeCompressed(); mp_target->outerIndexPtr()[mp_target->outerSize()] = count; mp_target->resizeNonZeros(count); // pass 2 for (Index k=0; k<m_outerPackets; ++k) { const Index outerOffset = (1<<OuterPacketBits) * k; typename HashMapType::iterator end = m_hashmaps[k].end(); for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it) { const Index inner = (it->first >> m_keyBitsOffset) + outerOffset; const Index outer = it->first & keyBitsMask; // sorted insertion // Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients, // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a // small fraction of them have to be sorted, whence the following simple procedure: Index posStart = mp_target->outerIndexPtr()[outer]; Index i = (positions[outer]++) - 1; while ( (i >= posStart) && (mp_target->innerIndexPtr()[i] > inner) ) { mp_target->valuePtr()[i+1] = mp_target->valuePtr()[i]; mp_target->innerIndexPtr()[i+1] = mp_target->innerIndexPtr()[i]; --i; } mp_target->innerIndexPtr()[i+1] = inner; mp_target->valuePtr()[i+1] = it->second.value; } } } delete[] m_hashmaps; } /** \returns a reference to the coefficient at given coordinates \a row, \a col */ Scalar& operator() (Index row, Index col) { const Index outer = SetterRowMajor ? row : col; const Index inner = SetterRowMajor ? col : row; const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map const Index outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet const KeyType key = (KeyType(outerMinor)<<m_keyBitsOffset) | inner; return m_hashmaps[outerMajor][key].value; } /** \returns the number of non zero coefficients * * \note According to the underlying map/hash_map implementation, * this function might be quite expensive. */ Index nonZeros() const { Index nz = 0; for (Index k=0; k<m_outerPackets; ++k) nz += static_cast<Index>(m_hashmaps[k].size()); return nz; } protected: HashMapType* m_hashmaps; SparseMatrixType* mp_target; Index m_outerPackets; unsigned char m_keyBitsOffset; }; } // end namespace Eigen #endif // EIGEN_RANDOMSETTER_H