#define JEMALLOC_HUGE_C_ #include "jemalloc/internal/jemalloc_internal.h" /******************************************************************************/ static extent_node_t * huge_node_get(const void *ptr) { extent_node_t *node; node = chunk_lookup(ptr, true); assert(!extent_node_achunk_get(node)); return (node); } static bool huge_node_set(const void *ptr, extent_node_t *node) { assert(extent_node_addr_get(node) == ptr); assert(!extent_node_achunk_get(node)); return (chunk_register(ptr, node)); } static void huge_node_unset(const void *ptr, const extent_node_t *node) { chunk_deregister(ptr, node); } void * huge_malloc(tsd_t *tsd, arena_t *arena, size_t size, bool zero, tcache_t *tcache) { size_t usize; usize = s2u(size); if (usize == 0) { /* size_t overflow. */ return (NULL); } return (huge_palloc(tsd, arena, usize, chunksize, zero, tcache)); } void * huge_palloc(tsd_t *tsd, arena_t *arena, size_t usize, size_t alignment, bool zero, tcache_t *tcache) { void *ret; extent_node_t *node; bool is_zeroed; /* Allocate one or more contiguous chunks for this request. */ /* Allocate an extent node with which to track the chunk. */ node = ipallocztm(tsd, CACHELINE_CEILING(sizeof(extent_node_t)), CACHELINE, false, tcache, true, arena); if (node == NULL) return (NULL); /* * Copy zero into is_zeroed and pass the copy to chunk_alloc(), so that * it is possible to make correct junk/zero fill decisions below. */ is_zeroed = zero; /* ANDROID change */ #if !defined(__LP64__) /* On 32 bit systems, using a per arena cache can exhaust * virtual address space. Force all huge allocations to * always take place in the first arena. */ arena = a0get(); #else arena = arena_choose(tsd, arena); #endif /* End ANDROID change */ if (unlikely(arena == NULL) || (ret = arena_chunk_alloc_huge(arena, usize, alignment, &is_zeroed)) == NULL) { idalloctm(tsd, node, tcache, true); return (NULL); } extent_node_init(node, arena, ret, usize, is_zeroed); if (huge_node_set(ret, node)) { arena_chunk_dalloc_huge(arena, ret, usize); idalloctm(tsd, node, tcache, true); return (NULL); } /* Insert node into huge. */ malloc_mutex_lock(&arena->huge_mtx); ql_elm_new(node, ql_link); ql_tail_insert(&arena->huge, node, ql_link); malloc_mutex_unlock(&arena->huge_mtx); if (zero || (config_fill && unlikely(opt_zero))) { if (!is_zeroed) memset(ret, 0, usize); } else if (config_fill && unlikely(opt_junk_alloc)) memset(ret, 0xa5, usize); return (ret); } #ifdef JEMALLOC_JET #undef huge_dalloc_junk #define huge_dalloc_junk JEMALLOC_N(huge_dalloc_junk_impl) #endif static void huge_dalloc_junk(void *ptr, size_t usize) { if (config_fill && have_dss && unlikely(opt_junk_free)) { /* * Only bother junk filling if the chunk isn't about to be * unmapped. */ if (!config_munmap || (have_dss && chunk_in_dss(ptr))) memset(ptr, 0x5a, usize); } } #ifdef JEMALLOC_JET #undef huge_dalloc_junk #define huge_dalloc_junk JEMALLOC_N(huge_dalloc_junk) huge_dalloc_junk_t *huge_dalloc_junk = JEMALLOC_N(huge_dalloc_junk_impl); #endif static void huge_ralloc_no_move_similar(void *ptr, size_t oldsize, size_t usize, size_t size, size_t extra, bool zero) { size_t usize_next; extent_node_t *node; arena_t *arena; chunk_purge_t *chunk_purge; bool zeroed; /* Increase usize to incorporate extra. */ while (usize < s2u(size+extra) && (usize_next = s2u(usize+1)) < oldsize) usize = usize_next; if (oldsize == usize) return; node = huge_node_get(ptr); arena = extent_node_arena_get(node); malloc_mutex_lock(&arena->lock); chunk_purge = arena->chunk_purge; malloc_mutex_unlock(&arena->lock); /* Fill if necessary (shrinking). */ if (oldsize > usize) { size_t sdiff = oldsize - usize; zeroed = !chunk_purge_wrapper(arena, chunk_purge, ptr, usize, sdiff); if (config_fill && unlikely(opt_junk_free)) { memset((void *)((uintptr_t)ptr + usize), 0x5a, sdiff); zeroed = false; } } else zeroed = true; malloc_mutex_lock(&arena->huge_mtx); /* Update the size of the huge allocation. */ assert(extent_node_size_get(node) != usize); extent_node_size_set(node, usize); /* Clear node's zeroed field if zeroing failed above. */ extent_node_zeroed_set(node, extent_node_zeroed_get(node) && zeroed); malloc_mutex_unlock(&arena->huge_mtx); arena_chunk_ralloc_huge_similar(arena, ptr, oldsize, usize); /* Fill if necessary (growing). */ if (oldsize < usize) { if (zero || (config_fill && unlikely(opt_zero))) { if (!zeroed) { memset((void *)((uintptr_t)ptr + oldsize), 0, usize - oldsize); } } else if (config_fill && unlikely(opt_junk_alloc)) { memset((void *)((uintptr_t)ptr + oldsize), 0xa5, usize - oldsize); } } } static void huge_ralloc_no_move_shrink(void *ptr, size_t oldsize, size_t usize) { extent_node_t *node; arena_t *arena; chunk_purge_t *chunk_purge; bool zeroed; node = huge_node_get(ptr); arena = extent_node_arena_get(node); malloc_mutex_lock(&arena->lock); chunk_purge = arena->chunk_purge; malloc_mutex_unlock(&arena->lock); if (oldsize > usize) { size_t sdiff = oldsize - usize; zeroed = !chunk_purge_wrapper(arena, chunk_purge, CHUNK_ADDR2BASE((uintptr_t)ptr + usize), CHUNK_ADDR2OFFSET((uintptr_t)ptr + usize), sdiff); if (config_fill && unlikely(opt_junk_free)) { huge_dalloc_junk((void *)((uintptr_t)ptr + usize), sdiff); zeroed = false; } } else zeroed = true; malloc_mutex_lock(&arena->huge_mtx); /* Update the size of the huge allocation. */ extent_node_size_set(node, usize); /* Clear node's zeroed field if zeroing failed above. */ extent_node_zeroed_set(node, extent_node_zeroed_get(node) && zeroed); malloc_mutex_unlock(&arena->huge_mtx); /* Zap the excess chunks. */ arena_chunk_ralloc_huge_shrink(arena, ptr, oldsize, usize); } static bool huge_ralloc_no_move_expand(void *ptr, size_t oldsize, size_t size, bool zero) { size_t usize; extent_node_t *node; arena_t *arena; bool is_zeroed_subchunk, is_zeroed_chunk; usize = s2u(size); if (usize == 0) { /* size_t overflow. */ return (true); } node = huge_node_get(ptr); arena = extent_node_arena_get(node); malloc_mutex_lock(&arena->huge_mtx); is_zeroed_subchunk = extent_node_zeroed_get(node); malloc_mutex_unlock(&arena->huge_mtx); /* * Copy zero into is_zeroed_chunk and pass the copy to chunk_alloc(), so * that it is possible to make correct junk/zero fill decisions below. */ is_zeroed_chunk = zero; if (arena_chunk_ralloc_huge_expand(arena, ptr, oldsize, usize, &is_zeroed_chunk)) return (true); malloc_mutex_lock(&arena->huge_mtx); /* Update the size of the huge allocation. */ extent_node_size_set(node, usize); malloc_mutex_unlock(&arena->huge_mtx); if (zero || (config_fill && unlikely(opt_zero))) { if (!is_zeroed_subchunk) { memset((void *)((uintptr_t)ptr + oldsize), 0, CHUNK_CEILING(oldsize) - oldsize); } if (!is_zeroed_chunk) { memset((void *)((uintptr_t)ptr + CHUNK_CEILING(oldsize)), 0, usize - CHUNK_CEILING(oldsize)); } } else if (config_fill && unlikely(opt_junk_alloc)) { memset((void *)((uintptr_t)ptr + oldsize), 0xa5, usize - oldsize); } return (false); } bool huge_ralloc_no_move(void *ptr, size_t oldsize, size_t size, size_t extra, bool zero) { size_t usize; /* Both allocations must be huge to avoid a move. */ if (oldsize < chunksize) return (true); assert(s2u(oldsize) == oldsize); usize = s2u(size); if (usize == 0) { /* size_t overflow. */ return (true); } /* * Avoid moving the allocation if the existing chunk size accommodates * the new size. */ if (CHUNK_CEILING(oldsize) >= CHUNK_CEILING(usize) && CHUNK_CEILING(oldsize) <= CHUNK_CEILING(size+extra)) { huge_ralloc_no_move_similar(ptr, oldsize, usize, size, extra, zero); return (false); } /* Shrink the allocation in-place. */ if (CHUNK_CEILING(oldsize) >= CHUNK_CEILING(usize)) { huge_ralloc_no_move_shrink(ptr, oldsize, usize); return (false); } /* Attempt to expand the allocation in-place. */ if (huge_ralloc_no_move_expand(ptr, oldsize, size + extra, zero)) { if (extra == 0) return (true); /* Try again, this time without extra. */ return (huge_ralloc_no_move_expand(ptr, oldsize, size, zero)); } return (false); } void * huge_ralloc(tsd_t *tsd, arena_t *arena, void *ptr, size_t oldsize, size_t size, size_t extra, size_t alignment, bool zero, tcache_t *tcache) { void *ret; size_t copysize; /* Try to avoid moving the allocation. */ if (!huge_ralloc_no_move(ptr, oldsize, size, extra, zero)) return (ptr); /* * size and oldsize are different enough that we need to use a * different size class. In that case, fall back to allocating new * space and copying. */ if (alignment > chunksize) { ret = huge_palloc(tsd, arena, size + extra, alignment, zero, tcache); } else ret = huge_malloc(tsd, arena, size + extra, zero, tcache); if (ret == NULL) { if (extra == 0) return (NULL); /* Try again, this time without extra. */ if (alignment > chunksize) { ret = huge_palloc(tsd, arena, size, alignment, zero, tcache); } else ret = huge_malloc(tsd, arena, size, zero, tcache); if (ret == NULL) return (NULL); } /* * Copy at most size bytes (not size+extra), since the caller has no * expectation that the extra bytes will be reliably preserved. */ copysize = (size < oldsize) ? size : oldsize; memcpy(ret, ptr, copysize); isqalloc(tsd, ptr, oldsize, tcache); return (ret); } void huge_dalloc(tsd_t *tsd, void *ptr, tcache_t *tcache) { extent_node_t *node; arena_t *arena; node = huge_node_get(ptr); arena = extent_node_arena_get(node); huge_node_unset(ptr, node); malloc_mutex_lock(&arena->huge_mtx); ql_remove(&arena->huge, node, ql_link); malloc_mutex_unlock(&arena->huge_mtx); huge_dalloc_junk(extent_node_addr_get(node), extent_node_size_get(node)); arena_chunk_dalloc_huge(extent_node_arena_get(node), extent_node_addr_get(node), extent_node_size_get(node)); idalloctm(tsd, node, tcache, true); } arena_t * huge_aalloc(const void *ptr) { return (extent_node_arena_get(huge_node_get(ptr))); } size_t huge_salloc(const void *ptr) { size_t size; extent_node_t *node; arena_t *arena; node = huge_node_get(ptr); arena = extent_node_arena_get(node); malloc_mutex_lock(&arena->huge_mtx); size = extent_node_size_get(node); malloc_mutex_unlock(&arena->huge_mtx); return (size); } prof_tctx_t * huge_prof_tctx_get(const void *ptr) { prof_tctx_t *tctx; extent_node_t *node; arena_t *arena; node = huge_node_get(ptr); arena = extent_node_arena_get(node); malloc_mutex_lock(&arena->huge_mtx); tctx = extent_node_prof_tctx_get(node); malloc_mutex_unlock(&arena->huge_mtx); return (tctx); } void huge_prof_tctx_set(const void *ptr, prof_tctx_t *tctx) { extent_node_t *node; arena_t *arena; node = huge_node_get(ptr); arena = extent_node_arena_get(node); malloc_mutex_lock(&arena->huge_mtx); extent_node_prof_tctx_set(node, tctx); malloc_mutex_unlock(&arena->huge_mtx); }