#define JEMALLOC_C_ #include "jemalloc/internal/jemalloc_internal.h" /******************************************************************************/ /* Data. */ /* Runtime configuration options. */ const char *je_malloc_conf JEMALLOC_ATTR(weak); bool opt_abort = #ifdef JEMALLOC_DEBUG true #else false #endif ; const char *opt_junk = #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL)) "true" #else "false" #endif ; bool opt_junk_alloc = #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL)) true #else false #endif ; bool opt_junk_free = #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL)) true #else false #endif ; size_t opt_quarantine = ZU(0); bool opt_redzone = false; bool opt_utrace = false; bool opt_xmalloc = false; bool opt_zero = false; size_t opt_narenas = 0; /* Initialized to true if the process is running inside Valgrind. */ bool in_valgrind; unsigned ncpus; /* Protects arenas initialization (arenas, narenas_total). */ static malloc_mutex_t arenas_lock; /* * Arenas that are used to service external requests. Not all elements of the * arenas array are necessarily used; arenas are created lazily as needed. * * arenas[0..narenas_auto) are used for automatic multiplexing of threads and * arenas. arenas[narenas_auto..narenas_total) are only used if the application * takes some action to create them and allocate from them. */ static arena_t **arenas; static unsigned narenas_total; static arena_t *a0; /* arenas[0]; read-only after initialization. */ static unsigned narenas_auto; /* Read-only after initialization. */ typedef enum { malloc_init_uninitialized = 3, malloc_init_a0_initialized = 2, malloc_init_recursible = 1, malloc_init_initialized = 0 /* Common case --> jnz. */ } malloc_init_t; static malloc_init_t malloc_init_state = malloc_init_uninitialized; JEMALLOC_ALIGNED(CACHELINE) const size_t index2size_tab[NSIZES] = { #define SC(index, lg_grp, lg_delta, ndelta, bin, lg_delta_lookup) \ ((ZU(1)<<lg_grp) + (ZU(ndelta)<<lg_delta)), SIZE_CLASSES #undef SC }; JEMALLOC_ALIGNED(CACHELINE) const uint8_t size2index_tab[] = { #if LG_TINY_MIN == 0 #warning "Dangerous LG_TINY_MIN" #define S2B_0(i) i, #elif LG_TINY_MIN == 1 #warning "Dangerous LG_TINY_MIN" #define S2B_1(i) i, #elif LG_TINY_MIN == 2 #warning "Dangerous LG_TINY_MIN" #define S2B_2(i) i, #elif LG_TINY_MIN == 3 #define S2B_3(i) i, #elif LG_TINY_MIN == 4 #define S2B_4(i) i, #elif LG_TINY_MIN == 5 #define S2B_5(i) i, #elif LG_TINY_MIN == 6 #define S2B_6(i) i, #elif LG_TINY_MIN == 7 #define S2B_7(i) i, #elif LG_TINY_MIN == 8 #define S2B_8(i) i, #elif LG_TINY_MIN == 9 #define S2B_9(i) i, #elif LG_TINY_MIN == 10 #define S2B_10(i) i, #elif LG_TINY_MIN == 11 #define S2B_11(i) i, #else #error "Unsupported LG_TINY_MIN" #endif #if LG_TINY_MIN < 1 #define S2B_1(i) S2B_0(i) S2B_0(i) #endif #if LG_TINY_MIN < 2 #define S2B_2(i) S2B_1(i) S2B_1(i) #endif #if LG_TINY_MIN < 3 #define S2B_3(i) S2B_2(i) S2B_2(i) #endif #if LG_TINY_MIN < 4 #define S2B_4(i) S2B_3(i) S2B_3(i) #endif #if LG_TINY_MIN < 5 #define S2B_5(i) S2B_4(i) S2B_4(i) #endif #if LG_TINY_MIN < 6 #define S2B_6(i) S2B_5(i) S2B_5(i) #endif #if LG_TINY_MIN < 7 #define S2B_7(i) S2B_6(i) S2B_6(i) #endif #if LG_TINY_MIN < 8 #define S2B_8(i) S2B_7(i) S2B_7(i) #endif #if LG_TINY_MIN < 9 #define S2B_9(i) S2B_8(i) S2B_8(i) #endif #if LG_TINY_MIN < 10 #define S2B_10(i) S2B_9(i) S2B_9(i) #endif #if LG_TINY_MIN < 11 #define S2B_11(i) S2B_10(i) S2B_10(i) #endif #define S2B_no(i) #define SC(index, lg_grp, lg_delta, ndelta, bin, lg_delta_lookup) \ S2B_##lg_delta_lookup(index) SIZE_CLASSES #undef S2B_3 #undef S2B_4 #undef S2B_5 #undef S2B_6 #undef S2B_7 #undef S2B_8 #undef S2B_9 #undef S2B_10 #undef S2B_11 #undef S2B_no #undef SC }; #ifdef JEMALLOC_THREADED_INIT /* Used to let the initializing thread recursively allocate. */ # define NO_INITIALIZER ((unsigned long)0) # define INITIALIZER pthread_self() # define IS_INITIALIZER (malloc_initializer == pthread_self()) static pthread_t malloc_initializer = NO_INITIALIZER; #else # define NO_INITIALIZER false # define INITIALIZER true # define IS_INITIALIZER malloc_initializer static bool malloc_initializer = NO_INITIALIZER; #endif /* Used to avoid initialization races. */ #ifdef _WIN32 static malloc_mutex_t init_lock; JEMALLOC_ATTR(constructor) static void WINAPI _init_init_lock(void) { malloc_mutex_init(&init_lock); } #ifdef _MSC_VER # pragma section(".CRT$XCU", read) JEMALLOC_SECTION(".CRT$XCU") JEMALLOC_ATTR(used) static const void (WINAPI *init_init_lock)(void) = _init_init_lock; #endif #else static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER; #endif typedef struct { void *p; /* Input pointer (as in realloc(p, s)). */ size_t s; /* Request size. */ void *r; /* Result pointer. */ } malloc_utrace_t; #ifdef JEMALLOC_UTRACE # define UTRACE(a, b, c) do { \ if (unlikely(opt_utrace)) { \ int utrace_serrno = errno; \ malloc_utrace_t ut; \ ut.p = (a); \ ut.s = (b); \ ut.r = (c); \ utrace(&ut, sizeof(ut)); \ errno = utrace_serrno; \ } \ } while (0) #else # define UTRACE(a, b, c) #endif /******************************************************************************/ /* * Function prototypes for static functions that are referenced prior to * definition. */ static bool malloc_init_hard_a0(void); static bool malloc_init_hard(void); /******************************************************************************/ /* * Begin miscellaneous support functions. */ JEMALLOC_ALWAYS_INLINE_C bool malloc_initialized(void) { return (malloc_init_state == malloc_init_initialized); } JEMALLOC_ALWAYS_INLINE_C void malloc_thread_init(void) { /* * TSD initialization can't be safely done as a side effect of * deallocation, because it is possible for a thread to do nothing but * deallocate its TLS data via free(), in which case writing to TLS * would cause write-after-free memory corruption. The quarantine * facility *only* gets used as a side effect of deallocation, so make * a best effort attempt at initializing its TSD by hooking all * allocation events. */ if (config_fill && unlikely(opt_quarantine)) quarantine_alloc_hook(); } JEMALLOC_ALWAYS_INLINE_C bool malloc_init_a0(void) { if (unlikely(malloc_init_state == malloc_init_uninitialized)) return (malloc_init_hard_a0()); return (false); } JEMALLOC_ALWAYS_INLINE_C bool malloc_init(void) { if (unlikely(!malloc_initialized()) && malloc_init_hard()) return (true); malloc_thread_init(); return (false); } /* * The a0*() functions are used instead of i[mcd]alloc() in situations that * cannot tolerate TLS variable access. */ arena_t * a0get(void) { assert(a0 != NULL); return (a0); } static void * a0ialloc(size_t size, bool zero, bool is_metadata) { if (unlikely(malloc_init_a0())) return (NULL); return (iallocztm(NULL, size, zero, false, is_metadata, a0get())); } static void a0idalloc(void *ptr, bool is_metadata) { idalloctm(NULL, ptr, false, is_metadata); } void * a0malloc(size_t size) { return (a0ialloc(size, false, true)); } void a0dalloc(void *ptr) { a0idalloc(ptr, true); } /* * FreeBSD's libc uses the bootstrap_*() functions in bootstrap-senstive * situations that cannot tolerate TLS variable access (TLS allocation and very * early internal data structure initialization). */ void * bootstrap_malloc(size_t size) { if (unlikely(size == 0)) size = 1; return (a0ialloc(size, false, false)); } void * bootstrap_calloc(size_t num, size_t size) { size_t num_size; num_size = num * size; if (unlikely(num_size == 0)) { assert(num == 0 || size == 0); num_size = 1; } return (a0ialloc(num_size, true, false)); } void bootstrap_free(void *ptr) { if (unlikely(ptr == NULL)) return; a0idalloc(ptr, false); } /* Create a new arena and insert it into the arenas array at index ind. */ static arena_t * arena_init_locked(unsigned ind) { arena_t *arena; /* Expand arenas if necessary. */ assert(ind <= narenas_total); if (ind > MALLOCX_ARENA_MAX) return (NULL); if (ind == narenas_total) { unsigned narenas_new = narenas_total + 1; arena_t **arenas_new = (arena_t **)a0malloc(CACHELINE_CEILING(narenas_new * sizeof(arena_t *))); if (arenas_new == NULL) return (NULL); memcpy(arenas_new, arenas, narenas_total * sizeof(arena_t *)); arenas_new[ind] = NULL; /* * Deallocate only if arenas came from a0malloc() (not * base_alloc()). */ if (narenas_total != narenas_auto) a0dalloc(arenas); arenas = arenas_new; narenas_total = narenas_new; } /* * Another thread may have already initialized arenas[ind] if it's an * auto arena. */ arena = arenas[ind]; if (arena != NULL) { assert(ind < narenas_auto); return (arena); } /* Actually initialize the arena. */ arena = arenas[ind] = arena_new(ind); return (arena); } arena_t * arena_init(unsigned ind) { arena_t *arena; malloc_mutex_lock(&arenas_lock); arena = arena_init_locked(ind); malloc_mutex_unlock(&arenas_lock); return (arena); } unsigned narenas_total_get(void) { unsigned narenas; malloc_mutex_lock(&arenas_lock); narenas = narenas_total; malloc_mutex_unlock(&arenas_lock); return (narenas); } static void arena_bind_locked(tsd_t *tsd, unsigned ind) { arena_t *arena; arena = arenas[ind]; arena->nthreads++; if (tsd_nominal(tsd)) tsd_arena_set(tsd, arena); } static void arena_bind(tsd_t *tsd, unsigned ind) { malloc_mutex_lock(&arenas_lock); arena_bind_locked(tsd, ind); malloc_mutex_unlock(&arenas_lock); } void arena_migrate(tsd_t *tsd, unsigned oldind, unsigned newind) { arena_t *oldarena, *newarena; malloc_mutex_lock(&arenas_lock); oldarena = arenas[oldind]; newarena = arenas[newind]; oldarena->nthreads--; newarena->nthreads++; malloc_mutex_unlock(&arenas_lock); tsd_arena_set(tsd, newarena); } unsigned arena_nbound(unsigned ind) { unsigned nthreads; malloc_mutex_lock(&arenas_lock); nthreads = arenas[ind]->nthreads; malloc_mutex_unlock(&arenas_lock); return (nthreads); } static void arena_unbind(tsd_t *tsd, unsigned ind) { arena_t *arena; malloc_mutex_lock(&arenas_lock); arena = arenas[ind]; arena->nthreads--; malloc_mutex_unlock(&arenas_lock); tsd_arena_set(tsd, NULL); } arena_t * arena_get_hard(tsd_t *tsd, unsigned ind, bool init_if_missing) { arena_t *arena; arena_t **arenas_cache = tsd_arenas_cache_get(tsd); unsigned narenas_cache = tsd_narenas_cache_get(tsd); unsigned narenas_actual = narenas_total_get(); /* Deallocate old cache if it's too small. */ if (arenas_cache != NULL && narenas_cache < narenas_actual) { a0dalloc(arenas_cache); arenas_cache = NULL; narenas_cache = 0; tsd_arenas_cache_set(tsd, arenas_cache); tsd_narenas_cache_set(tsd, narenas_cache); } /* Allocate cache if it's missing. */ if (arenas_cache == NULL) { bool *arenas_cache_bypassp = tsd_arenas_cache_bypassp_get(tsd); assert(ind < narenas_actual || !init_if_missing); narenas_cache = (ind < narenas_actual) ? narenas_actual : ind+1; if (!*arenas_cache_bypassp) { *arenas_cache_bypassp = true; arenas_cache = (arena_t **)a0malloc(sizeof(arena_t *) * narenas_cache); *arenas_cache_bypassp = false; } else arenas_cache = NULL; if (arenas_cache == NULL) { /* * This function must always tell the truth, even if * it's slow, so don't let OOM or recursive allocation * avoidance (note arenas_cache_bypass check) get in the * way. */ if (ind >= narenas_actual) return (NULL); malloc_mutex_lock(&arenas_lock); arena = arenas[ind]; malloc_mutex_unlock(&arenas_lock); return (arena); } tsd_arenas_cache_set(tsd, arenas_cache); tsd_narenas_cache_set(tsd, narenas_cache); } /* * Copy to cache. It's possible that the actual number of arenas has * increased since narenas_total_get() was called above, but that causes * no correctness issues unless two threads concurrently execute the * arenas.extend mallctl, which we trust mallctl synchronization to * prevent. */ malloc_mutex_lock(&arenas_lock); memcpy(arenas_cache, arenas, sizeof(arena_t *) * narenas_actual); malloc_mutex_unlock(&arenas_lock); if (narenas_cache > narenas_actual) { memset(&arenas_cache[narenas_actual], 0, sizeof(arena_t *) * (narenas_cache - narenas_actual)); } /* Read the refreshed cache, and init the arena if necessary. */ arena = arenas_cache[ind]; if (init_if_missing && arena == NULL) arena = arenas_cache[ind] = arena_init(ind); return (arena); } /* Slow path, called only by arena_choose(). */ arena_t * arena_choose_hard(tsd_t *tsd) { arena_t *ret; if (narenas_auto > 1) { unsigned i, choose, first_null; choose = 0; first_null = narenas_auto; malloc_mutex_lock(&arenas_lock); assert(a0get() != NULL); for (i = 1; i < narenas_auto; i++) { if (arenas[i] != NULL) { /* * Choose the first arena that has the lowest * number of threads assigned to it. */ if (arenas[i]->nthreads < arenas[choose]->nthreads) choose = i; } else if (first_null == narenas_auto) { /* * Record the index of the first uninitialized * arena, in case all extant arenas are in use. * * NB: It is possible for there to be * discontinuities in terms of initialized * versus uninitialized arenas, due to the * "thread.arena" mallctl. */ first_null = i; } } if (arenas[choose]->nthreads == 0 || first_null == narenas_auto) { /* * Use an unloaded arena, or the least loaded arena if * all arenas are already initialized. */ ret = arenas[choose]; } else { /* Initialize a new arena. */ choose = first_null; ret = arena_init_locked(choose); if (ret == NULL) { malloc_mutex_unlock(&arenas_lock); return (NULL); } } arena_bind_locked(tsd, choose); malloc_mutex_unlock(&arenas_lock); } else { ret = a0get(); arena_bind(tsd, 0); } return (ret); } void thread_allocated_cleanup(tsd_t *tsd) { /* Do nothing. */ } void thread_deallocated_cleanup(tsd_t *tsd) { /* Do nothing. */ } void arena_cleanup(tsd_t *tsd) { arena_t *arena; arena = tsd_arena_get(tsd); if (arena != NULL) arena_unbind(tsd, arena->ind); } void arenas_cache_cleanup(tsd_t *tsd) { arena_t **arenas_cache; arenas_cache = tsd_arenas_cache_get(tsd); if (arenas_cache != NULL) { /* ANDROID change */ /* Make sure that the arena cache cannot be reused. */ bool *arenas_cache_bypassp = tsd_arenas_cache_bypassp_get(tsd); *arenas_cache_bypassp = true; tsd_arenas_cache_set(tsd, NULL); /* End ANDROID change */ a0dalloc(arenas_cache); } } void narenas_cache_cleanup(tsd_t *tsd) { /* Do nothing. */ } void arenas_cache_bypass_cleanup(tsd_t *tsd) { /* Do nothing. */ } static void stats_print_atexit(void) { if (config_tcache && config_stats) { unsigned narenas, i; /* * Merge stats from extant threads. This is racy, since * individual threads do not lock when recording tcache stats * events. As a consequence, the final stats may be slightly * out of date by the time they are reported, if other threads * continue to allocate. */ for (i = 0, narenas = narenas_total_get(); i < narenas; i++) { arena_t *arena = arenas[i]; if (arena != NULL) { tcache_t *tcache; /* * tcache_stats_merge() locks bins, so if any * code is introduced that acquires both arena * and bin locks in the opposite order, * deadlocks may result. */ malloc_mutex_lock(&arena->lock); ql_foreach(tcache, &arena->tcache_ql, link) { tcache_stats_merge(tcache, arena); } malloc_mutex_unlock(&arena->lock); } } } je_malloc_stats_print(NULL, NULL, NULL); } /* * End miscellaneous support functions. */ /******************************************************************************/ /* * Begin initialization functions. */ #ifndef JEMALLOC_HAVE_SECURE_GETENV static char * secure_getenv(const char *name) { # ifdef JEMALLOC_HAVE_ISSETUGID if (issetugid() != 0) return (NULL); # endif return (getenv(name)); } #endif static unsigned malloc_ncpus(void) { long result; #ifdef _WIN32 SYSTEM_INFO si; GetSystemInfo(&si); result = si.dwNumberOfProcessors; #else result = sysconf(_SC_NPROCESSORS_ONLN); #endif return ((result == -1) ? 1 : (unsigned)result); } static bool malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p, char const **v_p, size_t *vlen_p) { bool accept; const char *opts = *opts_p; *k_p = opts; for (accept = false; !accept;) { switch (*opts) { case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U': case 'V': case 'W': case 'X': case 'Y': case 'Z': case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u': case 'v': case 'w': case 'x': case 'y': case 'z': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '_': opts++; break; case ':': opts++; *klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p; *v_p = opts; accept = true; break; case '\0': if (opts != *opts_p) { malloc_write("<jemalloc>: Conf string ends " "with key\n"); } return (true); default: malloc_write("<jemalloc>: Malformed conf string\n"); return (true); } } for (accept = false; !accept;) { switch (*opts) { case ',': opts++; /* * Look ahead one character here, because the next time * this function is called, it will assume that end of * input has been cleanly reached if no input remains, * but we have optimistically already consumed the * comma if one exists. */ if (*opts == '\0') { malloc_write("<jemalloc>: Conf string ends " "with comma\n"); } *vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p; accept = true; break; case '\0': *vlen_p = (uintptr_t)opts - (uintptr_t)*v_p; accept = true; break; default: opts++; break; } } *opts_p = opts; return (false); } static void malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v, size_t vlen) { malloc_printf("<jemalloc>: %s: %.*s:%.*s\n", msg, (int)klen, k, (int)vlen, v); } static void malloc_conf_init(void) { unsigned i; char buf[PATH_MAX + 1]; const char *opts, *k, *v; size_t klen, vlen; /* * Automatically configure valgrind before processing options. The * valgrind option remains in jemalloc 3.x for compatibility reasons. */ if (config_valgrind) { in_valgrind = (RUNNING_ON_VALGRIND != 0) ? true : false; if (config_fill && unlikely(in_valgrind)) { opt_junk = "false"; opt_junk_alloc = false; opt_junk_free = false; assert(!opt_zero); opt_quarantine = JEMALLOC_VALGRIND_QUARANTINE_DEFAULT; opt_redzone = true; } if (config_tcache && unlikely(in_valgrind)) opt_tcache = false; } #if defined(__ANDROID__) /* Android only supports compiled options. */ for (i = 0; i < 1; i++) { #else for (i = 0; i < 3; i++) { #endif /* Get runtime configuration. */ switch (i) { case 0: if (je_malloc_conf != NULL) { /* * Use options that were compiled into the * program. */ opts = je_malloc_conf; } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 1: { int linklen = 0; #ifndef _WIN32 int saved_errno = errno; const char *linkname = # ifdef JEMALLOC_PREFIX "/etc/"JEMALLOC_PREFIX"malloc.conf" # else "/etc/malloc.conf" # endif ; /* * Try to use the contents of the "/etc/malloc.conf" * symbolic link's name. */ linklen = readlink(linkname, buf, sizeof(buf) - 1); if (linklen == -1) { /* No configuration specified. */ linklen = 0; /* Restore errno. */ set_errno(saved_errno); } #endif buf[linklen] = '\0'; opts = buf; break; } case 2: { const char *envname = #ifdef JEMALLOC_PREFIX JEMALLOC_CPREFIX"MALLOC_CONF" #else "MALLOC_CONF" #endif ; if ((opts = secure_getenv(envname)) != NULL) { /* * Do nothing; opts is already initialized to * the value of the MALLOC_CONF environment * variable. */ } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; } default: not_reached(); buf[0] = '\0'; opts = buf; } while (*opts != '\0' && !malloc_conf_next(&opts, &k, &klen, &v, &vlen)) { #define CONF_MATCH(n) \ (sizeof(n)-1 == klen && strncmp(n, k, klen) == 0) #define CONF_MATCH_VALUE(n) \ (sizeof(n)-1 == vlen && strncmp(n, v, vlen) == 0) #define CONF_HANDLE_BOOL(o, n, cont) \ if (CONF_MATCH(n)) { \ if (CONF_MATCH_VALUE("true")) \ o = true; \ else if (CONF_MATCH_VALUE("false")) \ o = false; \ else { \ malloc_conf_error( \ "Invalid conf value", \ k, klen, v, vlen); \ } \ if (cont) \ continue; \ } #define CONF_HANDLE_SIZE_T(o, n, min, max, clip) \ if (CONF_MATCH(n)) { \ uintmax_t um; \ char *end; \ \ set_errno(0); \ um = malloc_strtoumax(v, &end, 0); \ if (get_errno() != 0 || (uintptr_t)end -\ (uintptr_t)v != vlen) { \ malloc_conf_error( \ "Invalid conf value", \ k, klen, v, vlen); \ } else if (clip) { \ if ((min) != 0 && um < (min)) \ o = (min); \ else if (um > (max)) \ o = (max); \ else \ o = um; \ } else { \ if (((min) != 0 && um < (min)) \ || um > (max)) { \ malloc_conf_error( \ "Out-of-range " \ "conf value", \ k, klen, v, vlen); \ } else \ o = um; \ } \ continue; \ } #define CONF_HANDLE_SSIZE_T(o, n, min, max) \ if (CONF_MATCH(n)) { \ long l; \ char *end; \ \ set_errno(0); \ l = strtol(v, &end, 0); \ if (get_errno() != 0 || (uintptr_t)end -\ (uintptr_t)v != vlen) { \ malloc_conf_error( \ "Invalid conf value", \ k, klen, v, vlen); \ } else if (l < (ssize_t)(min) || l > \ (ssize_t)(max)) { \ malloc_conf_error( \ "Out-of-range conf value", \ k, klen, v, vlen); \ } else \ o = l; \ continue; \ } #define CONF_HANDLE_CHAR_P(o, n, d) \ if (CONF_MATCH(n)) { \ size_t cpylen = (vlen <= \ sizeof(o)-1) ? vlen : \ sizeof(o)-1; \ strncpy(o, v, cpylen); \ o[cpylen] = '\0'; \ continue; \ } CONF_HANDLE_BOOL(opt_abort, "abort", true) /* * Chunks always require at least one header page, * as many as 2^(LG_SIZE_CLASS_GROUP+1) data pages, and * possibly an additional page in the presence of * redzones. In order to simplify options processing, * use a conservative bound that accommodates all these * constraints. */ CONF_HANDLE_SIZE_T(opt_lg_chunk, "lg_chunk", LG_PAGE + LG_SIZE_CLASS_GROUP + (config_fill ? 2 : 1), (sizeof(size_t) << 3) - 1, true) if (strncmp("dss", k, klen) == 0) { int i; bool match = false; for (i = 0; i < dss_prec_limit; i++) { if (strncmp(dss_prec_names[i], v, vlen) == 0) { if (chunk_dss_prec_set(i)) { malloc_conf_error( "Error setting dss", k, klen, v, vlen); } else { opt_dss = dss_prec_names[i]; match = true; break; } } } if (!match) { malloc_conf_error("Invalid conf value", k, klen, v, vlen); } continue; } CONF_HANDLE_SIZE_T(opt_narenas, "narenas", 1, SIZE_T_MAX, false) CONF_HANDLE_SSIZE_T(opt_lg_dirty_mult, "lg_dirty_mult", -1, (sizeof(size_t) << 3) - 1) CONF_HANDLE_BOOL(opt_stats_print, "stats_print", true) if (config_fill) { if (CONF_MATCH("junk")) { if (CONF_MATCH_VALUE("true")) { opt_junk = "true"; opt_junk_alloc = opt_junk_free = true; } else if (CONF_MATCH_VALUE("false")) { opt_junk = "false"; opt_junk_alloc = opt_junk_free = false; } else if (CONF_MATCH_VALUE("alloc")) { opt_junk = "alloc"; opt_junk_alloc = true; opt_junk_free = false; } else if (CONF_MATCH_VALUE("free")) { opt_junk = "free"; opt_junk_alloc = false; opt_junk_free = true; } else { malloc_conf_error( "Invalid conf value", k, klen, v, vlen); } continue; } CONF_HANDLE_SIZE_T(opt_quarantine, "quarantine", 0, SIZE_T_MAX, false) CONF_HANDLE_BOOL(opt_redzone, "redzone", true) CONF_HANDLE_BOOL(opt_zero, "zero", true) } if (config_utrace) { CONF_HANDLE_BOOL(opt_utrace, "utrace", true) } if (config_xmalloc) { CONF_HANDLE_BOOL(opt_xmalloc, "xmalloc", true) } if (config_tcache) { CONF_HANDLE_BOOL(opt_tcache, "tcache", !config_valgrind || !in_valgrind) if (CONF_MATCH("tcache")) { assert(config_valgrind && in_valgrind); if (opt_tcache) { opt_tcache = false; malloc_conf_error( "tcache cannot be enabled " "while running inside Valgrind", k, klen, v, vlen); } continue; } CONF_HANDLE_SSIZE_T(opt_lg_tcache_max, "lg_tcache_max", -1, (sizeof(size_t) << 3) - 1) } if (config_prof) { CONF_HANDLE_BOOL(opt_prof, "prof", true) CONF_HANDLE_CHAR_P(opt_prof_prefix, "prof_prefix", "jeprof") CONF_HANDLE_BOOL(opt_prof_active, "prof_active", true) CONF_HANDLE_BOOL(opt_prof_thread_active_init, "prof_thread_active_init", true) CONF_HANDLE_SIZE_T(opt_lg_prof_sample, "lg_prof_sample", 0, (sizeof(uint64_t) << 3) - 1, true) CONF_HANDLE_BOOL(opt_prof_accum, "prof_accum", true) CONF_HANDLE_SSIZE_T(opt_lg_prof_interval, "lg_prof_interval", -1, (sizeof(uint64_t) << 3) - 1) CONF_HANDLE_BOOL(opt_prof_gdump, "prof_gdump", true) CONF_HANDLE_BOOL(opt_prof_final, "prof_final", true) CONF_HANDLE_BOOL(opt_prof_leak, "prof_leak", true) } malloc_conf_error("Invalid conf pair", k, klen, v, vlen); #undef CONF_MATCH #undef CONF_HANDLE_BOOL #undef CONF_HANDLE_SIZE_T #undef CONF_HANDLE_SSIZE_T #undef CONF_HANDLE_CHAR_P } } } /* init_lock must be held. */ static bool malloc_init_hard_needed(void) { if (malloc_initialized() || (IS_INITIALIZER && malloc_init_state == malloc_init_recursible)) { /* * Another thread initialized the allocator before this one * acquired init_lock, or this thread is the initializing * thread, and it is recursively allocating. */ return (false); } #ifdef JEMALLOC_THREADED_INIT if (malloc_initializer != NO_INITIALIZER && !IS_INITIALIZER) { /* Busy-wait until the initializing thread completes. */ do { malloc_mutex_unlock(&init_lock); CPU_SPINWAIT; malloc_mutex_lock(&init_lock); } while (!malloc_initialized()); return (false); } #endif return (true); } /* init_lock must be held. */ static bool malloc_init_hard_a0_locked(void) { malloc_initializer = INITIALIZER; if (config_prof) prof_boot0(); malloc_conf_init(); if (opt_stats_print) { /* Print statistics at exit. */ if (atexit(stats_print_atexit) != 0) { malloc_write("<jemalloc>: Error in atexit()\n"); if (opt_abort) abort(); } } if (base_boot()) return (true); if (chunk_boot()) return (true); if (ctl_boot()) return (true); if (config_prof) prof_boot1(); if (arena_boot()) return (true); if (config_tcache && tcache_boot()) return (true); if (malloc_mutex_init(&arenas_lock)) return (true); /* * Create enough scaffolding to allow recursive allocation in * malloc_ncpus(). */ narenas_total = narenas_auto = 1; arenas = &a0; memset(arenas, 0, sizeof(arena_t *) * narenas_auto); /* * Initialize one arena here. The rest are lazily created in * arena_choose_hard(). */ if (arena_init(0) == NULL) return (true); malloc_init_state = malloc_init_a0_initialized; return (false); } static bool malloc_init_hard_a0(void) { bool ret; malloc_mutex_lock(&init_lock); ret = malloc_init_hard_a0_locked(); malloc_mutex_unlock(&init_lock); return (ret); } /* * Initialize data structures which may trigger recursive allocation. * * init_lock must be held. */ static void malloc_init_hard_recursible(void) { malloc_init_state = malloc_init_recursible; malloc_mutex_unlock(&init_lock); ncpus = malloc_ncpus(); #if (!defined(JEMALLOC_MUTEX_INIT_CB) && !defined(JEMALLOC_ZONE) \ && !defined(_WIN32) && !defined(__native_client__)) /* LinuxThreads's pthread_atfork() allocates. */ if (pthread_atfork(jemalloc_prefork, jemalloc_postfork_parent, jemalloc_postfork_child) != 0) { malloc_write("<jemalloc>: Error in pthread_atfork()\n"); if (opt_abort) abort(); } #endif malloc_mutex_lock(&init_lock); } /* init_lock must be held. */ static bool malloc_init_hard_finish(void) { if (mutex_boot()) return (true); if (opt_narenas == 0) { /* * For SMP systems, create more than one arena per CPU by * default. */ if (ncpus > 1) opt_narenas = ncpus << 2; else opt_narenas = 1; } #if defined(ANDROID_MAX_ARENAS) /* Never create more than MAX_ARENAS arenas regardless of num_cpus. * Extra arenas use more PSS and are not very useful unless * lots of threads are allocing/freeing at the same time. */ if (opt_narenas > ANDROID_MAX_ARENAS) opt_narenas = ANDROID_MAX_ARENAS; #endif narenas_auto = opt_narenas; /* * Make sure that the arenas array can be allocated. In practice, this * limit is enough to allow the allocator to function, but the ctl * machinery will fail to allocate memory at far lower limits. */ if (narenas_auto > chunksize / sizeof(arena_t *)) { narenas_auto = chunksize / sizeof(arena_t *); malloc_printf("<jemalloc>: Reducing narenas to limit (%d)\n", narenas_auto); } narenas_total = narenas_auto; /* Allocate and initialize arenas. */ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas_total); if (arenas == NULL) return (true); /* * Zero the array. In practice, this should always be pre-zeroed, * since it was just mmap()ed, but let's be sure. */ memset(arenas, 0, sizeof(arena_t *) * narenas_total); /* Copy the pointer to the one arena that was already initialized. */ arenas[0] = a0; malloc_init_state = malloc_init_initialized; return (false); } static bool malloc_init_hard(void) { malloc_mutex_lock(&init_lock); if (!malloc_init_hard_needed()) { malloc_mutex_unlock(&init_lock); return (false); } if (malloc_init_state != malloc_init_a0_initialized && malloc_init_hard_a0_locked()) { malloc_mutex_unlock(&init_lock); return (true); } if (malloc_tsd_boot0()) { malloc_mutex_unlock(&init_lock); return (true); } if (config_prof && prof_boot2()) { malloc_mutex_unlock(&init_lock); return (true); } malloc_init_hard_recursible(); if (malloc_init_hard_finish()) { malloc_mutex_unlock(&init_lock); return (true); } malloc_mutex_unlock(&init_lock); malloc_tsd_boot1(); return (false); } /* * End initialization functions. */ /******************************************************************************/ /* * Begin malloc(3)-compatible functions. */ static void * imalloc_prof_sample(tsd_t *tsd, size_t usize, prof_tctx_t *tctx) { void *p; if (tctx == NULL) return (NULL); if (usize <= SMALL_MAXCLASS) { p = imalloc(tsd, LARGE_MINCLASS); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else p = imalloc(tsd, usize); return (p); } JEMALLOC_ALWAYS_INLINE_C void * imalloc_prof(tsd_t *tsd, size_t usize) { void *p; prof_tctx_t *tctx; tctx = prof_alloc_prep(tsd, usize, true); if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) p = imalloc_prof_sample(tsd, usize, tctx); else p = imalloc(tsd, usize); if (unlikely(p == NULL)) { prof_alloc_rollback(tsd, tctx, true); return (NULL); } prof_malloc(p, usize, tctx); return (p); } JEMALLOC_ALWAYS_INLINE_C void * imalloc_body(size_t size, tsd_t **tsd, size_t *usize) { if (unlikely(malloc_init())) return (NULL); *tsd = tsd_fetch(); if (config_prof && opt_prof) { *usize = s2u(size); return (imalloc_prof(*tsd, *usize)); } if (config_stats || (config_valgrind && unlikely(in_valgrind))) *usize = s2u(size); return (imalloc(*tsd, size)); } void * je_malloc(size_t size) { void *ret; tsd_t *tsd; size_t usize JEMALLOC_CC_SILENCE_INIT(0); if (size == 0) size = 1; ret = imalloc_body(size, &tsd, &usize); if (unlikely(ret == NULL)) { if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write("<jemalloc>: Error in malloc(): " "out of memory\n"); abort(); } set_errno(ENOMEM); } if (config_stats && likely(ret != NULL)) { assert(usize == isalloc(ret, config_prof)); *tsd_thread_allocatedp_get(tsd) += usize; } UTRACE(0, size, ret); JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, usize, false); return (ret); } static void * imemalign_prof_sample(tsd_t *tsd, size_t alignment, size_t usize, prof_tctx_t *tctx) { void *p; if (tctx == NULL) return (NULL); if (usize <= SMALL_MAXCLASS) { assert(sa2u(LARGE_MINCLASS, alignment) == LARGE_MINCLASS); p = imalloc(tsd, LARGE_MINCLASS); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else p = ipalloc(tsd, usize, alignment, false); return (p); } JEMALLOC_ALWAYS_INLINE_C void * imemalign_prof(tsd_t *tsd, size_t alignment, size_t usize) { void *p; prof_tctx_t *tctx; tctx = prof_alloc_prep(tsd, usize, true); if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) p = imemalign_prof_sample(tsd, alignment, usize, tctx); else p = ipalloc(tsd, usize, alignment, false); if (unlikely(p == NULL)) { prof_alloc_rollback(tsd, tctx, true); return (NULL); } prof_malloc(p, usize, tctx); return (p); } JEMALLOC_ATTR(nonnull(1)) static int imemalign(void **memptr, size_t alignment, size_t size, size_t min_alignment) { int ret; tsd_t *tsd; size_t usize; void *result; assert(min_alignment != 0); if (unlikely(malloc_init())) { result = NULL; goto label_oom; } else { tsd = tsd_fetch(); if (size == 0) size = 1; /* Make sure that alignment is a large enough power of 2. */ if (unlikely(((alignment - 1) & alignment) != 0 || (alignment < min_alignment))) { if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write("<jemalloc>: Error allocating " "aligned memory: invalid alignment\n"); abort(); } result = NULL; ret = EINVAL; goto label_return; } usize = sa2u(size, alignment); if (unlikely(usize == 0)) { result = NULL; goto label_oom; } if (config_prof && opt_prof) result = imemalign_prof(tsd, alignment, usize); else result = ipalloc(tsd, usize, alignment, false); if (unlikely(result == NULL)) goto label_oom; } *memptr = result; ret = 0; label_return: if (config_stats && likely(result != NULL)) { assert(usize == isalloc(result, config_prof)); *tsd_thread_allocatedp_get(tsd) += usize; } UTRACE(0, size, result); return (ret); label_oom: assert(result == NULL); if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write("<jemalloc>: Error allocating aligned memory: " "out of memory\n"); abort(); } ret = ENOMEM; goto label_return; } int je_posix_memalign(void **memptr, size_t alignment, size_t size) { int ret = imemalign(memptr, alignment, size, sizeof(void *)); JEMALLOC_VALGRIND_MALLOC(ret == 0, *memptr, isalloc(*memptr, config_prof), false); return (ret); } void * je_aligned_alloc(size_t alignment, size_t size) { void *ret; int err; if (unlikely((err = imemalign(&ret, alignment, size, 1)) != 0)) { ret = NULL; set_errno(err); } JEMALLOC_VALGRIND_MALLOC(err == 0, ret, isalloc(ret, config_prof), false); return (ret); } static void * icalloc_prof_sample(tsd_t *tsd, size_t usize, prof_tctx_t *tctx) { void *p; if (tctx == NULL) return (NULL); if (usize <= SMALL_MAXCLASS) { p = icalloc(tsd, LARGE_MINCLASS); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else p = icalloc(tsd, usize); return (p); } JEMALLOC_ALWAYS_INLINE_C void * icalloc_prof(tsd_t *tsd, size_t usize) { void *p; prof_tctx_t *tctx; tctx = prof_alloc_prep(tsd, usize, true); if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) p = icalloc_prof_sample(tsd, usize, tctx); else p = icalloc(tsd, usize); if (unlikely(p == NULL)) { prof_alloc_rollback(tsd, tctx, true); return (NULL); } prof_malloc(p, usize, tctx); return (p); } void * je_calloc(size_t num, size_t size) { void *ret; tsd_t *tsd; size_t num_size; size_t usize JEMALLOC_CC_SILENCE_INIT(0); if (unlikely(malloc_init())) { num_size = 0; ret = NULL; goto label_return; } tsd = tsd_fetch(); num_size = num * size; if (unlikely(num_size == 0)) { if (num == 0 || size == 0) num_size = 1; else { ret = NULL; goto label_return; } /* * Try to avoid division here. We know that it isn't possible to * overflow during multiplication if neither operand uses any of the * most significant half of the bits in a size_t. */ } else if (unlikely(((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) && (num_size / size != num))) { /* size_t overflow. */ ret = NULL; goto label_return; } if (config_prof && opt_prof) { usize = s2u(num_size); ret = icalloc_prof(tsd, usize); } else { if (config_stats || (config_valgrind && unlikely(in_valgrind))) usize = s2u(num_size); ret = icalloc(tsd, num_size); } label_return: if (unlikely(ret == NULL)) { if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write("<jemalloc>: Error in calloc(): out of " "memory\n"); abort(); } set_errno(ENOMEM); } if (config_stats && likely(ret != NULL)) { assert(usize == isalloc(ret, config_prof)); *tsd_thread_allocatedp_get(tsd) += usize; } UTRACE(0, num_size, ret); JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, usize, true); return (ret); } static void * irealloc_prof_sample(tsd_t *tsd, void *oldptr, size_t old_usize, size_t usize, prof_tctx_t *tctx) { void *p; if (tctx == NULL) return (NULL); if (usize <= SMALL_MAXCLASS) { p = iralloc(tsd, oldptr, old_usize, LARGE_MINCLASS, 0, false); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else p = iralloc(tsd, oldptr, old_usize, usize, 0, false); return (p); } JEMALLOC_ALWAYS_INLINE_C void * irealloc_prof(tsd_t *tsd, void *oldptr, size_t old_usize, size_t usize) { void *p; prof_tctx_t *old_tctx, *tctx; old_tctx = prof_tctx_get(oldptr); tctx = prof_alloc_prep(tsd, usize, true); if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) p = irealloc_prof_sample(tsd, oldptr, old_usize, usize, tctx); else p = iralloc(tsd, oldptr, old_usize, usize, 0, false); if (p == NULL) return (NULL); prof_realloc(tsd, p, usize, tctx, true, old_usize, old_tctx); return (p); } JEMALLOC_INLINE_C void ifree(tsd_t *tsd, void *ptr, tcache_t *tcache) { size_t usize; UNUSED size_t rzsize JEMALLOC_CC_SILENCE_INIT(0); assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); if (config_prof && opt_prof) { usize = isalloc(ptr, config_prof); prof_free(tsd, ptr, usize); } else if (config_stats || config_valgrind) usize = isalloc(ptr, config_prof); if (config_stats) *tsd_thread_deallocatedp_get(tsd) += usize; if (config_valgrind && unlikely(in_valgrind)) rzsize = p2rz(ptr); iqalloc(tsd, ptr, tcache); JEMALLOC_VALGRIND_FREE(ptr, rzsize); } JEMALLOC_INLINE_C void isfree(tsd_t *tsd, void *ptr, size_t usize, tcache_t *tcache) { UNUSED size_t rzsize JEMALLOC_CC_SILENCE_INIT(0); assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); if (config_prof && opt_prof) prof_free(tsd, ptr, usize); if (config_stats) *tsd_thread_deallocatedp_get(tsd) += usize; if (config_valgrind && unlikely(in_valgrind)) rzsize = p2rz(ptr); isqalloc(tsd, ptr, usize, tcache); JEMALLOC_VALGRIND_FREE(ptr, rzsize); } void * je_realloc(void *ptr, size_t size) { void *ret; tsd_t *tsd JEMALLOC_CC_SILENCE_INIT(NULL); size_t usize JEMALLOC_CC_SILENCE_INIT(0); size_t old_usize = 0; UNUSED size_t old_rzsize JEMALLOC_CC_SILENCE_INIT(0); if (unlikely(size == 0)) { if (ptr != NULL) { /* realloc(ptr, 0) is equivalent to free(ptr). */ UTRACE(ptr, 0, 0); tsd = tsd_fetch(); ifree(tsd, ptr, tcache_get(tsd, false)); return (NULL); } size = 1; } if (likely(ptr != NULL)) { assert(malloc_initialized() || IS_INITIALIZER); malloc_thread_init(); tsd = tsd_fetch(); old_usize = isalloc(ptr, config_prof); if (config_valgrind && unlikely(in_valgrind)) old_rzsize = config_prof ? p2rz(ptr) : u2rz(old_usize); if (config_prof && opt_prof) { usize = s2u(size); ret = irealloc_prof(tsd, ptr, old_usize, usize); } else { if (config_stats || (config_valgrind && unlikely(in_valgrind))) usize = s2u(size); ret = iralloc(tsd, ptr, old_usize, size, 0, false); } } else { /* realloc(NULL, size) is equivalent to malloc(size). */ ret = imalloc_body(size, &tsd, &usize); } if (unlikely(ret == NULL)) { if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write("<jemalloc>: Error in realloc(): " "out of memory\n"); abort(); } set_errno(ENOMEM); } if (config_stats && likely(ret != NULL)) { assert(usize == isalloc(ret, config_prof)); *tsd_thread_allocatedp_get(tsd) += usize; *tsd_thread_deallocatedp_get(tsd) += old_usize; } UTRACE(ptr, size, ret); JEMALLOC_VALGRIND_REALLOC(true, ret, usize, true, ptr, old_usize, old_rzsize, true, false); return (ret); } void je_free(void *ptr) { UTRACE(ptr, 0, 0); if (likely(ptr != NULL)) { tsd_t *tsd = tsd_fetch(); ifree(tsd, ptr, tcache_get(tsd, false)); } } /* * End malloc(3)-compatible functions. */ /******************************************************************************/ /* * Begin non-standard override functions. */ #ifdef JEMALLOC_OVERRIDE_MEMALIGN void * je_memalign(size_t alignment, size_t size) { void *ret JEMALLOC_CC_SILENCE_INIT(NULL); if (unlikely(imemalign(&ret, alignment, size, 1) != 0)) ret = NULL; JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, size, false); return (ret); } #endif #ifdef JEMALLOC_OVERRIDE_VALLOC void * je_valloc(size_t size) { void *ret JEMALLOC_CC_SILENCE_INIT(NULL); if (unlikely(imemalign(&ret, PAGE, size, 1) != 0)) ret = NULL; JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, size, false); return (ret); } #endif /* * is_malloc(je_malloc) is some macro magic to detect if jemalloc_defs.h has * #define je_malloc malloc */ #define malloc_is_malloc 1 #define is_malloc_(a) malloc_is_ ## a #define is_malloc(a) is_malloc_(a) #if ((is_malloc(je_malloc) == 1) && defined(JEMALLOC_GLIBC_MALLOC_HOOK)) /* * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible * to inconsistently reference libc's malloc(3)-compatible functions * (https://bugzilla.mozilla.org/show_bug.cgi?id=493541). * * These definitions interpose hooks in glibc. The functions are actually * passed an extra argument for the caller return address, which will be * ignored. */ JEMALLOC_EXPORT void (*__free_hook)(void *ptr) = je_free; JEMALLOC_EXPORT void *(*__malloc_hook)(size_t size) = je_malloc; JEMALLOC_EXPORT void *(*__realloc_hook)(void *ptr, size_t size) = je_realloc; # ifdef JEMALLOC_GLIBC_MEMALIGN_HOOK JEMALLOC_EXPORT void *(*__memalign_hook)(size_t alignment, size_t size) = je_memalign; # endif #endif /* * End non-standard override functions. */ /******************************************************************************/ /* * Begin non-standard functions. */ JEMALLOC_ALWAYS_INLINE_C bool imallocx_flags_decode_hard(tsd_t *tsd, size_t size, int flags, size_t *usize, size_t *alignment, bool *zero, tcache_t **tcache, arena_t **arena) { if ((flags & MALLOCX_LG_ALIGN_MASK) == 0) { *alignment = 0; *usize = s2u(size); } else { *alignment = MALLOCX_ALIGN_GET_SPECIFIED(flags); *usize = sa2u(size, *alignment); } *zero = MALLOCX_ZERO_GET(flags); if ((flags & MALLOCX_TCACHE_MASK) != 0) { if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) *tcache = NULL; else *tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags)); } else *tcache = tcache_get(tsd, true); if ((flags & MALLOCX_ARENA_MASK) != 0) { unsigned arena_ind = MALLOCX_ARENA_GET(flags); *arena = arena_get(tsd, arena_ind, true, true); if (unlikely(*arena == NULL)) return (true); } else *arena = NULL; return (false); } JEMALLOC_ALWAYS_INLINE_C bool imallocx_flags_decode(tsd_t *tsd, size_t size, int flags, size_t *usize, size_t *alignment, bool *zero, tcache_t **tcache, arena_t **arena) { if (likely(flags == 0)) { *usize = s2u(size); assert(usize != 0); *alignment = 0; *zero = false; *tcache = tcache_get(tsd, true); *arena = NULL; return (false); } else { return (imallocx_flags_decode_hard(tsd, size, flags, usize, alignment, zero, tcache, arena)); } } JEMALLOC_ALWAYS_INLINE_C void * imallocx_flags(tsd_t *tsd, size_t usize, size_t alignment, bool zero, tcache_t *tcache, arena_t *arena) { if (alignment != 0) return (ipalloct(tsd, usize, alignment, zero, tcache, arena)); if (zero) return (icalloct(tsd, usize, tcache, arena)); return (imalloct(tsd, usize, tcache, arena)); } JEMALLOC_ALWAYS_INLINE_C void * imallocx_maybe_flags(tsd_t *tsd, size_t size, int flags, size_t usize, size_t alignment, bool zero, tcache_t *tcache, arena_t *arena) { if (likely(flags == 0)) return (imalloc(tsd, size)); return (imallocx_flags(tsd, usize, alignment, zero, tcache, arena)); } static void * imallocx_prof_sample(tsd_t *tsd, size_t size, int flags, size_t usize, size_t alignment, bool zero, tcache_t *tcache, arena_t *arena) { void *p; if (usize <= SMALL_MAXCLASS) { assert(((alignment == 0) ? s2u(LARGE_MINCLASS) : sa2u(LARGE_MINCLASS, alignment)) == LARGE_MINCLASS); p = imalloct(tsd, LARGE_MINCLASS, tcache, arena); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else { p = imallocx_maybe_flags(tsd, size, flags, usize, alignment, zero, tcache, arena); } return (p); } JEMALLOC_ALWAYS_INLINE_C void * imallocx_prof(tsd_t *tsd, size_t size, int flags, size_t *usize) { void *p; size_t alignment; bool zero; tcache_t *tcache; arena_t *arena; prof_tctx_t *tctx; if (unlikely(imallocx_flags_decode(tsd, size, flags, usize, &alignment, &zero, &tcache, &arena))) return (NULL); tctx = prof_alloc_prep(tsd, *usize, true); if (likely((uintptr_t)tctx == (uintptr_t)1U)) { p = imallocx_maybe_flags(tsd, size, flags, *usize, alignment, zero, tcache, arena); } else if ((uintptr_t)tctx > (uintptr_t)1U) { p = imallocx_prof_sample(tsd, size, flags, *usize, alignment, zero, tcache, arena); } else p = NULL; if (unlikely(p == NULL)) { prof_alloc_rollback(tsd, tctx, true); return (NULL); } prof_malloc(p, *usize, tctx); return (p); } JEMALLOC_ALWAYS_INLINE_C void * imallocx_no_prof(tsd_t *tsd, size_t size, int flags, size_t *usize) { size_t alignment; bool zero; tcache_t *tcache; arena_t *arena; if (likely(flags == 0)) { if (config_stats || (config_valgrind && unlikely(in_valgrind))) *usize = s2u(size); return (imalloc(tsd, size)); } if (unlikely(imallocx_flags_decode_hard(tsd, size, flags, usize, &alignment, &zero, &tcache, &arena))) return (NULL); return (imallocx_flags(tsd, *usize, alignment, zero, tcache, arena)); } void * je_mallocx(size_t size, int flags) { tsd_t *tsd; void *p; size_t usize; assert(size != 0); if (unlikely(malloc_init())) goto label_oom; tsd = tsd_fetch(); if (config_prof && opt_prof) p = imallocx_prof(tsd, size, flags, &usize); else p = imallocx_no_prof(tsd, size, flags, &usize); if (unlikely(p == NULL)) goto label_oom; if (config_stats) { assert(usize == isalloc(p, config_prof)); *tsd_thread_allocatedp_get(tsd) += usize; } UTRACE(0, size, p); JEMALLOC_VALGRIND_MALLOC(true, p, usize, MALLOCX_ZERO_GET(flags)); return (p); label_oom: if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write("<jemalloc>: Error in mallocx(): out of memory\n"); abort(); } UTRACE(0, size, 0); return (NULL); } static void * irallocx_prof_sample(tsd_t *tsd, void *oldptr, size_t old_usize, size_t size, size_t alignment, size_t usize, bool zero, tcache_t *tcache, arena_t *arena, prof_tctx_t *tctx) { void *p; if (tctx == NULL) return (NULL); if (usize <= SMALL_MAXCLASS) { p = iralloct(tsd, oldptr, old_usize, LARGE_MINCLASS, alignment, zero, tcache, arena); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else { p = iralloct(tsd, oldptr, old_usize, size, alignment, zero, tcache, arena); } return (p); } JEMALLOC_ALWAYS_INLINE_C void * irallocx_prof(tsd_t *tsd, void *oldptr, size_t old_usize, size_t size, size_t alignment, size_t *usize, bool zero, tcache_t *tcache, arena_t *arena) { void *p; prof_tctx_t *old_tctx, *tctx; old_tctx = prof_tctx_get(oldptr); tctx = prof_alloc_prep(tsd, *usize, false); if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) { p = irallocx_prof_sample(tsd, oldptr, old_usize, size, alignment, *usize, zero, tcache, arena, tctx); } else { p = iralloct(tsd, oldptr, old_usize, size, alignment, zero, tcache, arena); } if (unlikely(p == NULL)) { prof_alloc_rollback(tsd, tctx, false); return (NULL); } if (p == oldptr && alignment != 0) { /* * The allocation did not move, so it is possible that the size * class is smaller than would guarantee the requested * alignment, and that the alignment constraint was * serendipitously satisfied. Additionally, old_usize may not * be the same as the current usize because of in-place large * reallocation. Therefore, query the actual value of usize. */ *usize = isalloc(p, config_prof); } prof_realloc(tsd, p, *usize, tctx, false, old_usize, old_tctx); return (p); } void * je_rallocx(void *ptr, size_t size, int flags) { void *p; tsd_t *tsd; size_t usize; size_t old_usize; UNUSED size_t old_rzsize JEMALLOC_CC_SILENCE_INIT(0); size_t alignment = MALLOCX_ALIGN_GET(flags); bool zero = flags & MALLOCX_ZERO; arena_t *arena; tcache_t *tcache; assert(ptr != NULL); assert(size != 0); assert(malloc_initialized() || IS_INITIALIZER); malloc_thread_init(); tsd = tsd_fetch(); if (unlikely((flags & MALLOCX_ARENA_MASK) != 0)) { unsigned arena_ind = MALLOCX_ARENA_GET(flags); arena = arena_get(tsd, arena_ind, true, true); if (unlikely(arena == NULL)) goto label_oom; } else arena = NULL; if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) { if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) tcache = NULL; else tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags)); } else tcache = tcache_get(tsd, true); old_usize = isalloc(ptr, config_prof); if (config_valgrind && unlikely(in_valgrind)) old_rzsize = u2rz(old_usize); if (config_prof && opt_prof) { usize = (alignment == 0) ? s2u(size) : sa2u(size, alignment); assert(usize != 0); p = irallocx_prof(tsd, ptr, old_usize, size, alignment, &usize, zero, tcache, arena); if (unlikely(p == NULL)) goto label_oom; } else { p = iralloct(tsd, ptr, old_usize, size, alignment, zero, tcache, arena); if (unlikely(p == NULL)) goto label_oom; if (config_stats || (config_valgrind && unlikely(in_valgrind))) usize = isalloc(p, config_prof); } if (config_stats) { *tsd_thread_allocatedp_get(tsd) += usize; *tsd_thread_deallocatedp_get(tsd) += old_usize; } UTRACE(ptr, size, p); JEMALLOC_VALGRIND_REALLOC(true, p, usize, false, ptr, old_usize, old_rzsize, false, zero); return (p); label_oom: if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write("<jemalloc>: Error in rallocx(): out of memory\n"); abort(); } UTRACE(ptr, size, 0); return (NULL); } JEMALLOC_ALWAYS_INLINE_C size_t ixallocx_helper(void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, bool zero) { size_t usize; if (ixalloc(ptr, old_usize, size, extra, alignment, zero)) return (old_usize); usize = isalloc(ptr, config_prof); return (usize); } static size_t ixallocx_prof_sample(void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, size_t max_usize, bool zero, prof_tctx_t *tctx) { size_t usize; if (tctx == NULL) return (old_usize); /* Use minimum usize to determine whether promotion may happen. */ if (((alignment == 0) ? s2u(size) : sa2u(size, alignment)) <= SMALL_MAXCLASS) { if (ixalloc(ptr, old_usize, SMALL_MAXCLASS+1, (SMALL_MAXCLASS+1 >= size+extra) ? 0 : size+extra - (SMALL_MAXCLASS+1), alignment, zero)) return (old_usize); usize = isalloc(ptr, config_prof); if (max_usize < LARGE_MINCLASS) arena_prof_promoted(ptr, usize); } else { usize = ixallocx_helper(ptr, old_usize, size, extra, alignment, zero); } return (usize); } JEMALLOC_ALWAYS_INLINE_C size_t ixallocx_prof(tsd_t *tsd, void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, bool zero) { size_t max_usize, usize; prof_tctx_t *old_tctx, *tctx; old_tctx = prof_tctx_get(ptr); /* * usize isn't knowable before ixalloc() returns when extra is non-zero. * Therefore, compute its maximum possible value and use that in * prof_alloc_prep() to decide whether to capture a backtrace. * prof_realloc() will use the actual usize to decide whether to sample. */ max_usize = (alignment == 0) ? s2u(size+extra) : sa2u(size+extra, alignment); tctx = prof_alloc_prep(tsd, max_usize, false); if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) { usize = ixallocx_prof_sample(ptr, old_usize, size, extra, alignment, zero, max_usize, tctx); } else { usize = ixallocx_helper(ptr, old_usize, size, extra, alignment, zero); } if (unlikely(usize == old_usize)) { prof_alloc_rollback(tsd, tctx, false); return (usize); } prof_realloc(tsd, ptr, usize, tctx, false, old_usize, old_tctx); return (usize); } size_t je_xallocx(void *ptr, size_t size, size_t extra, int flags) { tsd_t *tsd; size_t usize, old_usize; UNUSED size_t old_rzsize JEMALLOC_CC_SILENCE_INIT(0); size_t alignment = MALLOCX_ALIGN_GET(flags); bool zero = flags & MALLOCX_ZERO; assert(ptr != NULL); assert(size != 0); assert(SIZE_T_MAX - size >= extra); assert(malloc_initialized() || IS_INITIALIZER); malloc_thread_init(); tsd = tsd_fetch(); old_usize = isalloc(ptr, config_prof); if (config_valgrind && unlikely(in_valgrind)) old_rzsize = u2rz(old_usize); if (config_prof && opt_prof) { usize = ixallocx_prof(tsd, ptr, old_usize, size, extra, alignment, zero); } else { usize = ixallocx_helper(ptr, old_usize, size, extra, alignment, zero); } if (unlikely(usize == old_usize)) goto label_not_resized; if (config_stats) { *tsd_thread_allocatedp_get(tsd) += usize; *tsd_thread_deallocatedp_get(tsd) += old_usize; } JEMALLOC_VALGRIND_REALLOC(false, ptr, usize, false, ptr, old_usize, old_rzsize, false, zero); label_not_resized: UTRACE(ptr, size, ptr); return (usize); } size_t je_sallocx(const void *ptr, int flags) { size_t usize; assert(malloc_initialized() || IS_INITIALIZER); malloc_thread_init(); if (config_ivsalloc) usize = ivsalloc(ptr, config_prof); else usize = isalloc(ptr, config_prof); return (usize); } void je_dallocx(void *ptr, int flags) { tsd_t *tsd; tcache_t *tcache; assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); tsd = tsd_fetch(); if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) { if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) tcache = NULL; else tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags)); } else tcache = tcache_get(tsd, false); UTRACE(ptr, 0, 0); ifree(tsd_fetch(), ptr, tcache); } JEMALLOC_ALWAYS_INLINE_C size_t inallocx(size_t size, int flags) { size_t usize; if (likely((flags & MALLOCX_LG_ALIGN_MASK) == 0)) usize = s2u(size); else usize = sa2u(size, MALLOCX_ALIGN_GET_SPECIFIED(flags)); assert(usize != 0); return (usize); } void je_sdallocx(void *ptr, size_t size, int flags) { tsd_t *tsd; tcache_t *tcache; size_t usize; assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); usize = inallocx(size, flags); assert(usize == isalloc(ptr, config_prof)); tsd = tsd_fetch(); if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) { if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) tcache = NULL; else tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags)); } else tcache = tcache_get(tsd, false); UTRACE(ptr, 0, 0); isfree(tsd, ptr, usize, tcache); } size_t je_nallocx(size_t size, int flags) { assert(size != 0); if (unlikely(malloc_init())) return (0); return (inallocx(size, flags)); } int je_mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { if (unlikely(malloc_init())) return (EAGAIN); return (ctl_byname(name, oldp, oldlenp, newp, newlen)); } int je_mallctlnametomib(const char *name, size_t *mibp, size_t *miblenp) { if (unlikely(malloc_init())) return (EAGAIN); return (ctl_nametomib(name, mibp, miblenp)); } int je_mallctlbymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { if (unlikely(malloc_init())) return (EAGAIN); return (ctl_bymib(mib, miblen, oldp, oldlenp, newp, newlen)); } void je_malloc_stats_print(void (*write_cb)(void *, const char *), void *cbopaque, const char *opts) { stats_print(write_cb, cbopaque, opts); } size_t je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr) { size_t ret; assert(malloc_initialized() || IS_INITIALIZER); malloc_thread_init(); if (config_ivsalloc) ret = ivsalloc(ptr, config_prof); else ret = (ptr == NULL) ? 0 : isalloc(ptr, config_prof); return (ret); } /* * End non-standard functions. */ /******************************************************************************/ /* * The following functions are used by threading libraries for protection of * malloc during fork(). */ /* * If an application creates a thread before doing any allocation in the main * thread, then calls fork(2) in the main thread followed by memory allocation * in the child process, a race can occur that results in deadlock within the * child: the main thread may have forked while the created thread had * partially initialized the allocator. Ordinarily jemalloc prevents * fork/malloc races via the following functions it registers during * initialization using pthread_atfork(), but of course that does no good if * the allocator isn't fully initialized at fork time. The following library * constructor is a partial solution to this problem. It may still be possible * to trigger the deadlock described above, but doing so would involve forking * via a library constructor that runs before jemalloc's runs. */ JEMALLOC_ATTR(constructor) static void jemalloc_constructor(void) { malloc_init(); } #ifndef JEMALLOC_MUTEX_INIT_CB void jemalloc_prefork(void) #else JEMALLOC_EXPORT void _malloc_prefork(void) #endif { unsigned i; #ifdef JEMALLOC_MUTEX_INIT_CB if (!malloc_initialized()) return; #endif assert(malloc_initialized()); /* Acquire all mutexes in a safe order. */ ctl_prefork(); prof_prefork(); malloc_mutex_prefork(&arenas_lock); for (i = 0; i < narenas_total; i++) { if (arenas[i] != NULL) arena_prefork(arenas[i]); } chunk_prefork(); base_prefork(); } #ifndef JEMALLOC_MUTEX_INIT_CB void jemalloc_postfork_parent(void) #else JEMALLOC_EXPORT void _malloc_postfork(void) #endif { unsigned i; #ifdef JEMALLOC_MUTEX_INIT_CB if (!malloc_initialized()) return; #endif assert(malloc_initialized()); /* Release all mutexes, now that fork() has completed. */ base_postfork_parent(); chunk_postfork_parent(); for (i = 0; i < narenas_total; i++) { if (arenas[i] != NULL) arena_postfork_parent(arenas[i]); } malloc_mutex_postfork_parent(&arenas_lock); prof_postfork_parent(); ctl_postfork_parent(); } void jemalloc_postfork_child(void) { unsigned i; assert(malloc_initialized()); /* Release all mutexes, now that fork() has completed. */ base_postfork_child(); chunk_postfork_child(); for (i = 0; i < narenas_total; i++) { if (arenas[i] != NULL) arena_postfork_child(arenas[i]); } malloc_mutex_postfork_child(&arenas_lock); prof_postfork_child(); ctl_postfork_child(); } /******************************************************************************/ /* ANDROID change */ /* This is an implementation that uses the same arena access pattern found * in the arena_stats_merge function from src/arena.c. */ struct mallinfo je_mallinfo() { struct mallinfo mi; memset(&mi, 0, sizeof(mi)); malloc_mutex_lock(&arenas_lock); for (unsigned i = 0; i < narenas_auto; i++) { if (arenas[i] != NULL) { malloc_mutex_lock(&arenas[i]->lock); mi.hblkhd += arenas[i]->stats.mapped; mi.uordblks += arenas[i]->stats.allocated_large; mi.uordblks += arenas[i]->stats.allocated_huge; malloc_mutex_unlock(&arenas[i]->lock); for (unsigned j = 0; j < NBINS; j++) { arena_bin_t* bin = &arenas[i]->bins[j]; malloc_mutex_lock(&bin->lock); mi.uordblks += arena_bin_info[j].reg_size * bin->stats.curregs; malloc_mutex_unlock(&bin->lock); } } } malloc_mutex_unlock(&arenas_lock); mi.fordblks = mi.hblkhd - mi.uordblks; mi.usmblks = mi.hblkhd; return mi; } size_t __mallinfo_narenas() { return narenas_auto; } size_t __mallinfo_nbins() { return NBINS; } struct mallinfo __mallinfo_arena_info(size_t aidx) { struct mallinfo mi; memset(&mi, 0, sizeof(mi)); malloc_mutex_lock(&arenas_lock); if (aidx < narenas_auto) { if (arenas[aidx] != NULL) { malloc_mutex_lock(&arenas[aidx]->lock); mi.hblkhd = arenas[aidx]->stats.mapped; mi.ordblks = arenas[aidx]->stats.allocated_large; mi.uordblks = arenas[aidx]->stats.allocated_huge; malloc_mutex_unlock(&arenas[aidx]->lock); for (unsigned j = 0; j < NBINS; j++) { arena_bin_t* bin = &arenas[aidx]->bins[j]; malloc_mutex_lock(&bin->lock); mi.fsmblks += arena_bin_info[j].reg_size * bin->stats.curregs; malloc_mutex_unlock(&bin->lock); } } } malloc_mutex_unlock(&arenas_lock); return mi; } struct mallinfo __mallinfo_bin_info(size_t aidx, size_t bidx) { struct mallinfo mi; memset(&mi, 0, sizeof(mi)); malloc_mutex_lock(&arenas_lock); if (aidx < narenas_auto && bidx < NBINS) { if (arenas[aidx] != NULL) { arena_bin_t* bin = &arenas[aidx]->bins[bidx]; malloc_mutex_lock(&bin->lock); mi.ordblks = arena_bin_info[bidx].reg_size * bin->stats.curregs; mi.uordblks = bin->stats.nmalloc; mi.fordblks = bin->stats.ndalloc; malloc_mutex_unlock(&bin->lock); } } malloc_mutex_unlock(&arenas_lock); return mi; } /* End ANDROID change */