//===-- Process.cpp ---------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/lldb-python.h" #include "lldb/Target/Process.h" #include "lldb/lldb-private-log.h" #include "lldb/Breakpoint/StoppointCallbackContext.h" #include "lldb/Breakpoint/BreakpointLocation.h" #include "lldb/Core/Event.h" #include "lldb/Core/ConnectionFileDescriptor.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/InputReader.h" #include "lldb/Core/Log.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/State.h" #include "lldb/Expression/ClangUserExpression.h" #include "lldb/Interpreter/CommandInterpreter.h" #include "lldb/Host/Host.h" #include "lldb/Target/ABI.h" #include "lldb/Target/DynamicLoader.h" #include "lldb/Target/OperatingSystem.h" #include "lldb/Target/LanguageRuntime.h" #include "lldb/Target/CPPLanguageRuntime.h" #include "lldb/Target/ObjCLanguageRuntime.h" #include "lldb/Target/Platform.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StopInfo.h" #include "lldb/Target/Target.h" #include "lldb/Target/TargetList.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadPlan.h" #include "lldb/Target/ThreadPlanBase.h" using namespace lldb; using namespace lldb_private; // Comment out line below to disable memory caching, overriding the process setting // target.process.disable-memory-cache #define ENABLE_MEMORY_CACHING #ifdef ENABLE_MEMORY_CACHING #define DISABLE_MEM_CACHE_DEFAULT false #else #define DISABLE_MEM_CACHE_DEFAULT true #endif class ProcessOptionValueProperties : public OptionValueProperties { public: ProcessOptionValueProperties (const ConstString &name) : OptionValueProperties (name) { } // This constructor is used when creating ProcessOptionValueProperties when it // is part of a new lldb_private::Process instance. It will copy all current // global property values as needed ProcessOptionValueProperties (ProcessProperties *global_properties) : OptionValueProperties(*global_properties->GetValueProperties()) { } virtual const Property * GetPropertyAtIndex (const ExecutionContext *exe_ctx, bool will_modify, uint32_t idx) const { // When gettings the value for a key from the process options, we will always // try and grab the setting from the current process if there is one. Else we just // use the one from this instance. if (exe_ctx) { Process *process = exe_ctx->GetProcessPtr(); if (process) { ProcessOptionValueProperties *instance_properties = static_cast<ProcessOptionValueProperties *>(process->GetValueProperties().get()); if (this != instance_properties) return instance_properties->ProtectedGetPropertyAtIndex (idx); } } return ProtectedGetPropertyAtIndex (idx); } }; static PropertyDefinition g_properties[] = { { "disable-memory-cache" , OptionValue::eTypeBoolean, false, DISABLE_MEM_CACHE_DEFAULT, NULL, NULL, "Disable reading and caching of memory in fixed-size units." }, { "extra-startup-command", OptionValue::eTypeArray , false, OptionValue::eTypeString, NULL, NULL, "A list containing extra commands understood by the particular process plugin used. " "For instance, to turn on debugserver logging set this to \"QSetLogging:bitmask=LOG_DEFAULT;\"" }, { "ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, NULL, NULL, "If true, breakpoints will be ignored during expression evaluation." }, { "unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, NULL, NULL, "If true, errors in expression evaluation will unwind the stack back to the state before the call." }, { "python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, NULL, NULL, "A path to a python OS plug-in module file that contains a OperatingSystemPlugIn class." }, { "stop-on-sharedlibrary-events" , OptionValue::eTypeBoolean, true, false, NULL, NULL, "If true, stop when a shared library is loaded or unloaded." }, { "detach-keeps-stopped" , OptionValue::eTypeBoolean, true, false, NULL, NULL, "If true, detach will attempt to keep the process stopped." }, { NULL , OptionValue::eTypeInvalid, false, 0, NULL, NULL, NULL } }; enum { ePropertyDisableMemCache, ePropertyExtraStartCommand, ePropertyIgnoreBreakpointsInExpressions, ePropertyUnwindOnErrorInExpressions, ePropertyPythonOSPluginPath, ePropertyStopOnSharedLibraryEvents, ePropertyDetachKeepsStopped }; ProcessProperties::ProcessProperties (bool is_global) : Properties () { if (is_global) { m_collection_sp.reset (new ProcessOptionValueProperties(ConstString("process"))); m_collection_sp->Initialize(g_properties); m_collection_sp->AppendProperty(ConstString("thread"), ConstString("Settings specific to threads."), true, Thread::GetGlobalProperties()->GetValueProperties()); } else m_collection_sp.reset (new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); } ProcessProperties::~ProcessProperties() { } bool ProcessProperties::GetDisableMemoryCache() const { const uint32_t idx = ePropertyDisableMemCache; return m_collection_sp->GetPropertyAtIndexAsBoolean (NULL, idx, g_properties[idx].default_uint_value != 0); } Args ProcessProperties::GetExtraStartupCommands () const { Args args; const uint32_t idx = ePropertyExtraStartCommand; m_collection_sp->GetPropertyAtIndexAsArgs(NULL, idx, args); return args; } void ProcessProperties::SetExtraStartupCommands (const Args &args) { const uint32_t idx = ePropertyExtraStartCommand; m_collection_sp->SetPropertyAtIndexFromArgs(NULL, idx, args); } FileSpec ProcessProperties::GetPythonOSPluginPath () const { const uint32_t idx = ePropertyPythonOSPluginPath; return m_collection_sp->GetPropertyAtIndexAsFileSpec(NULL, idx); } void ProcessProperties::SetPythonOSPluginPath (const FileSpec &file) { const uint32_t idx = ePropertyPythonOSPluginPath; m_collection_sp->SetPropertyAtIndexAsFileSpec(NULL, idx, file); } bool ProcessProperties::GetIgnoreBreakpointsInExpressions () const { const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; return m_collection_sp->GetPropertyAtIndexAsBoolean(NULL, idx, g_properties[idx].default_uint_value != 0); } void ProcessProperties::SetIgnoreBreakpointsInExpressions (bool ignore) { const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; m_collection_sp->SetPropertyAtIndexAsBoolean(NULL, idx, ignore); } bool ProcessProperties::GetUnwindOnErrorInExpressions () const { const uint32_t idx = ePropertyUnwindOnErrorInExpressions; return m_collection_sp->GetPropertyAtIndexAsBoolean(NULL, idx, g_properties[idx].default_uint_value != 0); } void ProcessProperties::SetUnwindOnErrorInExpressions (bool ignore) { const uint32_t idx = ePropertyUnwindOnErrorInExpressions; m_collection_sp->SetPropertyAtIndexAsBoolean(NULL, idx, ignore); } bool ProcessProperties::GetStopOnSharedLibraryEvents () const { const uint32_t idx = ePropertyStopOnSharedLibraryEvents; return m_collection_sp->GetPropertyAtIndexAsBoolean(NULL, idx, g_properties[idx].default_uint_value != 0); } void ProcessProperties::SetStopOnSharedLibraryEvents (bool stop) { const uint32_t idx = ePropertyStopOnSharedLibraryEvents; m_collection_sp->SetPropertyAtIndexAsBoolean(NULL, idx, stop); } bool ProcessProperties::GetDetachKeepsStopped () const { const uint32_t idx = ePropertyDetachKeepsStopped; return m_collection_sp->GetPropertyAtIndexAsBoolean(NULL, idx, g_properties[idx].default_uint_value != 0); } void ProcessProperties::SetDetachKeepsStopped (bool stop) { const uint32_t idx = ePropertyDetachKeepsStopped; m_collection_sp->SetPropertyAtIndexAsBoolean(NULL, idx, stop); } void ProcessInstanceInfo::Dump (Stream &s, Platform *platform) const { const char *cstr; if (m_pid != LLDB_INVALID_PROCESS_ID) s.Printf (" pid = %" PRIu64 "\n", m_pid); if (m_parent_pid != LLDB_INVALID_PROCESS_ID) s.Printf (" parent = %" PRIu64 "\n", m_parent_pid); if (m_executable) { s.Printf (" name = %s\n", m_executable.GetFilename().GetCString()); s.PutCString (" file = "); m_executable.Dump(&s); s.EOL(); } const uint32_t argc = m_arguments.GetArgumentCount(); if (argc > 0) { for (uint32_t i=0; i<argc; i++) { const char *arg = m_arguments.GetArgumentAtIndex(i); if (i < 10) s.Printf (" arg[%u] = %s\n", i, arg); else s.Printf ("arg[%u] = %s\n", i, arg); } } const uint32_t envc = m_environment.GetArgumentCount(); if (envc > 0) { for (uint32_t i=0; i<envc; i++) { const char *env = m_environment.GetArgumentAtIndex(i); if (i < 10) s.Printf (" env[%u] = %s\n", i, env); else s.Printf ("env[%u] = %s\n", i, env); } } if (m_arch.IsValid()) s.Printf (" arch = %s\n", m_arch.GetTriple().str().c_str()); if (m_uid != UINT32_MAX) { cstr = platform->GetUserName (m_uid); s.Printf (" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); } if (m_gid != UINT32_MAX) { cstr = platform->GetGroupName (m_gid); s.Printf (" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); } if (m_euid != UINT32_MAX) { cstr = platform->GetUserName (m_euid); s.Printf (" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); } if (m_egid != UINT32_MAX) { cstr = platform->GetGroupName (m_egid); s.Printf (" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); } } void ProcessInstanceInfo::DumpTableHeader (Stream &s, Platform *platform, bool show_args, bool verbose) { const char *label; if (show_args || verbose) label = "ARGUMENTS"; else label = "NAME"; if (verbose) { s.Printf ("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE %s\n", label); s.PutCString ("====== ====== ========== ========== ========== ========== ======================== ============================\n"); } else { s.Printf ("PID PARENT USER ARCH %s\n", label); s.PutCString ("====== ====== ========== ======= ============================\n"); } } void ProcessInstanceInfo::DumpAsTableRow (Stream &s, Platform *platform, bool show_args, bool verbose) const { if (m_pid != LLDB_INVALID_PROCESS_ID) { const char *cstr; s.Printf ("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); if (verbose) { cstr = platform->GetUserName (m_uid); if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed s.Printf ("%-10s ", cstr); else s.Printf ("%-10u ", m_uid); cstr = platform->GetGroupName (m_gid); if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed s.Printf ("%-10s ", cstr); else s.Printf ("%-10u ", m_gid); cstr = platform->GetUserName (m_euid); if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed s.Printf ("%-10s ", cstr); else s.Printf ("%-10u ", m_euid); cstr = platform->GetGroupName (m_egid); if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed s.Printf ("%-10s ", cstr); else s.Printf ("%-10u ", m_egid); s.Printf ("%-24s ", m_arch.IsValid() ? m_arch.GetTriple().str().c_str() : ""); } else { s.Printf ("%-10s %-7d %s ", platform->GetUserName (m_euid), (int)m_arch.GetTriple().getArchName().size(), m_arch.GetTriple().getArchName().data()); } if (verbose || show_args) { const uint32_t argc = m_arguments.GetArgumentCount(); if (argc > 0) { for (uint32_t i=0; i<argc; i++) { if (i > 0) s.PutChar (' '); s.PutCString (m_arguments.GetArgumentAtIndex(i)); } } } else { s.PutCString (GetName()); } s.EOL(); } } void ProcessInfo::SetArguments (char const **argv, bool first_arg_is_executable) { m_arguments.SetArguments (argv); // Is the first argument the executable? if (first_arg_is_executable) { const char *first_arg = m_arguments.GetArgumentAtIndex (0); if (first_arg) { // Yes the first argument is an executable, set it as the executable // in the launch options. Don't resolve the file path as the path // could be a remote platform path const bool resolve = false; m_executable.SetFile(first_arg, resolve); } } } void ProcessInfo::SetArguments (const Args& args, bool first_arg_is_executable) { // Copy all arguments m_arguments = args; // Is the first argument the executable? if (first_arg_is_executable) { const char *first_arg = m_arguments.GetArgumentAtIndex (0); if (first_arg) { // Yes the first argument is an executable, set it as the executable // in the launch options. Don't resolve the file path as the path // could be a remote platform path const bool resolve = false; m_executable.SetFile(first_arg, resolve); } } } void ProcessLaunchInfo::FinalizeFileActions (Target *target, bool default_to_use_pty) { // If notthing was specified, then check the process for any default // settings that were set with "settings set" if (m_file_actions.empty()) { if (m_flags.Test(eLaunchFlagDisableSTDIO)) { AppendSuppressFileAction (STDIN_FILENO , true, false); AppendSuppressFileAction (STDOUT_FILENO, false, true); AppendSuppressFileAction (STDERR_FILENO, false, true); } else { // Check for any values that might have gotten set with any of: // (lldb) settings set target.input-path // (lldb) settings set target.output-path // (lldb) settings set target.error-path FileSpec in_path; FileSpec out_path; FileSpec err_path; if (target) { in_path = target->GetStandardInputPath(); out_path = target->GetStandardOutputPath(); err_path = target->GetStandardErrorPath(); } if (in_path || out_path || err_path) { char path[PATH_MAX]; if (in_path && in_path.GetPath(path, sizeof(path))) AppendOpenFileAction(STDIN_FILENO, path, true, false); if (out_path && out_path.GetPath(path, sizeof(path))) AppendOpenFileAction(STDOUT_FILENO, path, false, true); if (err_path && err_path.GetPath(path, sizeof(path))) AppendOpenFileAction(STDERR_FILENO, path, false, true); } else if (default_to_use_pty) { if (m_pty.OpenFirstAvailableMaster (O_RDWR|O_NOCTTY, NULL, 0)) { const char *slave_path = m_pty.GetSlaveName (NULL, 0); AppendOpenFileAction(STDIN_FILENO, slave_path, true, false); AppendOpenFileAction(STDOUT_FILENO, slave_path, false, true); AppendOpenFileAction(STDERR_FILENO, slave_path, false, true); } } } } } bool ProcessLaunchInfo::ConvertArgumentsForLaunchingInShell (Error &error, bool localhost, bool will_debug, bool first_arg_is_full_shell_command) { error.Clear(); if (GetFlags().Test (eLaunchFlagLaunchInShell)) { const char *shell_executable = GetShell(); if (shell_executable) { char shell_resolved_path[PATH_MAX]; if (localhost) { FileSpec shell_filespec (shell_executable, true); if (!shell_filespec.Exists()) { // Resolve the path in case we just got "bash", "sh" or "tcsh" if (!shell_filespec.ResolveExecutableLocation ()) { error.SetErrorStringWithFormat("invalid shell path '%s'", shell_executable); return false; } } shell_filespec.GetPath (shell_resolved_path, sizeof(shell_resolved_path)); shell_executable = shell_resolved_path; } const char **argv = GetArguments().GetConstArgumentVector (); if (argv == NULL || argv[0] == NULL) return false; Args shell_arguments; std::string safe_arg; shell_arguments.AppendArgument (shell_executable); shell_arguments.AppendArgument ("-c"); StreamString shell_command; if (will_debug) { // Add a modified PATH environment variable in case argv[0] // is a relative path const char *argv0 = argv[0]; if (argv0 && (argv0[0] != '/' && argv0[0] != '~')) { // We have a relative path to our executable which may not work if // we just try to run "a.out" (without it being converted to "./a.out") const char *working_dir = GetWorkingDirectory(); // Be sure to put quotes around PATH's value in case any paths have spaces... std::string new_path("PATH=\""); const size_t empty_path_len = new_path.size(); if (working_dir && working_dir[0]) { new_path += working_dir; } else { char current_working_dir[PATH_MAX]; const char *cwd = getcwd(current_working_dir, sizeof(current_working_dir)); if (cwd && cwd[0]) new_path += cwd; } const char *curr_path = getenv("PATH"); if (curr_path) { if (new_path.size() > empty_path_len) new_path += ':'; new_path += curr_path; } new_path += "\" "; shell_command.PutCString(new_path.c_str()); } shell_command.PutCString ("exec"); // Only Apple supports /usr/bin/arch being able to specify the architecture if (GetArchitecture().IsValid()) { shell_command.Printf(" /usr/bin/arch -arch %s", GetArchitecture().GetArchitectureName()); // Set the resume count to 2: // 1 - stop in shell // 2 - stop in /usr/bin/arch // 3 - then we will stop in our program SetResumeCount(2); } else { // Set the resume count to 1: // 1 - stop in shell // 2 - then we will stop in our program SetResumeCount(1); } } if (first_arg_is_full_shell_command) { // There should only be one argument that is the shell command itself to be used as is if (argv[0] && !argv[1]) shell_command.Printf("%s", argv[0]); else return false; } else { for (size_t i=0; argv[i] != NULL; ++i) { const char *arg = Args::GetShellSafeArgument (argv[i], safe_arg); shell_command.Printf(" %s", arg); } } shell_arguments.AppendArgument (shell_command.GetString().c_str()); m_executable.SetFile(shell_executable, false); m_arguments = shell_arguments; return true; } else { error.SetErrorString ("invalid shell path"); } } else { error.SetErrorString ("not launching in shell"); } return false; } bool ProcessLaunchInfo::FileAction::Open (int fd, const char *path, bool read, bool write) { if ((read || write) && fd >= 0 && path && path[0]) { m_action = eFileActionOpen; m_fd = fd; if (read && write) m_arg = O_NOCTTY | O_CREAT | O_RDWR; else if (read) m_arg = O_NOCTTY | O_RDONLY; else m_arg = O_NOCTTY | O_CREAT | O_WRONLY; m_path.assign (path); return true; } else { Clear(); } return false; } bool ProcessLaunchInfo::FileAction::Close (int fd) { Clear(); if (fd >= 0) { m_action = eFileActionClose; m_fd = fd; } return m_fd >= 0; } bool ProcessLaunchInfo::FileAction::Duplicate (int fd, int dup_fd) { Clear(); if (fd >= 0 && dup_fd >= 0) { m_action = eFileActionDuplicate; m_fd = fd; m_arg = dup_fd; } return m_fd >= 0; } bool ProcessLaunchInfo::FileAction::AddPosixSpawnFileAction (posix_spawn_file_actions_t *file_actions, const FileAction *info, Log *log, Error& error) { if (info == NULL) return false; switch (info->m_action) { case eFileActionNone: error.Clear(); break; case eFileActionClose: if (info->m_fd == -1) error.SetErrorString ("invalid fd for posix_spawn_file_actions_addclose(...)"); else { error.SetError (::posix_spawn_file_actions_addclose (file_actions, info->m_fd), eErrorTypePOSIX); if (log && (error.Fail() || log)) error.PutToLog(log, "posix_spawn_file_actions_addclose (action=%p, fd=%i)", file_actions, info->m_fd); } break; case eFileActionDuplicate: if (info->m_fd == -1) error.SetErrorString ("invalid fd for posix_spawn_file_actions_adddup2(...)"); else if (info->m_arg == -1) error.SetErrorString ("invalid duplicate fd for posix_spawn_file_actions_adddup2(...)"); else { error.SetError (::posix_spawn_file_actions_adddup2 (file_actions, info->m_fd, info->m_arg), eErrorTypePOSIX); if (log && (error.Fail() || log)) error.PutToLog(log, "posix_spawn_file_actions_adddup2 (action=%p, fd=%i, dup_fd=%i)", file_actions, info->m_fd, info->m_arg); } break; case eFileActionOpen: if (info->m_fd == -1) error.SetErrorString ("invalid fd in posix_spawn_file_actions_addopen(...)"); else { int oflag = info->m_arg; mode_t mode = 0; if (oflag & O_CREAT) mode = 0640; error.SetError (::posix_spawn_file_actions_addopen (file_actions, info->m_fd, info->m_path.c_str(), oflag, mode), eErrorTypePOSIX); if (error.Fail() || log) error.PutToLog(log, "posix_spawn_file_actions_addopen (action=%p, fd=%i, path='%s', oflag=%i, mode=%i)", file_actions, info->m_fd, info->m_path.c_str(), oflag, mode); } break; } return error.Success(); } Error ProcessLaunchCommandOptions::SetOptionValue (uint32_t option_idx, const char *option_arg) { Error error; const int short_option = m_getopt_table[option_idx].val; switch (short_option) { case 's': // Stop at program entry point launch_info.GetFlags().Set (eLaunchFlagStopAtEntry); break; case 'i': // STDIN for read only { ProcessLaunchInfo::FileAction action; if (action.Open (STDIN_FILENO, option_arg, true, false)) launch_info.AppendFileAction (action); } break; case 'o': // Open STDOUT for write only { ProcessLaunchInfo::FileAction action; if (action.Open (STDOUT_FILENO, option_arg, false, true)) launch_info.AppendFileAction (action); } break; case 'e': // STDERR for write only { ProcessLaunchInfo::FileAction action; if (action.Open (STDERR_FILENO, option_arg, false, true)) launch_info.AppendFileAction (action); } break; case 'p': // Process plug-in name launch_info.SetProcessPluginName (option_arg); break; case 'n': // Disable STDIO { ProcessLaunchInfo::FileAction action; if (action.Open (STDIN_FILENO, "/dev/null", true, false)) launch_info.AppendFileAction (action); if (action.Open (STDOUT_FILENO, "/dev/null", false, true)) launch_info.AppendFileAction (action); if (action.Open (STDERR_FILENO, "/dev/null", false, true)) launch_info.AppendFileAction (action); } break; case 'w': launch_info.SetWorkingDirectory (option_arg); break; case 't': // Open process in new terminal window launch_info.GetFlags().Set (eLaunchFlagLaunchInTTY); break; case 'a': if (!launch_info.GetArchitecture().SetTriple (option_arg, m_interpreter.GetPlatform(true).get())) launch_info.GetArchitecture().SetTriple (option_arg); break; case 'A': launch_info.GetFlags().Set (eLaunchFlagDisableASLR); break; case 'c': if (option_arg && option_arg[0]) launch_info.SetShell (option_arg); else launch_info.SetShell ("/bin/bash"); break; case 'v': launch_info.GetEnvironmentEntries().AppendArgument(option_arg); break; default: error.SetErrorStringWithFormat("unrecognized short option character '%c'", short_option); break; } return error; } OptionDefinition ProcessLaunchCommandOptions::g_option_table[] = { { LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', no_argument, NULL, 0, eArgTypeNone, "Stop at the entry point of the program when launching a process."}, { LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', no_argument, NULL, 0, eArgTypeNone, "Disable address space layout randomization when launching a process."}, { LLDB_OPT_SET_ALL, false, "plugin", 'p', required_argument, NULL, 0, eArgTypePlugin, "Name of the process plugin you want to use."}, { LLDB_OPT_SET_ALL, false, "working-dir", 'w', required_argument, NULL, 0, eArgTypeDirectoryName, "Set the current working directory to <path> when running the inferior."}, { LLDB_OPT_SET_ALL, false, "arch", 'a', required_argument, NULL, 0, eArgTypeArchitecture, "Set the architecture for the process to launch when ambiguous."}, { LLDB_OPT_SET_ALL, false, "environment", 'v', required_argument, NULL, 0, eArgTypeNone, "Specify an environment variable name/value stirng (--environement NAME=VALUE). Can be specified multiple times for subsequent environment entries."}, { LLDB_OPT_SET_ALL, false, "shell", 'c', optional_argument, NULL, 0, eArgTypeFilename, "Run the process in a shell (not supported on all platforms)."}, { LLDB_OPT_SET_1 , false, "stdin", 'i', required_argument, NULL, 0, eArgTypeFilename, "Redirect stdin for the process to <filename>."}, { LLDB_OPT_SET_1 , false, "stdout", 'o', required_argument, NULL, 0, eArgTypeFilename, "Redirect stdout for the process to <filename>."}, { LLDB_OPT_SET_1 , false, "stderr", 'e', required_argument, NULL, 0, eArgTypeFilename, "Redirect stderr for the process to <filename>."}, { LLDB_OPT_SET_2 , false, "tty", 't', no_argument, NULL, 0, eArgTypeNone, "Start the process in a terminal (not supported on all platforms)."}, { LLDB_OPT_SET_3 , false, "no-stdio", 'n', no_argument, NULL, 0, eArgTypeNone, "Do not set up for terminal I/O to go to running process."}, { 0 , false, NULL, 0, 0, NULL, 0, eArgTypeNone, NULL } }; bool ProcessInstanceInfoMatch::NameMatches (const char *process_name) const { if (m_name_match_type == eNameMatchIgnore || process_name == NULL) return true; const char *match_name = m_match_info.GetName(); if (!match_name) return true; return lldb_private::NameMatches (process_name, m_name_match_type, match_name); } bool ProcessInstanceInfoMatch::Matches (const ProcessInstanceInfo &proc_info) const { if (!NameMatches (proc_info.GetName())) return false; if (m_match_info.ProcessIDIsValid() && m_match_info.GetProcessID() != proc_info.GetProcessID()) return false; if (m_match_info.ParentProcessIDIsValid() && m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) return false; if (m_match_info.UserIDIsValid () && m_match_info.GetUserID() != proc_info.GetUserID()) return false; if (m_match_info.GroupIDIsValid () && m_match_info.GetGroupID() != proc_info.GetGroupID()) return false; if (m_match_info.EffectiveUserIDIsValid () && m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) return false; if (m_match_info.EffectiveGroupIDIsValid () && m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) return false; if (m_match_info.GetArchitecture().IsValid() && !m_match_info.GetArchitecture().IsCompatibleMatch(proc_info.GetArchitecture())) return false; return true; } bool ProcessInstanceInfoMatch::MatchAllProcesses () const { if (m_name_match_type != eNameMatchIgnore) return false; if (m_match_info.ProcessIDIsValid()) return false; if (m_match_info.ParentProcessIDIsValid()) return false; if (m_match_info.UserIDIsValid ()) return false; if (m_match_info.GroupIDIsValid ()) return false; if (m_match_info.EffectiveUserIDIsValid ()) return false; if (m_match_info.EffectiveGroupIDIsValid ()) return false; if (m_match_info.GetArchitecture().IsValid()) return false; if (m_match_all_users) return false; return true; } void ProcessInstanceInfoMatch::Clear() { m_match_info.Clear(); m_name_match_type = eNameMatchIgnore; m_match_all_users = false; } ProcessSP Process::FindPlugin (Target &target, const char *plugin_name, Listener &listener, const FileSpec *crash_file_path) { static uint32_t g_process_unique_id = 0; ProcessSP process_sp; ProcessCreateInstance create_callback = NULL; if (plugin_name) { ConstString const_plugin_name(plugin_name); create_callback = PluginManager::GetProcessCreateCallbackForPluginName (const_plugin_name); if (create_callback) { process_sp = create_callback(target, listener, crash_file_path); if (process_sp) { if (process_sp->CanDebug(target, true)) { process_sp->m_process_unique_id = ++g_process_unique_id; } else process_sp.reset(); } } } else { for (uint32_t idx = 0; (create_callback = PluginManager::GetProcessCreateCallbackAtIndex(idx)) != NULL; ++idx) { process_sp = create_callback(target, listener, crash_file_path); if (process_sp) { if (process_sp->CanDebug(target, false)) { process_sp->m_process_unique_id = ++g_process_unique_id; break; } else process_sp.reset(); } } } return process_sp; } ConstString & Process::GetStaticBroadcasterClass () { static ConstString class_name ("lldb.process"); return class_name; } //---------------------------------------------------------------------- // Process constructor //---------------------------------------------------------------------- Process::Process(Target &target, Listener &listener) : ProcessProperties (false), UserID (LLDB_INVALID_PROCESS_ID), Broadcaster (&(target.GetDebugger()), "lldb.process"), m_target (target), m_public_state (eStateUnloaded), m_private_state (eStateUnloaded), m_private_state_broadcaster (NULL, "lldb.process.internal_state_broadcaster"), m_private_state_control_broadcaster (NULL, "lldb.process.internal_state_control_broadcaster"), m_private_state_listener ("lldb.process.internal_state_listener"), m_private_state_control_wait(), m_private_state_thread (LLDB_INVALID_HOST_THREAD), m_mod_id (), m_process_unique_id(0), m_thread_index_id (0), m_thread_id_to_index_id_map (), m_exit_status (-1), m_exit_string (), m_thread_mutex (Mutex::eMutexTypeRecursive), m_thread_list_real (this), m_thread_list (this), m_notifications (), m_image_tokens (), m_listener (listener), m_breakpoint_site_list (), m_dynamic_checkers_ap (), m_unix_signals (), m_abi_sp (), m_process_input_reader (), m_stdio_communication ("process.stdio"), m_stdio_communication_mutex (Mutex::eMutexTypeRecursive), m_stdout_data (), m_stderr_data (), m_profile_data_comm_mutex (Mutex::eMutexTypeRecursive), m_profile_data (), m_memory_cache (*this), m_allocated_memory_cache (*this), m_should_detach (false), m_next_event_action_ap(), m_public_run_lock (), m_private_run_lock (), m_currently_handling_event(false), m_finalize_called(false), m_clear_thread_plans_on_stop (false), m_last_broadcast_state (eStateInvalid), m_destroy_in_process (false), m_can_jit(eCanJITDontKnow) { CheckInWithManager (); Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT)); if (log) log->Printf ("%p Process::Process()", this); SetEventName (eBroadcastBitStateChanged, "state-changed"); SetEventName (eBroadcastBitInterrupt, "interrupt"); SetEventName (eBroadcastBitSTDOUT, "stdout-available"); SetEventName (eBroadcastBitSTDERR, "stderr-available"); SetEventName (eBroadcastBitProfileData, "profile-data-available"); m_private_state_control_broadcaster.SetEventName (eBroadcastInternalStateControlStop , "control-stop" ); m_private_state_control_broadcaster.SetEventName (eBroadcastInternalStateControlPause , "control-pause" ); m_private_state_control_broadcaster.SetEventName (eBroadcastInternalStateControlResume, "control-resume"); listener.StartListeningForEvents (this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | eBroadcastBitSTDOUT | eBroadcastBitSTDERR | eBroadcastBitProfileData); m_private_state_listener.StartListeningForEvents(&m_private_state_broadcaster, eBroadcastBitStateChanged | eBroadcastBitInterrupt); m_private_state_listener.StartListeningForEvents(&m_private_state_control_broadcaster, eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | eBroadcastInternalStateControlResume); } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- Process::~Process() { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT)); if (log) log->Printf ("%p Process::~Process()", this); StopPrivateStateThread(); } const ProcessPropertiesSP & Process::GetGlobalProperties() { static ProcessPropertiesSP g_settings_sp; if (!g_settings_sp) g_settings_sp.reset (new ProcessProperties (true)); return g_settings_sp; } void Process::Finalize() { switch (GetPrivateState()) { case eStateConnected: case eStateAttaching: case eStateLaunching: case eStateStopped: case eStateRunning: case eStateStepping: case eStateCrashed: case eStateSuspended: if (GetShouldDetach()) { // FIXME: This will have to be a process setting: bool keep_stopped = false; Detach(keep_stopped); } else Destroy(); break; case eStateInvalid: case eStateUnloaded: case eStateDetached: case eStateExited: break; } // Clear our broadcaster before we proceed with destroying Broadcaster::Clear(); // Do any cleanup needed prior to being destructed... Subclasses // that override this method should call this superclass method as well. // We need to destroy the loader before the derived Process class gets destroyed // since it is very likely that undoing the loader will require access to the real process. m_dynamic_checkers_ap.reset(); m_abi_sp.reset(); m_os_ap.reset(); m_dyld_ap.reset(); m_thread_list_real.Destroy(); m_thread_list.Destroy(); std::vector<Notifications> empty_notifications; m_notifications.swap(empty_notifications); m_image_tokens.clear(); m_memory_cache.Clear(); m_allocated_memory_cache.Clear(); m_language_runtimes.clear(); m_next_event_action_ap.reset(); //#ifdef LLDB_CONFIGURATION_DEBUG // StreamFile s(stdout, false); // EventSP event_sp; // while (m_private_state_listener.GetNextEvent(event_sp)) // { // event_sp->Dump (&s); // s.EOL(); // } //#endif // We have to be very careful here as the m_private_state_listener might // contain events that have ProcessSP values in them which can keep this // process around forever. These events need to be cleared out. m_private_state_listener.Clear(); m_public_run_lock.TrySetRunning(); // This will do nothing if already locked m_public_run_lock.SetStopped(); m_private_run_lock.TrySetRunning(); // This will do nothing if already locked m_private_run_lock.SetStopped(); m_finalize_called = true; } void Process::RegisterNotificationCallbacks (const Notifications& callbacks) { m_notifications.push_back(callbacks); if (callbacks.initialize != NULL) callbacks.initialize (callbacks.baton, this); } bool Process::UnregisterNotificationCallbacks(const Notifications& callbacks) { std::vector<Notifications>::iterator pos, end = m_notifications.end(); for (pos = m_notifications.begin(); pos != end; ++pos) { if (pos->baton == callbacks.baton && pos->initialize == callbacks.initialize && pos->process_state_changed == callbacks.process_state_changed) { m_notifications.erase(pos); return true; } } return false; } void Process::SynchronouslyNotifyStateChanged (StateType state) { std::vector<Notifications>::iterator notification_pos, notification_end = m_notifications.end(); for (notification_pos = m_notifications.begin(); notification_pos != notification_end; ++notification_pos) { if (notification_pos->process_state_changed) notification_pos->process_state_changed (notification_pos->baton, this, state); } } // FIXME: We need to do some work on events before the general Listener sees them. // For instance if we are continuing from a breakpoint, we need to ensure that we do // the little "insert real insn, step & stop" trick. But we can't do that when the // event is delivered by the broadcaster - since that is done on the thread that is // waiting for new events, so if we needed more than one event for our handling, we would // stall. So instead we do it when we fetch the event off of the queue. // StateType Process::GetNextEvent (EventSP &event_sp) { StateType state = eStateInvalid; if (m_listener.GetNextEventForBroadcaster (this, event_sp) && event_sp) state = Process::ProcessEventData::GetStateFromEvent (event_sp.get()); return state; } StateType Process::WaitForProcessToStop (const TimeValue *timeout, lldb::EventSP *event_sp_ptr) { // We can't just wait for a "stopped" event, because the stopped event may have restarted the target. // We have to actually check each event, and in the case of a stopped event check the restarted flag // on the event. if (event_sp_ptr) event_sp_ptr->reset(); StateType state = GetState(); // If we are exited or detached, we won't ever get back to any // other valid state... if (state == eStateDetached || state == eStateExited) return state; while (state != eStateInvalid) { EventSP event_sp; state = WaitForStateChangedEvents (timeout, event_sp); if (event_sp_ptr && event_sp) *event_sp_ptr = event_sp; switch (state) { case eStateCrashed: case eStateDetached: case eStateExited: case eStateUnloaded: return state; case eStateStopped: if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) continue; else return state; default: continue; } } return state; } StateType Process::WaitForState ( const TimeValue *timeout, const StateType *match_states, const uint32_t num_match_states ) { EventSP event_sp; uint32_t i; StateType state = GetState(); while (state != eStateInvalid) { // If we are exited or detached, we won't ever get back to any // other valid state... if (state == eStateDetached || state == eStateExited) return state; state = WaitForStateChangedEvents (timeout, event_sp); for (i=0; i<num_match_states; ++i) { if (match_states[i] == state) return state; } } return state; } bool Process::HijackProcessEvents (Listener *listener) { if (listener != NULL) { return HijackBroadcaster(listener, eBroadcastBitStateChanged | eBroadcastBitInterrupt); } else return false; } void Process::RestoreProcessEvents () { RestoreBroadcaster(); } bool Process::HijackPrivateProcessEvents (Listener *listener) { if (listener != NULL) { return m_private_state_broadcaster.HijackBroadcaster(listener, eBroadcastBitStateChanged | eBroadcastBitInterrupt); } else return false; } void Process::RestorePrivateProcessEvents () { m_private_state_broadcaster.RestoreBroadcaster(); } StateType Process::WaitForStateChangedEvents (const TimeValue *timeout, EventSP &event_sp) { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, timeout); StateType state = eStateInvalid; if (m_listener.WaitForEventForBroadcasterWithType (timeout, this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp)) { if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); else if (log) log->Printf ("Process::%s got no event or was interrupted.", __FUNCTION__); } if (log) log->Printf ("Process::%s (timeout = %p, event_sp) => %s", __FUNCTION__, timeout, StateAsCString(state)); return state; } Event * Process::PeekAtStateChangedEvents () { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("Process::%s...", __FUNCTION__); Event *event_ptr; event_ptr = m_listener.PeekAtNextEventForBroadcasterWithType (this, eBroadcastBitStateChanged); if (log) { if (event_ptr) { log->Printf ("Process::%s (event_ptr) => %s", __FUNCTION__, StateAsCString(ProcessEventData::GetStateFromEvent (event_ptr))); } else { log->Printf ("Process::%s no events found", __FUNCTION__); } } return event_ptr; } StateType Process::WaitForStateChangedEventsPrivate (const TimeValue *timeout, EventSP &event_sp) { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, timeout); StateType state = eStateInvalid; if (m_private_state_listener.WaitForEventForBroadcasterWithType (timeout, &m_private_state_broadcaster, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp)) if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); // This is a bit of a hack, but when we wait here we could very well return // to the command-line, and that could disable the log, which would render the // log we got above invalid. if (log) { if (state == eStateInvalid) log->Printf ("Process::%s (timeout = %p, event_sp) => TIMEOUT", __FUNCTION__, timeout); else log->Printf ("Process::%s (timeout = %p, event_sp) => %s", __FUNCTION__, timeout, StateAsCString(state)); } return state; } bool Process::WaitForEventsPrivate (const TimeValue *timeout, EventSP &event_sp, bool control_only) { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, timeout); if (control_only) return m_private_state_listener.WaitForEventForBroadcaster(timeout, &m_private_state_control_broadcaster, event_sp); else return m_private_state_listener.WaitForEvent(timeout, event_sp); } bool Process::IsRunning () const { return StateIsRunningState (m_public_state.GetValue()); } int Process::GetExitStatus () { if (m_public_state.GetValue() == eStateExited) return m_exit_status; return -1; } const char * Process::GetExitDescription () { if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) return m_exit_string.c_str(); return NULL; } bool Process::SetExitStatus (int status, const char *cstr) { Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); if (log) log->Printf("Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); // We were already in the exited state if (m_private_state.GetValue() == eStateExited) { if (log) log->Printf("Process::SetExitStatus () ignoring exit status because state was already set to eStateExited"); return false; } m_exit_status = status; if (cstr) m_exit_string = cstr; else m_exit_string.clear(); DidExit (); SetPrivateState (eStateExited); return true; } // This static callback can be used to watch for local child processes on // the current host. The the child process exits, the process will be // found in the global target list (we want to be completely sure that the // lldb_private::Process doesn't go away before we can deliver the signal. bool Process::SetProcessExitStatus (void *callback_baton, lldb::pid_t pid, bool exited, int signo, // Zero for no signal int exit_status // Exit value of process if signal is zero ) { Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("Process::SetProcessExitStatus (baton=%p, pid=%" PRIu64 ", exited=%i, signal=%i, exit_status=%i)\n", callback_baton, pid, exited, signo, exit_status); if (exited) { TargetSP target_sp(Debugger::FindTargetWithProcessID (pid)); if (target_sp) { ProcessSP process_sp (target_sp->GetProcessSP()); if (process_sp) { const char *signal_cstr = NULL; if (signo) signal_cstr = process_sp->GetUnixSignals().GetSignalAsCString (signo); process_sp->SetExitStatus (exit_status, signal_cstr); } } return true; } return false; } void Process::UpdateThreadListIfNeeded () { const uint32_t stop_id = GetStopID(); if (m_thread_list.GetSize(false) == 0 || stop_id != m_thread_list.GetStopID()) { const StateType state = GetPrivateState(); if (StateIsStoppedState (state, true)) { Mutex::Locker locker (m_thread_list.GetMutex ()); // m_thread_list does have its own mutex, but we need to // hold onto the mutex between the call to UpdateThreadList(...) // and the os->UpdateThreadList(...) so it doesn't change on us ThreadList &old_thread_list = m_thread_list; ThreadList real_thread_list(this); ThreadList new_thread_list(this); // Always update the thread list with the protocol specific // thread list, but only update if "true" is returned if (UpdateThreadList (m_thread_list_real, real_thread_list)) { // Don't call into the OperatingSystem to update the thread list if we are shutting down, since // that may call back into the SBAPI's, requiring the API lock which is already held by whoever is // shutting us down, causing a deadlock. if (!m_destroy_in_process) { OperatingSystem *os = GetOperatingSystem (); if (os) { // Clear any old backing threads where memory threads might have been // backed by actual threads from the lldb_private::Process subclass size_t num_old_threads = old_thread_list.GetSize(false); for (size_t i=0; i<num_old_threads; ++i) old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); // Now let the OperatingSystem plug-in update the thread list os->UpdateThreadList (old_thread_list, // Old list full of threads created by OS plug-in real_thread_list, // The actual thread list full of threads created by each lldb_private::Process subclass new_thread_list); // The new thread list that we will show to the user that gets filled in } else { // No OS plug-in, the new thread list is the same as the real thread list new_thread_list = real_thread_list; } } m_thread_list_real.Update(real_thread_list); m_thread_list.Update (new_thread_list); m_thread_list.SetStopID (stop_id); } } } } ThreadSP Process::CreateOSPluginThread (lldb::tid_t tid, lldb::addr_t context) { OperatingSystem *os = GetOperatingSystem (); if (os) return os->CreateThread(tid, context); return ThreadSP(); } uint32_t Process::GetNextThreadIndexID (uint64_t thread_id) { return AssignIndexIDToThread(thread_id); } bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { std::map<uint64_t, uint32_t>::iterator iterator = m_thread_id_to_index_id_map.find(thread_id); if (iterator == m_thread_id_to_index_id_map.end()) { return false; } else { return true; } } uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { uint32_t result = 0; std::map<uint64_t, uint32_t>::iterator iterator = m_thread_id_to_index_id_map.find(thread_id); if (iterator == m_thread_id_to_index_id_map.end()) { result = ++m_thread_index_id; m_thread_id_to_index_id_map[thread_id] = result; } else { result = iterator->second; } return result; } StateType Process::GetState() { // If any other threads access this we will need a mutex for it return m_public_state.GetValue (); } void Process::SetPublicState (StateType new_state, bool restarted) { Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); if (log) log->Printf("Process::SetPublicState (state = %s, restarted = %i)", StateAsCString(new_state), restarted); const StateType old_state = m_public_state.GetValue(); m_public_state.SetValue (new_state); // On the transition from Run to Stopped, we unlock the writer end of the // run lock. The lock gets locked in Resume, which is the public API // to tell the program to run. if (!IsHijackedForEvent(eBroadcastBitStateChanged)) { if (new_state == eStateDetached) { if (log) log->Printf("Process::SetPublicState (%s) -- unlocking run lock for detach", StateAsCString(new_state)); m_public_run_lock.SetStopped(); } else { const bool old_state_is_stopped = StateIsStoppedState(old_state, false); const bool new_state_is_stopped = StateIsStoppedState(new_state, false); if ((old_state_is_stopped != new_state_is_stopped)) { if (new_state_is_stopped && !restarted) { if (log) log->Printf("Process::SetPublicState (%s) -- unlocking run lock", StateAsCString(new_state)); m_public_run_lock.SetStopped(); } } } } } Error Process::Resume () { Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); if (log) log->Printf("Process::Resume -- locking run lock"); if (!m_public_run_lock.TrySetRunning()) { Error error("Resume request failed - process still running."); if (log) log->Printf ("Process::Resume: -- TrySetRunning failed, not resuming."); return error; } return PrivateResume(); } StateType Process::GetPrivateState () { return m_private_state.GetValue(); } void Process::SetPrivateState (StateType new_state) { Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); bool state_changed = false; if (log) log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); Mutex::Locker thread_locker(m_thread_list.GetMutex()); Mutex::Locker locker(m_private_state.GetMutex()); const StateType old_state = m_private_state.GetValueNoLock (); state_changed = old_state != new_state; const bool old_state_is_stopped = StateIsStoppedState(old_state, false); const bool new_state_is_stopped = StateIsStoppedState(new_state, false); if (old_state_is_stopped != new_state_is_stopped) { if (new_state_is_stopped) m_private_run_lock.SetStopped(); else m_private_run_lock.SetRunning(); } if (state_changed) { m_private_state.SetValueNoLock (new_state); if (StateIsStoppedState(new_state, false)) { // Note, this currently assumes that all threads in the list // stop when the process stops. In the future we will want to // support a debugging model where some threads continue to run // while others are stopped. When that happens we will either need // a way for the thread list to identify which threads are stopping // or create a special thread list containing only threads which // actually stopped. // // The process plugin is responsible for managing the actual // behavior of the threads and should have stopped any threads // that are going to stop before we get here. m_thread_list.DidStop(); m_mod_id.BumpStopID(); m_memory_cache.Clear(); if (log) log->Printf("Process::SetPrivateState (%s) stop_id = %u", StateAsCString(new_state), m_mod_id.GetStopID()); } // Use our target to get a shared pointer to ourselves... if (m_finalize_called && PrivateStateThreadIsValid() == false) BroadcastEvent (eBroadcastBitStateChanged, new ProcessEventData (shared_from_this(), new_state)); else m_private_state_broadcaster.BroadcastEvent (eBroadcastBitStateChanged, new ProcessEventData (shared_from_this(), new_state)); } else { if (log) log->Printf("Process::SetPrivateState (%s) state didn't change. Ignoring...", StateAsCString(new_state)); } } void Process::SetRunningUserExpression (bool on) { m_mod_id.SetRunningUserExpression (on); } addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } //---------------------------------------------------------------------- // LoadImage // // This function provides a default implementation that works for most // unix variants. Any Process subclasses that need to do shared library // loading differently should override LoadImage and UnloadImage and // do what is needed. //---------------------------------------------------------------------- uint32_t Process::LoadImage (const FileSpec &image_spec, Error &error) { char path[PATH_MAX]; image_spec.GetPath(path, sizeof(path)); DynamicLoader *loader = GetDynamicLoader(); if (loader) { error = loader->CanLoadImage(); if (error.Fail()) return LLDB_INVALID_IMAGE_TOKEN; } if (error.Success()) { ThreadSP thread_sp(GetThreadList ().GetSelectedThread()); if (thread_sp) { StackFrameSP frame_sp (thread_sp->GetStackFrameAtIndex (0)); if (frame_sp) { ExecutionContext exe_ctx; frame_sp->CalculateExecutionContext (exe_ctx); const bool unwind_on_error = true; const bool ignore_breakpoints = true; StreamString expr; expr.Printf("dlopen (\"%s\", 2)", path); const char *prefix = "extern \"C\" void* dlopen (const char *path, int mode);\n"; lldb::ValueObjectSP result_valobj_sp; ClangUserExpression::Evaluate (exe_ctx, eExecutionPolicyAlways, lldb::eLanguageTypeUnknown, ClangUserExpression::eResultTypeAny, unwind_on_error, ignore_breakpoints, expr.GetData(), prefix, result_valobj_sp, true, ClangUserExpression::kDefaultTimeout); error = result_valobj_sp->GetError(); if (error.Success()) { Scalar scalar; if (result_valobj_sp->ResolveValue (scalar)) { addr_t image_ptr = scalar.ULongLong(LLDB_INVALID_ADDRESS); if (image_ptr != 0 && image_ptr != LLDB_INVALID_ADDRESS) { uint32_t image_token = m_image_tokens.size(); m_image_tokens.push_back (image_ptr); return image_token; } } } } } } if (!error.AsCString()) error.SetErrorStringWithFormat("unable to load '%s'", path); return LLDB_INVALID_IMAGE_TOKEN; } //---------------------------------------------------------------------- // UnloadImage // // This function provides a default implementation that works for most // unix variants. Any Process subclasses that need to do shared library // loading differently should override LoadImage and UnloadImage and // do what is needed. //---------------------------------------------------------------------- Error Process::UnloadImage (uint32_t image_token) { Error error; if (image_token < m_image_tokens.size()) { const addr_t image_addr = m_image_tokens[image_token]; if (image_addr == LLDB_INVALID_ADDRESS) { error.SetErrorString("image already unloaded"); } else { DynamicLoader *loader = GetDynamicLoader(); if (loader) error = loader->CanLoadImage(); if (error.Success()) { ThreadSP thread_sp(GetThreadList ().GetSelectedThread()); if (thread_sp) { StackFrameSP frame_sp (thread_sp->GetStackFrameAtIndex (0)); if (frame_sp) { ExecutionContext exe_ctx; frame_sp->CalculateExecutionContext (exe_ctx); const bool unwind_on_error = true; const bool ignore_breakpoints = true; StreamString expr; expr.Printf("dlclose ((void *)0x%" PRIx64 ")", image_addr); const char *prefix = "extern \"C\" int dlclose(void* handle);\n"; lldb::ValueObjectSP result_valobj_sp; ClangUserExpression::Evaluate (exe_ctx, eExecutionPolicyAlways, lldb::eLanguageTypeUnknown, ClangUserExpression::eResultTypeAny, unwind_on_error, ignore_breakpoints, expr.GetData(), prefix, result_valobj_sp, true, ClangUserExpression::kDefaultTimeout); if (result_valobj_sp->GetError().Success()) { Scalar scalar; if (result_valobj_sp->ResolveValue (scalar)) { if (scalar.UInt(1)) { error.SetErrorStringWithFormat("expression failed: \"%s\"", expr.GetData()); } else { m_image_tokens[image_token] = LLDB_INVALID_ADDRESS; } } } else { error = result_valobj_sp->GetError(); } } } } } } else { error.SetErrorString("invalid image token"); } return error; } const lldb::ABISP & Process::GetABI() { if (!m_abi_sp) m_abi_sp = ABI::FindPlugin(m_target.GetArchitecture()); return m_abi_sp; } LanguageRuntime * Process::GetLanguageRuntime(lldb::LanguageType language, bool retry_if_null) { LanguageRuntimeCollection::iterator pos; pos = m_language_runtimes.find (language); if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { lldb::LanguageRuntimeSP runtime_sp(LanguageRuntime::FindPlugin(this, language)); m_language_runtimes[language] = runtime_sp; return runtime_sp.get(); } else return (*pos).second.get(); } CPPLanguageRuntime * Process::GetCPPLanguageRuntime (bool retry_if_null) { LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); if (runtime != NULL && runtime->GetLanguageType() == eLanguageTypeC_plus_plus) return static_cast<CPPLanguageRuntime *> (runtime); return NULL; } ObjCLanguageRuntime * Process::GetObjCLanguageRuntime (bool retry_if_null) { LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); if (runtime != NULL && runtime->GetLanguageType() == eLanguageTypeObjC) return static_cast<ObjCLanguageRuntime *> (runtime); return NULL; } bool Process::IsPossibleDynamicValue (ValueObject& in_value) { if (in_value.IsDynamic()) return false; LanguageType known_type = in_value.GetObjectRuntimeLanguage(); if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { LanguageRuntime *runtime = GetLanguageRuntime (known_type); return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; } LanguageRuntime *cpp_runtime = GetLanguageRuntime (eLanguageTypeC_plus_plus); if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) return true; LanguageRuntime *objc_runtime = GetLanguageRuntime (eLanguageTypeObjC); return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; } BreakpointSiteList & Process::GetBreakpointSiteList() { return m_breakpoint_site_list; } const BreakpointSiteList & Process::GetBreakpointSiteList() const { return m_breakpoint_site_list; } void Process::DisableAllBreakpointSites () { m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { // bp_site->SetEnabled(true); DisableBreakpointSite(bp_site); }); } Error Process::ClearBreakpointSiteByID (lldb::user_id_t break_id) { Error error (DisableBreakpointSiteByID (break_id)); if (error.Success()) m_breakpoint_site_list.Remove(break_id); return error; } Error Process::DisableBreakpointSiteByID (lldb::user_id_t break_id) { Error error; BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id); if (bp_site_sp) { if (bp_site_sp->IsEnabled()) error = DisableBreakpointSite (bp_site_sp.get()); } else { error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); } return error; } Error Process::EnableBreakpointSiteByID (lldb::user_id_t break_id) { Error error; BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id); if (bp_site_sp) { if (!bp_site_sp->IsEnabled()) error = EnableBreakpointSite (bp_site_sp.get()); } else { error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); } return error; } lldb::break_id_t Process::CreateBreakpointSite (const BreakpointLocationSP &owner, bool use_hardware) { const addr_t load_addr = owner->GetAddress().GetOpcodeLoadAddress (&m_target); if (load_addr != LLDB_INVALID_ADDRESS) { BreakpointSiteSP bp_site_sp; // Look up this breakpoint site. If it exists, then add this new owner, otherwise // create a new breakpoint site and add it. bp_site_sp = m_breakpoint_site_list.FindByAddress (load_addr); if (bp_site_sp) { bp_site_sp->AddOwner (owner); owner->SetBreakpointSite (bp_site_sp); return bp_site_sp->GetID(); } else { bp_site_sp.reset (new BreakpointSite (&m_breakpoint_site_list, owner, load_addr, use_hardware)); if (bp_site_sp) { if (EnableBreakpointSite (bp_site_sp.get()).Success()) { owner->SetBreakpointSite (bp_site_sp); return m_breakpoint_site_list.Add (bp_site_sp); } } } } // We failed to enable the breakpoint return LLDB_INVALID_BREAK_ID; } void Process::RemoveOwnerFromBreakpointSite (lldb::user_id_t owner_id, lldb::user_id_t owner_loc_id, BreakpointSiteSP &bp_site_sp) { uint32_t num_owners = bp_site_sp->RemoveOwner (owner_id, owner_loc_id); if (num_owners == 0) { // Don't try to disable the site if we don't have a live process anymore. if (IsAlive()) DisableBreakpointSite (bp_site_sp.get()); m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); } } size_t Process::RemoveBreakpointOpcodesFromBuffer (addr_t bp_addr, size_t size, uint8_t *buf) const { size_t bytes_removed = 0; BreakpointSiteList bp_sites_in_range; if (m_breakpoint_site_list.FindInRange (bp_addr, bp_addr + size, bp_sites_in_range)) { bp_sites_in_range.ForEach([bp_addr, size, buf, &bytes_removed](BreakpointSite *bp_site) -> void { if (bp_site->GetType() == BreakpointSite::eSoftware) { addr_t intersect_addr; size_t intersect_size; size_t opcode_offset; if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, &intersect_size, &opcode_offset)) { assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); assert(bp_addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= bp_addr + size); assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); size_t buf_offset = intersect_addr - bp_addr; ::memcpy(buf + buf_offset, bp_site->GetSavedOpcodeBytes() + opcode_offset, intersect_size); } } }); } return bytes_removed; } size_t Process::GetSoftwareBreakpointTrapOpcode (BreakpointSite* bp_site) { PlatformSP platform_sp (m_target.GetPlatform()); if (platform_sp) return platform_sp->GetSoftwareBreakpointTrapOpcode (m_target, bp_site); return 0; } Error Process::EnableSoftwareBreakpoint (BreakpointSite *bp_site) { Error error; assert (bp_site != NULL); Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); const addr_t bp_addr = bp_site->GetLoadAddress(); if (log) log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, bp_site->GetID(), (uint64_t)bp_addr); if (bp_site->IsEnabled()) { if (log) log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already enabled", bp_site->GetID(), (uint64_t)bp_addr); return error; } if (bp_addr == LLDB_INVALID_ADDRESS) { error.SetErrorString("BreakpointSite contains an invalid load address."); return error; } // Ask the lldb::Process subclass to fill in the correct software breakpoint // trap for the breakpoint site const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); if (bp_opcode_size == 0) { error.SetErrorStringWithFormat ("Process::GetSoftwareBreakpointTrapOpcode() returned zero, unable to get breakpoint trap for address 0x%" PRIx64, bp_addr); } else { const uint8_t * const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); if (bp_opcode_bytes == NULL) { error.SetErrorString ("BreakpointSite doesn't contain a valid breakpoint trap opcode."); return error; } // Save the original opcode by reading it if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, error) == bp_opcode_size) { // Write a software breakpoint in place of the original opcode if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) { uint8_t verify_bp_opcode_bytes[64]; if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) { if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, bp_opcode_size) == 0) { bp_site->SetEnabled(true); bp_site->SetType (BreakpointSite::eSoftware); if (log) log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", bp_site->GetID(), (uint64_t)bp_addr); } else error.SetErrorString("failed to verify the breakpoint trap in memory."); } else error.SetErrorString("Unable to read memory to verify breakpoint trap."); } else error.SetErrorString("Unable to write breakpoint trap to memory."); } else error.SetErrorString("Unable to read memory at breakpoint address."); } if (log && error.Fail()) log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); return error; } Error Process::DisableSoftwareBreakpoint (BreakpointSite *bp_site) { Error error; assert (bp_site != NULL); Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); addr_t bp_addr = bp_site->GetLoadAddress(); lldb::user_id_t breakID = bp_site->GetID(); if (log) log->Printf ("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 ") addr = 0x%" PRIx64, breakID, (uint64_t)bp_addr); if (bp_site->IsHardware()) { error.SetErrorString("Breakpoint site is a hardware breakpoint."); } else if (bp_site->IsEnabled()) { const size_t break_op_size = bp_site->GetByteSize(); const uint8_t * const break_op = bp_site->GetTrapOpcodeBytes(); if (break_op_size > 0) { // Clear a software breakoint instruction uint8_t curr_break_op[8]; assert (break_op_size <= sizeof(curr_break_op)); bool break_op_found = false; // Read the breakpoint opcode if (DoReadMemory (bp_addr, curr_break_op, break_op_size, error) == break_op_size) { bool verify = false; // Make sure we have the a breakpoint opcode exists at this address if (::memcmp (curr_break_op, break_op, break_op_size) == 0) { break_op_found = true; // We found a valid breakpoint opcode at this address, now restore // the saved opcode. if (DoWriteMemory (bp_addr, bp_site->GetSavedOpcodeBytes(), break_op_size, error) == break_op_size) { verify = true; } else error.SetErrorString("Memory write failed when restoring original opcode."); } else { error.SetErrorString("Original breakpoint trap is no longer in memory."); // Set verify to true and so we can check if the original opcode has already been restored verify = true; } if (verify) { uint8_t verify_opcode[8]; assert (break_op_size < sizeof(verify_opcode)); // Verify that our original opcode made it back to the inferior if (DoReadMemory (bp_addr, verify_opcode, break_op_size, error) == break_op_size) { // compare the memory we just read with the original opcode if (::memcmp (bp_site->GetSavedOpcodeBytes(), verify_opcode, break_op_size) == 0) { // SUCCESS bp_site->SetEnabled(false); if (log) log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", bp_site->GetID(), (uint64_t)bp_addr); return error; } else { if (break_op_found) error.SetErrorString("Failed to restore original opcode."); } } else error.SetErrorString("Failed to read memory to verify that breakpoint trap was restored."); } } else error.SetErrorString("Unable to read memory that should contain the breakpoint trap."); } } else { if (log) log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already disabled", bp_site->GetID(), (uint64_t)bp_addr); return error; } if (log) log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); return error; } // Uncomment to verify memory caching works after making changes to caching code //#define VERIFY_MEMORY_READS size_t Process::ReadMemory (addr_t addr, void *buf, size_t size, Error &error) { if (!GetDisableMemoryCache()) { #if defined (VERIFY_MEMORY_READS) // Memory caching is enabled, with debug verification if (buf && size) { // Uncomment the line below to make sure memory caching is working. // I ran this through the test suite and got no assertions, so I am // pretty confident this is working well. If any changes are made to // memory caching, uncomment the line below and test your changes! // Verify all memory reads by using the cache first, then redundantly // reading the same memory from the inferior and comparing to make sure // everything is exactly the same. std::string verify_buf (size, '\0'); assert (verify_buf.size() == size); const size_t cache_bytes_read = m_memory_cache.Read (this, addr, buf, size, error); Error verify_error; const size_t verify_bytes_read = ReadMemoryFromInferior (addr, const_cast<char *>(verify_buf.data()), verify_buf.size(), verify_error); assert (cache_bytes_read == verify_bytes_read); assert (memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); assert (verify_error.Success() == error.Success()); return cache_bytes_read; } return 0; #else // !defined(VERIFY_MEMORY_READS) // Memory caching is enabled, without debug verification return m_memory_cache.Read (addr, buf, size, error); #endif // defined (VERIFY_MEMORY_READS) } else { // Memory caching is disabled return ReadMemoryFromInferior (addr, buf, size, error); } } size_t Process::ReadCStringFromMemory (addr_t addr, std::string &out_str, Error &error) { char buf[256]; out_str.clear(); addr_t curr_addr = addr; while (1) { size_t length = ReadCStringFromMemory (curr_addr, buf, sizeof(buf), error); if (length == 0) break; out_str.append(buf, length); // If we got "length - 1" bytes, we didn't get the whole C string, we // need to read some more characters if (length == sizeof(buf) - 1) curr_addr += length; else break; } return out_str.size(); } size_t Process::ReadStringFromMemory (addr_t addr, char *dst, size_t max_bytes, Error &error, size_t type_width) { size_t total_bytes_read = 0; if (dst && max_bytes && type_width && max_bytes >= type_width) { // Ensure a null terminator independent of the number of bytes that is read. memset (dst, 0, max_bytes); size_t bytes_left = max_bytes - type_width; const char terminator[4] = {'\0', '\0', '\0', '\0'}; assert(sizeof(terminator) >= type_width && "Attempting to validate a string with more than 4 bytes per character!"); addr_t curr_addr = addr; const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); char *curr_dst = dst; error.Clear(); while (bytes_left > 0 && error.Success()) { addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left); size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error); if (bytes_read == 0) break; // Search for a null terminator of correct size and alignment in bytes_read size_t aligned_start = total_bytes_read - total_bytes_read % type_width; for (size_t i = aligned_start; i + type_width <= total_bytes_read + bytes_read; i += type_width) if (::strncmp(&dst[i], terminator, type_width) == 0) { error.Clear(); return i; } total_bytes_read += bytes_read; curr_dst += bytes_read; curr_addr += bytes_read; bytes_left -= bytes_read; } } else { if (max_bytes) error.SetErrorString("invalid arguments"); } return total_bytes_read; } // Deprecated in favor of ReadStringFromMemory which has wchar support and correct code to find // null terminators. size_t Process::ReadCStringFromMemory (addr_t addr, char *dst, size_t dst_max_len, Error &result_error) { size_t total_cstr_len = 0; if (dst && dst_max_len) { result_error.Clear(); // NULL out everything just to be safe memset (dst, 0, dst_max_len); Error error; addr_t curr_addr = addr; const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); size_t bytes_left = dst_max_len - 1; char *curr_dst = dst; while (bytes_left > 0) { addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left); size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error); if (bytes_read == 0) { result_error = error; dst[total_cstr_len] = '\0'; break; } const size_t len = strlen(curr_dst); total_cstr_len += len; if (len < bytes_to_read) break; curr_dst += bytes_read; curr_addr += bytes_read; bytes_left -= bytes_read; } } else { if (dst == NULL) result_error.SetErrorString("invalid arguments"); else result_error.Clear(); } return total_cstr_len; } size_t Process::ReadMemoryFromInferior (addr_t addr, void *buf, size_t size, Error &error) { if (buf == NULL || size == 0) return 0; size_t bytes_read = 0; uint8_t *bytes = (uint8_t *)buf; while (bytes_read < size) { const size_t curr_size = size - bytes_read; const size_t curr_bytes_read = DoReadMemory (addr + bytes_read, bytes + bytes_read, curr_size, error); bytes_read += curr_bytes_read; if (curr_bytes_read == curr_size || curr_bytes_read == 0) break; } // Replace any software breakpoint opcodes that fall into this range back // into "buf" before we return if (bytes_read > 0) RemoveBreakpointOpcodesFromBuffer (addr, bytes_read, (uint8_t *)buf); return bytes_read; } uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t vm_addr, size_t integer_byte_size, uint64_t fail_value, Error &error) { Scalar scalar; if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, error)) return scalar.ULongLong(fail_value); return fail_value; } addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error) { Scalar scalar; if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, error)) return scalar.ULongLong(LLDB_INVALID_ADDRESS); return LLDB_INVALID_ADDRESS; } bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error) { Scalar scalar; const uint32_t addr_byte_size = GetAddressByteSize(); if (addr_byte_size <= 4) scalar = (uint32_t)ptr_value; else scalar = ptr_value; return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == addr_byte_size; } size_t Process::WriteMemoryPrivate (addr_t addr, const void *buf, size_t size, Error &error) { size_t bytes_written = 0; const uint8_t *bytes = (const uint8_t *)buf; while (bytes_written < size) { const size_t curr_size = size - bytes_written; const size_t curr_bytes_written = DoWriteMemory (addr + bytes_written, bytes + bytes_written, curr_size, error); bytes_written += curr_bytes_written; if (curr_bytes_written == curr_size || curr_bytes_written == 0) break; } return bytes_written; } size_t Process::WriteMemory (addr_t addr, const void *buf, size_t size, Error &error) { #if defined (ENABLE_MEMORY_CACHING) m_memory_cache.Flush (addr, size); #endif if (buf == NULL || size == 0) return 0; m_mod_id.BumpMemoryID(); // We need to write any data that would go where any current software traps // (enabled software breakpoints) any software traps (breakpoints) that we // may have placed in our tasks memory. BreakpointSiteList bp_sites_in_range; if (m_breakpoint_site_list.FindInRange (addr, addr + size, bp_sites_in_range)) { // No breakpoint sites overlap if (bp_sites_in_range.IsEmpty()) return WriteMemoryPrivate (addr, buf, size, error); else { const uint8_t *ubuf = (const uint8_t *)buf; uint64_t bytes_written = 0; bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, &error](BreakpointSite *bp) -> void { if (error.Success()) { addr_t intersect_addr; size_t intersect_size; size_t opcode_offset; const bool intersects = bp->IntersectsRange(addr, size, &intersect_addr, &intersect_size, &opcode_offset); assert(intersects); assert(addr <= intersect_addr && intersect_addr < addr + size); assert(addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= addr + size); assert(opcode_offset + intersect_size <= bp->GetByteSize()); // Check for bytes before this breakpoint const addr_t curr_addr = addr + bytes_written; if (intersect_addr > curr_addr) { // There are some bytes before this breakpoint that we need to // just write to memory size_t curr_size = intersect_addr - curr_addr; size_t curr_bytes_written = WriteMemoryPrivate (curr_addr, ubuf + bytes_written, curr_size, error); bytes_written += curr_bytes_written; if (curr_bytes_written != curr_size) { // We weren't able to write all of the requested bytes, we // are done looping and will return the number of bytes that // we have written so far. if (error.Success()) error.SetErrorToGenericError(); } } // Now write any bytes that would cover up any software breakpoints // directly into the breakpoint opcode buffer ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, intersect_size); bytes_written += intersect_size; } }); if (bytes_written < size) bytes_written += WriteMemoryPrivate (addr + bytes_written, ubuf + bytes_written, size - bytes_written, error); } } else { return WriteMemoryPrivate (addr, buf, size, error); } // Write any remaining bytes after the last breakpoint if we have any left return 0; //bytes_written; } size_t Process::WriteScalarToMemory (addr_t addr, const Scalar &scalar, size_t byte_size, Error &error) { if (byte_size == UINT32_MAX) byte_size = scalar.GetByteSize(); if (byte_size > 0) { uint8_t buf[32]; const size_t mem_size = scalar.GetAsMemoryData (buf, byte_size, GetByteOrder(), error); if (mem_size > 0) return WriteMemory(addr, buf, mem_size, error); else error.SetErrorString ("failed to get scalar as memory data"); } else { error.SetErrorString ("invalid scalar value"); } return 0; } size_t Process::ReadScalarIntegerFromMemory (addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error) { uint64_t uval = 0; if (byte_size == 0) { error.SetErrorString ("byte size is zero"); } else if (byte_size & (byte_size - 1)) { error.SetErrorStringWithFormat ("byte size %u is not a power of 2", byte_size); } else if (byte_size <= sizeof(uval)) { const size_t bytes_read = ReadMemory (addr, &uval, byte_size, error); if (bytes_read == byte_size) { DataExtractor data (&uval, sizeof(uval), GetByteOrder(), GetAddressByteSize()); lldb::offset_t offset = 0; if (byte_size <= 4) scalar = data.GetMaxU32 (&offset, byte_size); else scalar = data.GetMaxU64 (&offset, byte_size); if (is_signed) scalar.SignExtend(byte_size * 8); return bytes_read; } } else { error.SetErrorStringWithFormat ("byte size of %u is too large for integer scalar type", byte_size); } return 0; } #define USE_ALLOCATE_MEMORY_CACHE 1 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, Error &error) { if (GetPrivateState() != eStateStopped) return LLDB_INVALID_ADDRESS; #if defined (USE_ALLOCATE_MEMORY_CACHE) return m_allocated_memory_cache.AllocateMemory(size, permissions, error); #else addr_t allocated_addr = DoAllocateMemory (size, permissions, error); Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf("Process::AllocateMemory(size=%4zu, permissions=%s) => 0x%16.16" PRIx64 " (m_stop_id = %u m_memory_id = %u)", size, GetPermissionsAsCString (permissions), (uint64_t)allocated_addr, m_mod_id.GetStopID(), m_mod_id.GetMemoryID()); return allocated_addr; #endif } bool Process::CanJIT () { if (m_can_jit == eCanJITDontKnow) { Error err; uint64_t allocated_memory = AllocateMemory(8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, err); if (err.Success()) m_can_jit = eCanJITYes; else m_can_jit = eCanJITNo; DeallocateMemory (allocated_memory); } return m_can_jit == eCanJITYes; } void Process::SetCanJIT (bool can_jit) { m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); } Error Process::DeallocateMemory (addr_t ptr) { Error error; #if defined (USE_ALLOCATE_MEMORY_CACHE) if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { error.SetErrorStringWithFormat ("deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); } #else error = DoDeallocateMemory (ptr); Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), m_mod_id.GetMemoryID()); #endif return error; } ModuleSP Process::ReadModuleFromMemory (const FileSpec& file_spec, lldb::addr_t header_addr) { ModuleSP module_sp (new Module (file_spec, ArchSpec())); if (module_sp) { Error error; ObjectFile *objfile = module_sp->GetMemoryObjectFile (shared_from_this(), header_addr, error); if (objfile) return module_sp; } return ModuleSP(); } Error Process::EnableWatchpoint (Watchpoint *watchpoint, bool notify) { Error error; error.SetErrorString("watchpoints are not supported"); return error; } Error Process::DisableWatchpoint (Watchpoint *watchpoint, bool notify) { Error error; error.SetErrorString("watchpoints are not supported"); return error; } StateType Process::WaitForProcessStopPrivate (const TimeValue *timeout, EventSP &event_sp) { StateType state; // Now wait for the process to launch and return control to us, and then // call DidLaunch: while (1) { event_sp.reset(); state = WaitForStateChangedEventsPrivate (timeout, event_sp); if (StateIsStoppedState(state, false)) break; // If state is invalid, then we timed out if (state == eStateInvalid) break; if (event_sp) HandlePrivateEvent (event_sp); } return state; } Error Process::Launch (const ProcessLaunchInfo &launch_info) { Error error; m_abi_sp.reset(); m_dyld_ap.reset(); m_os_ap.reset(); m_process_input_reader.reset(); Module *exe_module = m_target.GetExecutableModulePointer(); if (exe_module) { char local_exec_file_path[PATH_MAX]; char platform_exec_file_path[PATH_MAX]; exe_module->GetFileSpec().GetPath(local_exec_file_path, sizeof(local_exec_file_path)); exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, sizeof(platform_exec_file_path)); if (exe_module->GetFileSpec().Exists()) { if (PrivateStateThreadIsValid ()) PausePrivateStateThread (); error = WillLaunch (exe_module); if (error.Success()) { const bool restarted = false; SetPublicState (eStateLaunching, restarted); m_should_detach = false; if (m_public_run_lock.TrySetRunning()) { // Now launch using these arguments. error = DoLaunch (exe_module, launch_info); } else { // This shouldn't happen error.SetErrorString("failed to acquire process run lock"); } if (error.Fail()) { if (GetID() != LLDB_INVALID_PROCESS_ID) { SetID (LLDB_INVALID_PROCESS_ID); const char *error_string = error.AsCString(); if (error_string == NULL) error_string = "launch failed"; SetExitStatus (-1, error_string); } } else { EventSP event_sp; TimeValue timeout_time; timeout_time = TimeValue::Now(); timeout_time.OffsetWithSeconds(10); StateType state = WaitForProcessStopPrivate(&timeout_time, event_sp); if (state == eStateInvalid || event_sp.get() == NULL) { // We were able to launch the process, but we failed to // catch the initial stop. SetExitStatus (0, "failed to catch stop after launch"); Destroy(); } else if (state == eStateStopped || state == eStateCrashed) { DidLaunch (); DynamicLoader *dyld = GetDynamicLoader (); if (dyld) dyld->DidLaunch(); m_os_ap.reset (OperatingSystem::FindPlugin (this, NULL)); // This delays passing the stopped event to listeners till DidLaunch gets // a chance to complete... HandlePrivateEvent (event_sp); if (PrivateStateThreadIsValid ()) ResumePrivateStateThread (); else StartPrivateStateThread (); } else if (state == eStateExited) { // We exited while trying to launch somehow. Don't call DidLaunch as that's // not likely to work, and return an invalid pid. HandlePrivateEvent (event_sp); } } } } else { error.SetErrorStringWithFormat("file doesn't exist: '%s'", local_exec_file_path); } } return error; } Error Process::LoadCore () { Error error = DoLoadCore(); if (error.Success()) { if (PrivateStateThreadIsValid ()) ResumePrivateStateThread (); else StartPrivateStateThread (); DynamicLoader *dyld = GetDynamicLoader (); if (dyld) dyld->DidAttach(); m_os_ap.reset (OperatingSystem::FindPlugin (this, NULL)); // We successfully loaded a core file, now pretend we stopped so we can // show all of the threads in the core file and explore the crashed // state. SetPrivateState (eStateStopped); } return error; } DynamicLoader * Process::GetDynamicLoader () { if (m_dyld_ap.get() == NULL) m_dyld_ap.reset (DynamicLoader::FindPlugin(this, NULL)); return m_dyld_ap.get(); } Process::NextEventAction::EventActionResult Process::AttachCompletionHandler::PerformAction (lldb::EventSP &event_sp) { StateType state = ProcessEventData::GetStateFromEvent (event_sp.get()); switch (state) { case eStateRunning: case eStateConnected: return eEventActionRetry; case eStateStopped: case eStateCrashed: { // During attach, prior to sending the eStateStopped event, // lldb_private::Process subclasses must set the new process ID. assert (m_process->GetID() != LLDB_INVALID_PROCESS_ID); // We don't want these events to be reported, so go set the ShouldReportStop here: m_process->GetThreadList().SetShouldReportStop (eVoteNo); if (m_exec_count > 0) { --m_exec_count; RequestResume(); return eEventActionRetry; } else { m_process->CompleteAttach (); return eEventActionSuccess; } } break; default: case eStateExited: case eStateInvalid: break; } m_exit_string.assign ("No valid Process"); return eEventActionExit; } Process::NextEventAction::EventActionResult Process::AttachCompletionHandler::HandleBeingInterrupted() { return eEventActionSuccess; } const char * Process::AttachCompletionHandler::GetExitString () { return m_exit_string.c_str(); } Error Process::Attach (ProcessAttachInfo &attach_info) { m_abi_sp.reset(); m_process_input_reader.reset(); m_dyld_ap.reset(); m_os_ap.reset(); lldb::pid_t attach_pid = attach_info.GetProcessID(); Error error; if (attach_pid == LLDB_INVALID_PROCESS_ID) { char process_name[PATH_MAX]; if (attach_info.GetExecutableFile().GetPath (process_name, sizeof(process_name))) { const bool wait_for_launch = attach_info.GetWaitForLaunch(); if (wait_for_launch) { error = WillAttachToProcessWithName(process_name, wait_for_launch); if (error.Success()) { if (m_public_run_lock.TrySetRunning()) { m_should_detach = true; const bool restarted = false; SetPublicState (eStateAttaching, restarted); // Now attach using these arguments. error = DoAttachToProcessWithName (process_name, wait_for_launch, attach_info); } else { // This shouldn't happen error.SetErrorString("failed to acquire process run lock"); } if (error.Fail()) { if (GetID() != LLDB_INVALID_PROCESS_ID) { SetID (LLDB_INVALID_PROCESS_ID); if (error.AsCString() == NULL) error.SetErrorString("attach failed"); SetExitStatus(-1, error.AsCString()); } } else { SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount())); StartPrivateStateThread(); } return error; } } else { ProcessInstanceInfoList process_infos; PlatformSP platform_sp (m_target.GetPlatform ()); if (platform_sp) { ProcessInstanceInfoMatch match_info; match_info.GetProcessInfo() = attach_info; match_info.SetNameMatchType (eNameMatchEquals); platform_sp->FindProcesses (match_info, process_infos); const uint32_t num_matches = process_infos.GetSize(); if (num_matches == 1) { attach_pid = process_infos.GetProcessIDAtIndex(0); // Fall through and attach using the above process ID } else { match_info.GetProcessInfo().GetExecutableFile().GetPath (process_name, sizeof(process_name)); if (num_matches > 1) error.SetErrorStringWithFormat ("more than one process named %s", process_name); else error.SetErrorStringWithFormat ("could not find a process named %s", process_name); } } else { error.SetErrorString ("invalid platform, can't find processes by name"); return error; } } } else { error.SetErrorString ("invalid process name"); } } if (attach_pid != LLDB_INVALID_PROCESS_ID) { error = WillAttachToProcessWithID(attach_pid); if (error.Success()) { if (m_public_run_lock.TrySetRunning()) { // Now attach using these arguments. m_should_detach = true; const bool restarted = false; SetPublicState (eStateAttaching, restarted); error = DoAttachToProcessWithID (attach_pid, attach_info); } else { // This shouldn't happen error.SetErrorString("failed to acquire process run lock"); } if (error.Success()) { SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount())); StartPrivateStateThread(); } else { if (GetID() != LLDB_INVALID_PROCESS_ID) { SetID (LLDB_INVALID_PROCESS_ID); const char *error_string = error.AsCString(); if (error_string == NULL) error_string = "attach failed"; SetExitStatus(-1, error_string); } } } } return error; } void Process::CompleteAttach () { // Let the process subclass figure out at much as it can about the process // before we go looking for a dynamic loader plug-in. DidAttach(); // We just attached. If we have a platform, ask it for the process architecture, and if it isn't // the same as the one we've already set, switch architectures. PlatformSP platform_sp (m_target.GetPlatform ()); assert (platform_sp.get()); if (platform_sp) { const ArchSpec &target_arch = m_target.GetArchitecture(); if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture (target_arch, false, NULL)) { ArchSpec platform_arch; platform_sp = platform_sp->GetPlatformForArchitecture (target_arch, &platform_arch); if (platform_sp) { m_target.SetPlatform (platform_sp); m_target.SetArchitecture(platform_arch); } } else { ProcessInstanceInfo process_info; platform_sp->GetProcessInfo (GetID(), process_info); const ArchSpec &process_arch = process_info.GetArchitecture(); if (process_arch.IsValid() && !m_target.GetArchitecture().IsExactMatch(process_arch)) m_target.SetArchitecture (process_arch); } } // We have completed the attach, now it is time to find the dynamic loader // plug-in DynamicLoader *dyld = GetDynamicLoader (); if (dyld) dyld->DidAttach(); m_os_ap.reset (OperatingSystem::FindPlugin (this, NULL)); // Figure out which one is the executable, and set that in our target: const ModuleList &target_modules = m_target.GetImages(); Mutex::Locker modules_locker(target_modules.GetMutex()); size_t num_modules = target_modules.GetSize(); ModuleSP new_executable_module_sp; for (size_t i = 0; i < num_modules; i++) { ModuleSP module_sp (target_modules.GetModuleAtIndexUnlocked (i)); if (module_sp && module_sp->IsExecutable()) { if (m_target.GetExecutableModulePointer() != module_sp.get()) new_executable_module_sp = module_sp; break; } } if (new_executable_module_sp) m_target.SetExecutableModule (new_executable_module_sp, false); } Error Process::ConnectRemote (Stream *strm, const char *remote_url) { m_abi_sp.reset(); m_process_input_reader.reset(); // Find the process and its architecture. Make sure it matches the architecture // of the current Target, and if not adjust it. Error error (DoConnectRemote (strm, remote_url)); if (error.Success()) { if (GetID() != LLDB_INVALID_PROCESS_ID) { EventSP event_sp; StateType state = WaitForProcessStopPrivate(NULL, event_sp); if (state == eStateStopped || state == eStateCrashed) { // If we attached and actually have a process on the other end, then // this ended up being the equivalent of an attach. CompleteAttach (); // This delays passing the stopped event to listeners till // CompleteAttach gets a chance to complete... HandlePrivateEvent (event_sp); } } if (PrivateStateThreadIsValid ()) ResumePrivateStateThread (); else StartPrivateStateThread (); } return error; } Error Process::PrivateResume () { Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS|LIBLLDB_LOG_STEP)); if (log) log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s private state: %s", m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), StateAsCString(m_private_state.GetValue())); Error error (WillResume()); // Tell the process it is about to resume before the thread list if (error.Success()) { // Now let the thread list know we are about to resume so it // can let all of our threads know that they are about to be // resumed. Threads will each be called with // Thread::WillResume(StateType) where StateType contains the state // that they are supposed to have when the process is resumed // (suspended/running/stepping). Threads should also check // their resume signal in lldb::Thread::GetResumeSignal() // to see if they are supposed to start back up with a signal. if (m_thread_list.WillResume()) { // Last thing, do the PreResumeActions. if (!RunPreResumeActions()) { error.SetErrorStringWithFormat ("Process::PrivateResume PreResumeActions failed, not resuming."); } else { m_mod_id.BumpResumeID(); error = DoResume(); if (error.Success()) { DidResume(); m_thread_list.DidResume(); if (log) log->Printf ("Process thinks the process has resumed."); } } } else { // Somebody wanted to run without running. So generate a continue & a stopped event, // and let the world handle them. if (log) log->Printf ("Process::PrivateResume() asked to simulate a start & stop."); SetPrivateState(eStateRunning); SetPrivateState(eStateStopped); } } else if (log) log->Printf ("Process::PrivateResume() got an error \"%s\".", error.AsCString("<unknown error>")); return error; } Error Process::Halt (bool clear_thread_plans) { // Don't clear the m_clear_thread_plans_on_stop, only set it to true if // in case it was already set and some thread plan logic calls halt on its // own. m_clear_thread_plans_on_stop |= clear_thread_plans; // First make sure we aren't in the middle of handling an event, or we might restart. This is pretty weak, since // we could just straightaway get another event. It just narrows the window... m_currently_handling_event.WaitForValueEqualTo(false); // Pause our private state thread so we can ensure no one else eats // the stop event out from under us. Listener halt_listener ("lldb.process.halt_listener"); HijackPrivateProcessEvents(&halt_listener); EventSP event_sp; Error error (WillHalt()); if (error.Success()) { bool caused_stop = false; // Ask the process subclass to actually halt our process error = DoHalt(caused_stop); if (error.Success()) { if (m_public_state.GetValue() == eStateAttaching) { SetExitStatus(SIGKILL, "Cancelled async attach."); Destroy (); } else { // If "caused_stop" is true, then DoHalt stopped the process. If // "caused_stop" is false, the process was already stopped. // If the DoHalt caused the process to stop, then we want to catch // this event and set the interrupted bool to true before we pass // this along so clients know that the process was interrupted by // a halt command. if (caused_stop) { // Wait for 1 second for the process to stop. TimeValue timeout_time; timeout_time = TimeValue::Now(); timeout_time.OffsetWithSeconds(1); bool got_event = halt_listener.WaitForEvent (&timeout_time, event_sp); StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); if (!got_event || state == eStateInvalid) { // We timeout out and didn't get a stop event... error.SetErrorStringWithFormat ("Halt timed out. State = %s", StateAsCString(GetState())); } else { if (StateIsStoppedState (state, false)) { // We caused the process to interrupt itself, so mark this // as such in the stop event so clients can tell an interrupted // process from a natural stop ProcessEventData::SetInterruptedInEvent (event_sp.get(), true); } else { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf("Process::Halt() failed to stop, state is: %s", StateAsCString(state)); error.SetErrorString ("Did not get stopped event after halt."); } } } DidHalt(); } } } // Resume our private state thread before we post the event (if any) RestorePrivateProcessEvents(); // Post any event we might have consumed. If all goes well, we will have // stopped the process, intercepted the event and set the interrupted // bool in the event. Post it to the private event queue and that will end up // correctly setting the state. if (event_sp) m_private_state_broadcaster.BroadcastEvent(event_sp); return error; } Error Process::HaltForDestroyOrDetach(lldb::EventSP &exit_event_sp) { Error error; if (m_public_state.GetValue() == eStateRunning) { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf("Process::Destroy() About to halt."); error = Halt(); if (error.Success()) { // Consume the halt event. TimeValue timeout (TimeValue::Now()); timeout.OffsetWithSeconds(1); StateType state = WaitForProcessToStop (&timeout, &exit_event_sp); // If the process exited while we were waiting for it to stop, put the exited event into // the shared pointer passed in and return. Our caller doesn't need to do anything else, since // they don't have a process anymore... if (state == eStateExited || m_private_state.GetValue() == eStateExited) { if (log) log->Printf("Process::HaltForDestroyOrDetach() Process exited while waiting to Halt."); return error; } else exit_event_sp.reset(); // It is ok to consume any non-exit stop events if (state != eStateStopped) { if (log) log->Printf("Process::HaltForDestroyOrDetach() Halt failed to stop, state is: %s", StateAsCString(state)); // If we really couldn't stop the process then we should just error out here, but if the // lower levels just bobbled sending the event and we really are stopped, then continue on. StateType private_state = m_private_state.GetValue(); if (private_state != eStateStopped) { return error; } } } else { if (log) log->Printf("Process::HaltForDestroyOrDetach() Halt got error: %s", error.AsCString()); } } return error; } Error Process::Detach (bool keep_stopped) { EventSP exit_event_sp; Error error; m_destroy_in_process = true; error = WillDetach(); if (error.Success()) { if (DetachRequiresHalt()) { error = HaltForDestroyOrDetach (exit_event_sp); if (!error.Success()) { m_destroy_in_process = false; return error; } else if (exit_event_sp) { // We shouldn't need to do anything else here. There's no process left to detach from... StopPrivateStateThread(); m_destroy_in_process = false; return error; } } error = DoDetach(keep_stopped); if (error.Success()) { DidDetach(); StopPrivateStateThread(); } else { return error; } } m_destroy_in_process = false; // If we exited when we were waiting for a process to stop, then // forward the event here so we don't lose the event if (exit_event_sp) { // Directly broadcast our exited event because we shut down our // private state thread above BroadcastEvent(exit_event_sp); } // If we have been interrupted (to kill us) in the middle of running, we may not end up propagating // the last events through the event system, in which case we might strand the write lock. Unlock // it here so when we do to tear down the process we don't get an error destroying the lock. m_public_run_lock.SetStopped(); return error; } Error Process::Destroy () { // Tell ourselves we are in the process of destroying the process, so that we don't do any unnecessary work // that might hinder the destruction. Remember to set this back to false when we are done. That way if the attempt // failed and the process stays around for some reason it won't be in a confused state. m_destroy_in_process = true; Error error (WillDestroy()); if (error.Success()) { EventSP exit_event_sp; if (DestroyRequiresHalt()) { error = HaltForDestroyOrDetach(exit_event_sp); } if (m_public_state.GetValue() != eStateRunning) { // Ditch all thread plans, and remove all our breakpoints: in case we have to restart the target to // kill it, we don't want it hitting a breakpoint... // Only do this if we've stopped, however, since if we didn't manage to halt it above, then // we're not going to have much luck doing this now. m_thread_list.DiscardThreadPlans(); DisableAllBreakpointSites(); } error = DoDestroy(); if (error.Success()) { DidDestroy(); StopPrivateStateThread(); } m_stdio_communication.StopReadThread(); m_stdio_communication.Disconnect(); if (m_process_input_reader && m_process_input_reader->IsActive()) m_target.GetDebugger().PopInputReader (m_process_input_reader); if (m_process_input_reader) m_process_input_reader.reset(); // If we exited when we were waiting for a process to stop, then // forward the event here so we don't lose the event if (exit_event_sp) { // Directly broadcast our exited event because we shut down our // private state thread above BroadcastEvent(exit_event_sp); } // If we have been interrupted (to kill us) in the middle of running, we may not end up propagating // the last events through the event system, in which case we might strand the write lock. Unlock // it here so when we do to tear down the process we don't get an error destroying the lock. m_public_run_lock.SetStopped(); } m_destroy_in_process = false; return error; } Error Process::Signal (int signal) { Error error (WillSignal()); if (error.Success()) { error = DoSignal(signal); if (error.Success()) DidSignal(); } return error; } lldb::ByteOrder Process::GetByteOrder () const { return m_target.GetArchitecture().GetByteOrder(); } uint32_t Process::GetAddressByteSize () const { return m_target.GetArchitecture().GetAddressByteSize(); } bool Process::ShouldBroadcastEvent (Event *event_ptr) { const StateType state = Process::ProcessEventData::GetStateFromEvent (event_ptr); bool return_value = true; Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | LIBLLDB_LOG_PROCESS)); switch (state) { case eStateConnected: case eStateAttaching: case eStateLaunching: case eStateDetached: case eStateExited: case eStateUnloaded: // These events indicate changes in the state of the debugging session, always report them. return_value = true; break; case eStateInvalid: // We stopped for no apparent reason, don't report it. return_value = false; break; case eStateRunning: case eStateStepping: // If we've started the target running, we handle the cases where we // are already running and where there is a transition from stopped to // running differently. // running -> running: Automatically suppress extra running events // stopped -> running: Report except when there is one or more no votes // and no yes votes. SynchronouslyNotifyStateChanged (state); switch (m_last_broadcast_state) { case eStateRunning: case eStateStepping: // We always suppress multiple runnings with no PUBLIC stop in between. return_value = false; break; default: // TODO: make this work correctly. For now always report // run if we aren't running so we don't miss any runnning // events. If I run the lldb/test/thread/a.out file and // break at main.cpp:58, run and hit the breakpoints on // multiple threads, then somehow during the stepping over // of all breakpoints no run gets reported. // This is a transition from stop to run. switch (m_thread_list.ShouldReportRun (event_ptr)) { case eVoteYes: case eVoteNoOpinion: return_value = true; break; case eVoteNo: return_value = false; break; } break; } break; case eStateStopped: case eStateCrashed: case eStateSuspended: { // We've stopped. First see if we're going to restart the target. // If we are going to stop, then we always broadcast the event. // If we aren't going to stop, let the thread plans decide if we're going to report this event. // If no thread has an opinion, we don't report it. RefreshStateAfterStop (); if (ProcessEventData::GetInterruptedFromEvent (event_ptr)) { if (log) log->Printf ("Process::ShouldBroadcastEvent (%p) stopped due to an interrupt, state: %s", event_ptr, StateAsCString(state)); return_value = true; } else { bool was_restarted = ProcessEventData::GetRestartedFromEvent (event_ptr); bool should_resume = false; // It makes no sense to ask "ShouldStop" if we've already been restarted... // Asking the thread list is also not likely to go well, since we are running again. // So in that case just report the event. if (!was_restarted) should_resume = m_thread_list.ShouldStop (event_ptr) == false; if (was_restarted || should_resume || m_resume_requested) { Vote stop_vote = m_thread_list.ShouldReportStop (event_ptr); if (log) log->Printf ("Process::ShouldBroadcastEvent: should_stop: %i state: %s was_restarted: %i stop_vote: %d.", should_resume, StateAsCString(state), was_restarted, stop_vote); switch (stop_vote) { case eVoteYes: return_value = true; break; case eVoteNoOpinion: case eVoteNo: return_value = false; break; } if (!was_restarted) { if (log) log->Printf ("Process::ShouldBroadcastEvent (%p) Restarting process from state: %s", event_ptr, StateAsCString(state)); ProcessEventData::SetRestartedInEvent(event_ptr, true); PrivateResume (); } } else { return_value = true; SynchronouslyNotifyStateChanged (state); } } } break; } // We do some coalescing of events (for instance two consecutive running events get coalesced.) // But we only coalesce against events we actually broadcast. So we use m_last_broadcast_state // to track that. NB - you can't use "m_public_state.GetValue()" for that purpose, as was originally done, // because the PublicState reflects the last event pulled off the queue, and there may be several // events stacked up on the queue unserviced. So the PublicState may not reflect the last broadcasted event // yet. m_last_broadcast_state gets updated here. if (return_value) m_last_broadcast_state = state; if (log) log->Printf ("Process::ShouldBroadcastEvent (%p) => new state: %s, last broadcast state: %s - %s", event_ptr, StateAsCString(state), StateAsCString(m_last_broadcast_state), return_value ? "YES" : "NO"); return return_value; } bool Process::StartPrivateStateThread (bool force) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); bool already_running = PrivateStateThreadIsValid (); if (log) log->Printf ("Process::%s()%s ", __FUNCTION__, already_running ? " already running" : " starting private state thread"); if (!force && already_running) return true; // Create a thread that watches our internal state and controls which // events make it to clients (into the DCProcess event queue). char thread_name[1024]; if (already_running) snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", GetID()); else snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); // Create the private state thread, and start it running. m_private_state_thread = Host::ThreadCreate (thread_name, Process::PrivateStateThread, this, NULL); bool success = IS_VALID_LLDB_HOST_THREAD(m_private_state_thread); if (success) { ResumePrivateStateThread(); return true; } else return false; } void Process::PausePrivateStateThread () { ControlPrivateStateThread (eBroadcastInternalStateControlPause); } void Process::ResumePrivateStateThread () { ControlPrivateStateThread (eBroadcastInternalStateControlResume); } void Process::StopPrivateStateThread () { if (PrivateStateThreadIsValid ()) ControlPrivateStateThread (eBroadcastInternalStateControlStop); else { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("Went to stop the private state thread, but it was already invalid."); } } void Process::ControlPrivateStateThread (uint32_t signal) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); assert (signal == eBroadcastInternalStateControlStop || signal == eBroadcastInternalStateControlPause || signal == eBroadcastInternalStateControlResume); if (log) log->Printf ("Process::%s (signal = %d)", __FUNCTION__, signal); // Signal the private state thread. First we should copy this is case the // thread starts exiting since the private state thread will NULL this out // when it exits const lldb::thread_t private_state_thread = m_private_state_thread; if (IS_VALID_LLDB_HOST_THREAD(private_state_thread)) { TimeValue timeout_time; bool timed_out; m_private_state_control_broadcaster.BroadcastEvent (signal, NULL); timeout_time = TimeValue::Now(); timeout_time.OffsetWithSeconds(2); if (log) log->Printf ("Sending control event of type: %d.", signal); m_private_state_control_wait.WaitForValueEqualTo (true, &timeout_time, &timed_out); m_private_state_control_wait.SetValue (false, eBroadcastNever); if (signal == eBroadcastInternalStateControlStop) { if (timed_out) { Error error; Host::ThreadCancel (private_state_thread, &error); if (log) log->Printf ("Timed out responding to the control event, cancel got error: \"%s\".", error.AsCString()); } else { if (log) log->Printf ("The control event killed the private state thread without having to cancel."); } thread_result_t result = NULL; Host::ThreadJoin (private_state_thread, &result, NULL); m_private_state_thread = LLDB_INVALID_HOST_THREAD; } } else { if (log) log->Printf ("Private state thread already dead, no need to signal it to stop."); } } void Process::SendAsyncInterrupt () { if (PrivateStateThreadIsValid()) m_private_state_broadcaster.BroadcastEvent (Process::eBroadcastBitInterrupt, NULL); else BroadcastEvent (Process::eBroadcastBitInterrupt, NULL); } void Process::HandlePrivateEvent (EventSP &event_sp) { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); m_resume_requested = false; m_currently_handling_event.SetValue(true, eBroadcastNever); const StateType new_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); // First check to see if anybody wants a shot at this event: if (m_next_event_action_ap.get() != NULL) { NextEventAction::EventActionResult action_result = m_next_event_action_ap->PerformAction(event_sp); if (log) log->Printf ("Ran next event action, result was %d.", action_result); switch (action_result) { case NextEventAction::eEventActionSuccess: SetNextEventAction(NULL); break; case NextEventAction::eEventActionRetry: break; case NextEventAction::eEventActionExit: // Handle Exiting Here. If we already got an exited event, // we should just propagate it. Otherwise, swallow this event, // and set our state to exit so the next event will kill us. if (new_state != eStateExited) { // FIXME: should cons up an exited event, and discard this one. SetExitStatus(0, m_next_event_action_ap->GetExitString()); m_currently_handling_event.SetValue(false, eBroadcastAlways); SetNextEventAction(NULL); return; } SetNextEventAction(NULL); break; } } // See if we should broadcast this state to external clients? const bool should_broadcast = ShouldBroadcastEvent (event_sp.get()); if (should_broadcast) { if (log) { log->Printf ("Process::%s (pid = %" PRIu64 ") broadcasting new state %s (old state %s) to %s", __FUNCTION__, GetID(), StateAsCString(new_state), StateAsCString (GetState ()), IsHijackedForEvent(eBroadcastBitStateChanged) ? "hijacked" : "public"); } Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); if (StateIsRunningState (new_state)) PushProcessInputReader (); else if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) PopProcessInputReader (); BroadcastEvent (event_sp); } else { if (log) { log->Printf ("Process::%s (pid = %" PRIu64 ") suppressing state %s (old state %s): should_broadcast == false", __FUNCTION__, GetID(), StateAsCString(new_state), StateAsCString (GetState ())); } } m_currently_handling_event.SetValue(false, eBroadcastAlways); } void * Process::PrivateStateThread (void *arg) { Process *proc = static_cast<Process*> (arg); void *result = proc->RunPrivateStateThread (); return result; } void * Process::RunPrivateStateThread () { bool control_only = true; m_private_state_control_wait.SetValue (false, eBroadcastNever); Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", __FUNCTION__, this, GetID()); bool exit_now = false; while (!exit_now) { EventSP event_sp; WaitForEventsPrivate (NULL, event_sp, control_only); if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { if (log) log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") got a control event: %d", __FUNCTION__, this, GetID(), event_sp->GetType()); switch (event_sp->GetType()) { case eBroadcastInternalStateControlStop: exit_now = true; break; // doing any internal state managment below case eBroadcastInternalStateControlPause: control_only = true; break; case eBroadcastInternalStateControlResume: control_only = false; break; } m_private_state_control_wait.SetValue (true, eBroadcastAlways); continue; } else if (event_sp->GetType() == eBroadcastBitInterrupt) { if (m_public_state.GetValue() == eStateAttaching) { if (log) log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt while attaching - forwarding interrupt.", __FUNCTION__, this, GetID()); BroadcastEvent (eBroadcastBitInterrupt, NULL); } else { if (log) log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt - Halting.", __FUNCTION__, this, GetID()); Halt(); } continue; } const StateType internal_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); if (internal_state != eStateInvalid) { if (m_clear_thread_plans_on_stop && StateIsStoppedState(internal_state, true)) { m_clear_thread_plans_on_stop = false; m_thread_list.DiscardThreadPlans(); } HandlePrivateEvent (event_sp); } if (internal_state == eStateInvalid || internal_state == eStateExited || internal_state == eStateDetached ) { if (log) log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") about to exit with internal state %s...", __FUNCTION__, this, GetID(), StateAsCString(internal_state)); break; } } // Verify log is still enabled before attempting to write to it... if (log) log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", __FUNCTION__, this, GetID()); m_public_run_lock.SetStopped(); m_private_state_control_wait.SetValue (true, eBroadcastAlways); m_private_state_thread = LLDB_INVALID_HOST_THREAD; return NULL; } //------------------------------------------------------------------ // Process Event Data //------------------------------------------------------------------ Process::ProcessEventData::ProcessEventData () : EventData (), m_process_sp (), m_state (eStateInvalid), m_restarted (false), m_update_state (0), m_interrupted (false) { } Process::ProcessEventData::ProcessEventData (const ProcessSP &process_sp, StateType state) : EventData (), m_process_sp (process_sp), m_state (state), m_restarted (false), m_update_state (0), m_interrupted (false) { } Process::ProcessEventData::~ProcessEventData() { } const ConstString & Process::ProcessEventData::GetFlavorString () { static ConstString g_flavor ("Process::ProcessEventData"); return g_flavor; } const ConstString & Process::ProcessEventData::GetFlavor () const { return ProcessEventData::GetFlavorString (); } void Process::ProcessEventData::DoOnRemoval (Event *event_ptr) { // This function gets called twice for each event, once when the event gets pulled // off of the private process event queue, and then any number of times, first when it gets pulled off of // the public event queue, then other times when we're pretending that this is where we stopped at the // end of expression evaluation. m_update_state is used to distinguish these // three cases; it is 0 when we're just pulling it off for private handling, // and > 1 for expression evaluation, and we don't want to do the breakpoint command handling then. if (m_update_state != 1) return; m_process_sp->SetPublicState (m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); // If we're stopped and haven't restarted, then do the breakpoint commands here: if (m_state == eStateStopped && ! m_restarted) { ThreadList &curr_thread_list = m_process_sp->GetThreadList(); uint32_t num_threads = curr_thread_list.GetSize(); uint32_t idx; // The actions might change one of the thread's stop_info's opinions about whether we should // stop the process, so we need to query that as we go. // One other complication here, is that we try to catch any case where the target has run (except for expressions) // and immediately exit, but if we get that wrong (which is possible) then the thread list might have changed, and // that would cause our iteration here to crash. We could make a copy of the thread list, but we'd really like // to also know if it has changed at all, so we make up a vector of the thread ID's and check what we get back // against this list & bag out if anything differs. std::vector<uint32_t> thread_index_array(num_threads); for (idx = 0; idx < num_threads; ++idx) thread_index_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); // Use this to track whether we should continue from here. We will only continue the target running if // no thread says we should stop. Of course if some thread's PerformAction actually sets the target running, // then it doesn't matter what the other threads say... bool still_should_stop = false; // Sometimes - for instance if we have a bug in the stub we are talking to, we stop but no thread has a // valid stop reason. In that case we should just stop, because we have no way of telling what the right // thing to do is, and it's better to let the user decide than continue behind their backs. bool does_anybody_have_an_opinion = false; for (idx = 0; idx < num_threads; ++idx) { curr_thread_list = m_process_sp->GetThreadList(); if (curr_thread_list.GetSize() != num_threads) { Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); if (log) log->Printf("Number of threads changed from %u to %u while processing event.", num_threads, curr_thread_list.GetSize()); break; } lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); if (thread_sp->GetIndexID() != thread_index_array[idx]) { Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); if (log) log->Printf("The thread at position %u changed from %u to %u while processing event.", idx, thread_index_array[idx], thread_sp->GetIndexID()); break; } StopInfoSP stop_info_sp = thread_sp->GetStopInfo (); if (stop_info_sp && stop_info_sp->IsValid()) { does_anybody_have_an_opinion = true; bool this_thread_wants_to_stop; if (stop_info_sp->GetOverrideShouldStop()) { this_thread_wants_to_stop = stop_info_sp->GetOverriddenShouldStopValue(); } else { stop_info_sp->PerformAction(event_ptr); // The stop action might restart the target. If it does, then we want to mark that in the // event so that whoever is receiving it will know to wait for the running event and reflect // that state appropriately. // We also need to stop processing actions, since they aren't expecting the target to be running. // FIXME: we might have run. if (stop_info_sp->HasTargetRunSinceMe()) { SetRestarted (true); break; } this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); } if (still_should_stop == false) still_should_stop = this_thread_wants_to_stop; } } if (!GetRestarted()) { if (!still_should_stop && does_anybody_have_an_opinion) { // We've been asked to continue, so do that here. SetRestarted(true); // Use the public resume method here, since this is just // extending a public resume. m_process_sp->PrivateResume(); } else { // If we didn't restart, run the Stop Hooks here: // They might also restart the target, so watch for that. m_process_sp->GetTarget().RunStopHooks(); if (m_process_sp->GetPrivateState() == eStateRunning) SetRestarted(true); } } } } void Process::ProcessEventData::Dump (Stream *s) const { if (m_process_sp) s->Printf(" process = %p (pid = %" PRIu64 "), ", m_process_sp.get(), m_process_sp->GetID()); s->Printf("state = %s", StateAsCString(GetState())); } const Process::ProcessEventData * Process::ProcessEventData::GetEventDataFromEvent (const Event *event_ptr) { if (event_ptr) { const EventData *event_data = event_ptr->GetData(); if (event_data && event_data->GetFlavor() == ProcessEventData::GetFlavorString()) return static_cast <const ProcessEventData *> (event_ptr->GetData()); } return NULL; } ProcessSP Process::ProcessEventData::GetProcessFromEvent (const Event *event_ptr) { ProcessSP process_sp; const ProcessEventData *data = GetEventDataFromEvent (event_ptr); if (data) process_sp = data->GetProcessSP(); return process_sp; } StateType Process::ProcessEventData::GetStateFromEvent (const Event *event_ptr) { const ProcessEventData *data = GetEventDataFromEvent (event_ptr); if (data == NULL) return eStateInvalid; else return data->GetState(); } bool Process::ProcessEventData::GetRestartedFromEvent (const Event *event_ptr) { const ProcessEventData *data = GetEventDataFromEvent (event_ptr); if (data == NULL) return false; else return data->GetRestarted(); } void Process::ProcessEventData::SetRestartedInEvent (Event *event_ptr, bool new_value) { ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); if (data != NULL) data->SetRestarted(new_value); } size_t Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); if (data != NULL) return data->GetNumRestartedReasons(); else return 0; } const char * Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, size_t idx) { ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); if (data != NULL) return data->GetRestartedReasonAtIndex(idx); else return NULL; } void Process::ProcessEventData::AddRestartedReason (Event *event_ptr, const char *reason) { ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); if (data != NULL) data->AddRestartedReason(reason); } bool Process::ProcessEventData::GetInterruptedFromEvent (const Event *event_ptr) { const ProcessEventData *data = GetEventDataFromEvent (event_ptr); if (data == NULL) return false; else return data->GetInterrupted (); } void Process::ProcessEventData::SetInterruptedInEvent (Event *event_ptr, bool new_value) { ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); if (data != NULL) data->SetInterrupted(new_value); } bool Process::ProcessEventData::SetUpdateStateOnRemoval (Event *event_ptr) { ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); if (data) { data->SetUpdateStateOnRemoval(); return true; } return false; } lldb::TargetSP Process::CalculateTarget () { return m_target.shared_from_this(); } void Process::CalculateExecutionContext (ExecutionContext &exe_ctx) { exe_ctx.SetTargetPtr (&m_target); exe_ctx.SetProcessPtr (this); exe_ctx.SetThreadPtr(NULL); exe_ctx.SetFramePtr (NULL); } //uint32_t //Process::ListProcessesMatchingName (const char *name, StringList &matches, std::vector<lldb::pid_t> &pids) //{ // return 0; //} // //ArchSpec //Process::GetArchSpecForExistingProcess (lldb::pid_t pid) //{ // return Host::GetArchSpecForExistingProcess (pid); //} // //ArchSpec //Process::GetArchSpecForExistingProcess (const char *process_name) //{ // return Host::GetArchSpecForExistingProcess (process_name); //} // void Process::AppendSTDOUT (const char * s, size_t len) { Mutex::Locker locker (m_stdio_communication_mutex); m_stdout_data.append (s, len); BroadcastEventIfUnique (eBroadcastBitSTDOUT, new ProcessEventData (shared_from_this(), GetState())); } void Process::AppendSTDERR (const char * s, size_t len) { Mutex::Locker locker (m_stdio_communication_mutex); m_stderr_data.append (s, len); BroadcastEventIfUnique (eBroadcastBitSTDERR, new ProcessEventData (shared_from_this(), GetState())); } void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { Mutex::Locker locker (m_profile_data_comm_mutex); m_profile_data.push_back(one_profile_data); BroadcastEventIfUnique (eBroadcastBitProfileData, new ProcessEventData (shared_from_this(), GetState())); } size_t Process::GetAsyncProfileData (char *buf, size_t buf_size, Error &error) { Mutex::Locker locker(m_profile_data_comm_mutex); if (m_profile_data.empty()) return 0; std::string &one_profile_data = m_profile_data.front(); size_t bytes_available = one_profile_data.size(); if (bytes_available > 0) { Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", buf, (uint64_t)buf_size); if (bytes_available > buf_size) { memcpy(buf, one_profile_data.c_str(), buf_size); one_profile_data.erase(0, buf_size); bytes_available = buf_size; } else { memcpy(buf, one_profile_data.c_str(), bytes_available); m_profile_data.erase(m_profile_data.begin()); } } return bytes_available; } //------------------------------------------------------------------ // Process STDIO //------------------------------------------------------------------ size_t Process::GetSTDOUT (char *buf, size_t buf_size, Error &error) { Mutex::Locker locker(m_stdio_communication_mutex); size_t bytes_available = m_stdout_data.size(); if (bytes_available > 0) { Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", buf, (uint64_t)buf_size); if (bytes_available > buf_size) { memcpy(buf, m_stdout_data.c_str(), buf_size); m_stdout_data.erase(0, buf_size); bytes_available = buf_size; } else { memcpy(buf, m_stdout_data.c_str(), bytes_available); m_stdout_data.clear(); } } return bytes_available; } size_t Process::GetSTDERR (char *buf, size_t buf_size, Error &error) { Mutex::Locker locker(m_stdio_communication_mutex); size_t bytes_available = m_stderr_data.size(); if (bytes_available > 0) { Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); if (log) log->Printf ("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", buf, (uint64_t)buf_size); if (bytes_available > buf_size) { memcpy(buf, m_stderr_data.c_str(), buf_size); m_stderr_data.erase(0, buf_size); bytes_available = buf_size; } else { memcpy(buf, m_stderr_data.c_str(), bytes_available); m_stderr_data.clear(); } } return bytes_available; } void Process::STDIOReadThreadBytesReceived (void *baton, const void *src, size_t src_len) { Process *process = (Process *) baton; process->AppendSTDOUT (static_cast<const char *>(src), src_len); } size_t Process::ProcessInputReaderCallback (void *baton, InputReader &reader, lldb::InputReaderAction notification, const char *bytes, size_t bytes_len) { Process *process = (Process *) baton; switch (notification) { case eInputReaderActivate: break; case eInputReaderDeactivate: break; case eInputReaderReactivate: break; case eInputReaderAsynchronousOutputWritten: break; case eInputReaderGotToken: { Error error; process->PutSTDIN (bytes, bytes_len, error); } break; case eInputReaderInterrupt: process->SendAsyncInterrupt(); break; case eInputReaderEndOfFile: process->AppendSTDOUT ("^D", 2); break; case eInputReaderDone: break; } return bytes_len; } void Process::ResetProcessInputReader () { m_process_input_reader.reset(); } void Process::SetSTDIOFileDescriptor (int file_descriptor) { // First set up the Read Thread for reading/handling process I/O std::unique_ptr<ConnectionFileDescriptor> conn_ap (new ConnectionFileDescriptor (file_descriptor, true)); if (conn_ap.get()) { m_stdio_communication.SetConnection (conn_ap.release()); if (m_stdio_communication.IsConnected()) { m_stdio_communication.SetReadThreadBytesReceivedCallback (STDIOReadThreadBytesReceived, this); m_stdio_communication.StartReadThread(); // Now read thread is set up, set up input reader. if (!m_process_input_reader.get()) { m_process_input_reader.reset (new InputReader(m_target.GetDebugger())); Error err (m_process_input_reader->Initialize (Process::ProcessInputReaderCallback, this, eInputReaderGranularityByte, NULL, NULL, false)); if (err.Fail()) m_process_input_reader.reset(); } } } } void Process::PushProcessInputReader () { if (m_process_input_reader && !m_process_input_reader->IsActive()) m_target.GetDebugger().PushInputReader (m_process_input_reader); } void Process::PopProcessInputReader () { if (m_process_input_reader && m_process_input_reader->IsActive()) m_target.GetDebugger().PopInputReader (m_process_input_reader); } // The process needs to know about installed plug-ins void Process::SettingsInitialize () { // static std::vector<OptionEnumValueElement> g_plugins; // // int i=0; // const char *name; // OptionEnumValueElement option_enum; // while ((name = PluginManager::GetProcessPluginNameAtIndex (i)) != NULL) // { // if (name) // { // option_enum.value = i; // option_enum.string_value = name; // option_enum.usage = PluginManager::GetProcessPluginDescriptionAtIndex (i); // g_plugins.push_back (option_enum); // } // ++i; // } // option_enum.value = 0; // option_enum.string_value = NULL; // option_enum.usage = NULL; // g_plugins.push_back (option_enum); // // for (i=0; (name = SettingsController::instance_settings_table[i].var_name); ++i) // { // if (::strcmp (name, "plugin") == 0) // { // SettingsController::instance_settings_table[i].enum_values = &g_plugins[0]; // break; // } // } // Thread::SettingsInitialize (); } void Process::SettingsTerminate () { Thread::SettingsTerminate (); } ExecutionResults Process::RunThreadPlan (ExecutionContext &exe_ctx, lldb::ThreadPlanSP &thread_plan_sp, bool stop_others, bool run_others, bool unwind_on_error, bool ignore_breakpoints, uint32_t timeout_usec, Stream &errors) { ExecutionResults return_value = eExecutionSetupError; if (thread_plan_sp.get() == NULL) { errors.Printf("RunThreadPlan called with empty thread plan."); return eExecutionSetupError; } if (!thread_plan_sp->ValidatePlan(NULL)) { errors.Printf ("RunThreadPlan called with an invalid thread plan."); return eExecutionSetupError; } if (exe_ctx.GetProcessPtr() != this) { errors.Printf("RunThreadPlan called on wrong process."); return eExecutionSetupError; } Thread *thread = exe_ctx.GetThreadPtr(); if (thread == NULL) { errors.Printf("RunThreadPlan called with invalid thread."); return eExecutionSetupError; } // We rely on the thread plan we are running returning "PlanCompleted" if when it successfully completes. // For that to be true the plan can't be private - since private plans suppress themselves in the // GetCompletedPlan call. bool orig_plan_private = thread_plan_sp->GetPrivate(); thread_plan_sp->SetPrivate(false); if (m_private_state.GetValue() != eStateStopped) { errors.Printf ("RunThreadPlan called while the private state was not stopped."); return eExecutionSetupError; } // Save the thread & frame from the exe_ctx for restoration after we run const uint32_t thread_idx_id = thread->GetIndexID(); StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); if (!selected_frame_sp) { thread->SetSelectedFrame(0); selected_frame_sp = thread->GetSelectedFrame(); if (!selected_frame_sp) { errors.Printf("RunThreadPlan called without a selected frame on thread %d", thread_idx_id); return eExecutionSetupError; } } StackID ctx_frame_id = selected_frame_sp->GetStackID(); // N.B. Running the target may unset the currently selected thread and frame. We don't want to do that either, // so we should arrange to reset them as well. lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); uint32_t selected_tid; StackID selected_stack_id; if (selected_thread_sp) { selected_tid = selected_thread_sp->GetIndexID(); selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); } else { selected_tid = LLDB_INVALID_THREAD_ID; } lldb::thread_t backup_private_state_thread = LLDB_INVALID_HOST_THREAD; lldb::StateType old_state; lldb::ThreadPlanSP stopper_base_plan_sp; Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); if (Host::GetCurrentThread() == m_private_state_thread) { // Yikes, we are running on the private state thread! So we can't wait for public events on this thread, since // we are the thread that is generating public events. // The simplest thing to do is to spin up a temporary thread to handle private state thread events while // we are fielding public events here. if (log) log->Printf ("Running thread plan on private state thread, spinning up another state thread to handle the events."); backup_private_state_thread = m_private_state_thread; // One other bit of business: we want to run just this thread plan and anything it pushes, and then stop, // returning control here. // But in the normal course of things, the plan above us on the stack would be given a shot at the stop // event before deciding to stop, and we don't want that. So we insert a "stopper" base plan on the stack // before the plan we want to run. Since base plans always stop and return control to the user, that will // do just what we want. stopper_base_plan_sp.reset(new ThreadPlanBase (*thread)); thread->QueueThreadPlan (stopper_base_plan_sp, false); // Have to make sure our public state is stopped, since otherwise the reporting logic below doesn't work correctly. old_state = m_public_state.GetValue(); m_public_state.SetValueNoLock(eStateStopped); // Now spin up the private state thread: StartPrivateStateThread(true); } thread->QueueThreadPlan(thread_plan_sp, false); // This used to pass "true" does that make sense? Listener listener("lldb.process.listener.run-thread-plan"); lldb::EventSP event_to_broadcast_sp; { // This process event hijacker Hijacks the Public events and its destructor makes sure that the process events get // restored on exit to the function. // // If the event needs to propagate beyond the hijacker (e.g., the process exits during execution), then the event // is put into event_to_broadcast_sp for rebroadcasting. ProcessEventHijacker run_thread_plan_hijacker (*this, &listener); if (log) { StreamString s; thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); log->Printf ("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 " to run thread plan \"%s\".", thread->GetIndexID(), thread->GetID(), s.GetData()); } bool got_event; lldb::EventSP event_sp; lldb::StateType stop_state = lldb::eStateInvalid; TimeValue* timeout_ptr = NULL; TimeValue real_timeout; bool before_first_timeout = true; // This is set to false the first time that we have to halt the target. bool do_resume = true; bool handle_running_event = true; const uint64_t default_one_thread_timeout_usec = 250000; // This is just for accounting: uint32_t num_resumes = 0; TimeValue one_thread_timeout = TimeValue::Now(); TimeValue final_timeout = one_thread_timeout; if (run_others) { // If we are running all threads then we take half the time to run all threads, bounded by // .25 sec. if (timeout_usec == 0) one_thread_timeout.OffsetWithMicroSeconds(default_one_thread_timeout_usec); else { uint64_t computed_timeout = timeout_usec / 2; if (computed_timeout > default_one_thread_timeout_usec) computed_timeout = default_one_thread_timeout_usec; one_thread_timeout.OffsetWithMicroSeconds(computed_timeout); } final_timeout.OffsetWithMicroSeconds (timeout_usec); } else { if (timeout_usec != 0) final_timeout.OffsetWithMicroSeconds(timeout_usec); } // This while loop must exit out the bottom, there's cleanup that we need to do when we are done. // So don't call return anywhere within it. while (1) { // We usually want to resume the process if we get to the top of the loop. // The only exception is if we get two running events with no intervening // stop, which can happen, we will just wait for then next stop event. if (log) log->Printf ("Top of while loop: do_resume: %i handle_running_event: %i before_first_timeout: %i.", do_resume, handle_running_event, before_first_timeout); if (do_resume || handle_running_event) { // Do the initial resume and wait for the running event before going further. if (do_resume) { num_resumes++; Error resume_error = PrivateResume (); if (!resume_error.Success()) { errors.Printf("Error resuming inferior the %d time: \"%s\".\n", num_resumes, resume_error.AsCString()); return_value = eExecutionSetupError; break; } } TimeValue resume_timeout = TimeValue::Now(); resume_timeout.OffsetWithMicroSeconds(500000); got_event = listener.WaitForEvent(&resume_timeout, event_sp); if (!got_event) { if (log) log->Printf ("Process::RunThreadPlan(): didn't get any event after resume %d, exiting.", num_resumes); errors.Printf("Didn't get any event after resume %d, exiting.", num_resumes); return_value = eExecutionSetupError; break; } stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); if (stop_state != eStateRunning) { bool restarted = false; if (stop_state == eStateStopped) { restarted = Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()); if (log) log->Printf("Process::RunThreadPlan(): didn't get running event after " "resume %d, got %s instead (restarted: %i, do_resume: %i, handle_running_event: %i).", num_resumes, StateAsCString(stop_state), restarted, do_resume, handle_running_event); } if (restarted) { // This is probably an overabundance of caution, I don't think I should ever get a stopped & restarted // event here. But if I do, the best thing is to Halt and then get out of here. Halt(); } errors.Printf("Didn't get running event after initial resume, got %s instead.", StateAsCString(stop_state)); return_value = eExecutionSetupError; break; } if (log) log->PutCString ("Process::RunThreadPlan(): resuming succeeded."); // We need to call the function synchronously, so spin waiting for it to return. // If we get interrupted while executing, we're going to lose our context, and // won't be able to gather the result at this point. // We set the timeout AFTER the resume, since the resume takes some time and we // don't want to charge that to the timeout. } else { if (log) log->PutCString ("Process::RunThreadPlan(): waiting for next event."); } if (before_first_timeout) { if (run_others) timeout_ptr = &one_thread_timeout; else { if (timeout_usec == 0) timeout_ptr = NULL; else timeout_ptr = &final_timeout; } } else { if (timeout_usec == 0) timeout_ptr = NULL; else timeout_ptr = &final_timeout; } do_resume = true; handle_running_event = true; // Now wait for the process to stop again: event_sp.reset(); if (log) { if (timeout_ptr) { log->Printf ("Process::RunThreadPlan(): about to wait - now is %" PRIu64 " - endpoint is %" PRIu64, TimeValue::Now().GetAsMicroSecondsSinceJan1_1970(), timeout_ptr->GetAsMicroSecondsSinceJan1_1970()); } else { log->Printf ("Process::RunThreadPlan(): about to wait forever."); } } got_event = listener.WaitForEvent (timeout_ptr, event_sp); if (got_event) { if (event_sp.get()) { bool keep_going = false; if (event_sp->GetType() == eBroadcastBitInterrupt) { Halt(); return_value = eExecutionInterrupted; errors.Printf ("Execution halted by user interrupt."); if (log) log->Printf ("Process::RunThreadPlan(): Got interrupted by eBroadcastBitInterrupted, exiting."); break; } else { stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); if (log) log->Printf("Process::RunThreadPlan(): in while loop, got event: %s.", StateAsCString(stop_state)); switch (stop_state) { case lldb::eStateStopped: { // We stopped, figure out what we are going to do now. ThreadSP thread_sp = GetThreadList().FindThreadByIndexID (thread_idx_id); if (!thread_sp) { // Ooh, our thread has vanished. Unlikely that this was successful execution... if (log) log->Printf ("Process::RunThreadPlan(): execution completed but our thread (index-id=%u) has vanished.", thread_idx_id); return_value = eExecutionInterrupted; } else { // If we were restarted, we just need to go back up to fetch another event. if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { if (log) { log->Printf ("Process::RunThreadPlan(): Got a stop and restart, so we'll continue waiting."); } keep_going = true; do_resume = false; handle_running_event = true; } else { StopInfoSP stop_info_sp (thread_sp->GetStopInfo ()); StopReason stop_reason = eStopReasonInvalid; if (stop_info_sp) stop_reason = stop_info_sp->GetStopReason(); // FIXME: We only check if the stop reason is plan complete, should we make sure that // it is OUR plan that is complete? if (stop_reason == eStopReasonPlanComplete) { if (log) log->PutCString ("Process::RunThreadPlan(): execution completed successfully."); // Now mark this plan as private so it doesn't get reported as the stop reason // after this point. if (thread_plan_sp) thread_plan_sp->SetPrivate (orig_plan_private); return_value = eExecutionCompleted; } else { // Something restarted the target, so just wait for it to stop for real. if (stop_reason == eStopReasonBreakpoint) { if (log) log->Printf ("Process::RunThreadPlan() stopped for breakpoint: %s.", stop_info_sp->GetDescription()); return_value = eExecutionHitBreakpoint; if (!ignore_breakpoints) { event_to_broadcast_sp = event_sp; } } else { if (log) log->PutCString ("Process::RunThreadPlan(): thread plan didn't successfully complete."); if (!unwind_on_error) event_to_broadcast_sp = event_sp; return_value = eExecutionInterrupted; } } } } } break; case lldb::eStateRunning: // This shouldn't really happen, but sometimes we do get two running events without an // intervening stop, and in that case we should just go back to waiting for the stop. do_resume = false; keep_going = true; handle_running_event = false; break; default: if (log) log->Printf("Process::RunThreadPlan(): execution stopped with unexpected state: %s.", StateAsCString(stop_state)); if (stop_state == eStateExited) event_to_broadcast_sp = event_sp; errors.Printf ("Execution stopped with unexpected state.\n"); return_value = eExecutionInterrupted; break; } } if (keep_going) continue; else break; } else { if (log) log->PutCString ("Process::RunThreadPlan(): got_event was true, but the event pointer was null. How odd..."); return_value = eExecutionInterrupted; break; } } else { // If we didn't get an event that means we've timed out... // We will interrupt the process here. Depending on what we were asked to do we will // either exit, or try with all threads running for the same timeout. if (log) { if (run_others) { uint64_t remaining_time = final_timeout - TimeValue::Now(); if (before_first_timeout) log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, " "running till for %" PRId64 " usec with all threads enabled.", remaining_time); else log->Printf ("Process::RunThreadPlan(): Restarting function with all threads enabled " "and timeout: %d timed out, abandoning execution.", timeout_usec); } else log->Printf ("Process::RunThreadPlan(): Running function with timeout: %d timed out, " "abandoning execution.", timeout_usec); } // It is possible that between the time we issued the Halt, and we get around to calling Halt the target // could have stopped. That's fine, Halt will figure that out and send the appropriate Stopped event. // BUT it is also possible that we stopped & restarted (e.g. hit a signal with "stop" set to false.) In // that case, we'll get the stopped & restarted event, and we should go back to waiting for the Halt's // stopped event. That's what this while loop does. bool back_to_top = true; uint32_t try_halt_again = 0; bool do_halt = true; const uint32_t num_retries = 5; while (try_halt_again < num_retries) { Error halt_error; if (do_halt) { if (log) log->Printf ("Process::RunThreadPlan(): Running Halt."); halt_error = Halt(); } if (halt_error.Success()) { if (log) log->PutCString ("Process::RunThreadPlan(): Halt succeeded."); real_timeout = TimeValue::Now(); real_timeout.OffsetWithMicroSeconds(500000); got_event = listener.WaitForEvent(&real_timeout, event_sp); if (got_event) { stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); if (log) { log->Printf ("Process::RunThreadPlan(): Stopped with event: %s", StateAsCString(stop_state)); if (stop_state == lldb::eStateStopped && Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) log->PutCString (" Event was the Halt interruption event."); } if (stop_state == lldb::eStateStopped) { // Between the time we initiated the Halt and the time we delivered it, the process could have // already finished its job. Check that here: if (thread->IsThreadPlanDone (thread_plan_sp.get())) { if (log) log->PutCString ("Process::RunThreadPlan(): Even though we timed out, the call plan was done. " "Exiting wait loop."); return_value = eExecutionCompleted; back_to_top = false; break; } if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { if (log) log->PutCString ("Process::RunThreadPlan(): Went to halt but got a restarted event, there must be an un-restarted stopped event so try again... " "Exiting wait loop."); try_halt_again++; do_halt = false; continue; } if (!run_others) { if (log) log->PutCString ("Process::RunThreadPlan(): try_all_threads was false, we stopped so now we're quitting."); return_value = eExecutionInterrupted; back_to_top = false; break; } if (before_first_timeout) { // Set all the other threads to run, and return to the top of the loop, which will continue; before_first_timeout = false; thread_plan_sp->SetStopOthers (false); if (log) log->PutCString ("Process::RunThreadPlan(): about to resume."); back_to_top = true; break; } else { // Running all threads failed, so return Interrupted. if (log) log->PutCString("Process::RunThreadPlan(): running all threads timed out."); return_value = eExecutionInterrupted; back_to_top = false; break; } } } else { if (log) log->PutCString("Process::RunThreadPlan(): halt said it succeeded, but I got no event. " "I'm getting out of here passing Interrupted."); return_value = eExecutionInterrupted; back_to_top = false; break; } } else { try_halt_again++; continue; } } if (!back_to_top || try_halt_again > num_retries) break; else continue; } } // END WAIT LOOP // If we had to start up a temporary private state thread to run this thread plan, shut it down now. if (IS_VALID_LLDB_HOST_THREAD(backup_private_state_thread)) { StopPrivateStateThread(); Error error; m_private_state_thread = backup_private_state_thread; if (stopper_base_plan_sp) { thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); } m_public_state.SetValueNoLock(old_state); } // Restore the thread state if we are going to discard the plan execution. There are three cases where this // could happen: // 1) The execution successfully completed // 2) We hit a breakpoint, and ignore_breakpoints was true // 3) We got some other error, and discard_on_error was true bool should_unwind = (return_value == eExecutionInterrupted && unwind_on_error) || (return_value == eExecutionHitBreakpoint && ignore_breakpoints); if (return_value == eExecutionCompleted || should_unwind) { thread_plan_sp->RestoreThreadState(); } // Now do some processing on the results of the run: if (return_value == eExecutionInterrupted || return_value == eExecutionHitBreakpoint) { if (log) { StreamString s; if (event_sp) event_sp->Dump (&s); else { log->PutCString ("Process::RunThreadPlan(): Stop event that interrupted us is NULL."); } StreamString ts; const char *event_explanation = NULL; do { if (!event_sp) { event_explanation = "<no event>"; break; } else if (event_sp->GetType() == eBroadcastBitInterrupt) { event_explanation = "<user interrupt>"; break; } else { const Process::ProcessEventData *event_data = Process::ProcessEventData::GetEventDataFromEvent (event_sp.get()); if (!event_data) { event_explanation = "<no event data>"; break; } Process *process = event_data->GetProcessSP().get(); if (!process) { event_explanation = "<no process>"; break; } ThreadList &thread_list = process->GetThreadList(); uint32_t num_threads = thread_list.GetSize(); uint32_t thread_index; ts.Printf("<%u threads> ", num_threads); for (thread_index = 0; thread_index < num_threads; ++thread_index) { Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); if (!thread) { ts.Printf("<?> "); continue; } ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); RegisterContext *register_context = thread->GetRegisterContext().get(); if (register_context) ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); else ts.Printf("[ip unknown] "); lldb::StopInfoSP stop_info_sp = thread->GetStopInfo(); if (stop_info_sp) { const char *stop_desc = stop_info_sp->GetDescription(); if (stop_desc) ts.PutCString (stop_desc); } ts.Printf(">"); } event_explanation = ts.GetData(); } } while (0); if (event_explanation) log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", s.GetData(), event_explanation); else log->Printf("Process::RunThreadPlan(): execution interrupted: %s", s.GetData()); } if (should_unwind && thread_plan_sp) { if (log) log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - discarding thread plans up to %p.", thread_plan_sp.get()); thread->DiscardThreadPlansUpToPlan (thread_plan_sp); thread_plan_sp->SetPrivate (orig_plan_private); } else { if (log) log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - for plan: %p not discarding.", thread_plan_sp.get()); } } else if (return_value == eExecutionSetupError) { if (log) log->PutCString("Process::RunThreadPlan(): execution set up error."); if (unwind_on_error && thread_plan_sp) { thread->DiscardThreadPlansUpToPlan (thread_plan_sp); thread_plan_sp->SetPrivate (orig_plan_private); } } else { if (thread->IsThreadPlanDone (thread_plan_sp.get())) { if (log) log->PutCString("Process::RunThreadPlan(): thread plan is done"); return_value = eExecutionCompleted; } else if (thread->WasThreadPlanDiscarded (thread_plan_sp.get())) { if (log) log->PutCString("Process::RunThreadPlan(): thread plan was discarded"); return_value = eExecutionDiscarded; } else { if (log) log->PutCString("Process::RunThreadPlan(): thread plan stopped in mid course"); if (unwind_on_error && thread_plan_sp) { if (log) log->PutCString("Process::RunThreadPlan(): discarding thread plan 'cause unwind_on_error is set."); thread->DiscardThreadPlansUpToPlan (thread_plan_sp); thread_plan_sp->SetPrivate (orig_plan_private); } } } // Thread we ran the function in may have gone away because we ran the target // Check that it's still there, and if it is put it back in the context. Also restore the // frame in the context if it is still present. thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); if (thread) { exe_ctx.SetFrameSP (thread->GetFrameWithStackID (ctx_frame_id)); } // Also restore the current process'es selected frame & thread, since this function calling may // be done behind the user's back. if (selected_tid != LLDB_INVALID_THREAD_ID) { if (GetThreadList().SetSelectedThreadByIndexID (selected_tid) && selected_stack_id.IsValid()) { // We were able to restore the selected thread, now restore the frame: Mutex::Locker lock(GetThreadList().GetMutex()); StackFrameSP old_frame_sp = GetThreadList().GetSelectedThread()->GetFrameWithStackID(selected_stack_id); if (old_frame_sp) GetThreadList().GetSelectedThread()->SetSelectedFrame(old_frame_sp.get()); } } } // If the process exited during the run of the thread plan, notify everyone. if (event_to_broadcast_sp) { if (log) log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); BroadcastEvent(event_to_broadcast_sp); } return return_value; } const char * Process::ExecutionResultAsCString (ExecutionResults result) { const char *result_name; switch (result) { case eExecutionCompleted: result_name = "eExecutionCompleted"; break; case eExecutionDiscarded: result_name = "eExecutionDiscarded"; break; case eExecutionInterrupted: result_name = "eExecutionInterrupted"; break; case eExecutionHitBreakpoint: result_name = "eExecutionHitBreakpoint"; break; case eExecutionSetupError: result_name = "eExecutionSetupError"; break; case eExecutionTimedOut: result_name = "eExecutionTimedOut"; break; } return result_name; } void Process::GetStatus (Stream &strm) { const StateType state = GetState(); if (StateIsStoppedState(state, false)) { if (state == eStateExited) { int exit_status = GetExitStatus(); const char *exit_description = GetExitDescription(); strm.Printf ("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", GetID(), exit_status, exit_status, exit_description ? exit_description : ""); } else { if (state == eStateConnected) strm.Printf ("Connected to remote target.\n"); else strm.Printf ("Process %" PRIu64 " %s\n", GetID(), StateAsCString (state)); } } else { strm.Printf ("Process %" PRIu64 " is running.\n", GetID()); } } size_t Process::GetThreadStatus (Stream &strm, bool only_threads_with_stop_reason, uint32_t start_frame, uint32_t num_frames, uint32_t num_frames_with_source) { size_t num_thread_infos_dumped = 0; Mutex::Locker locker (GetThreadList().GetMutex()); const size_t num_threads = GetThreadList().GetSize(); for (uint32_t i = 0; i < num_threads; i++) { Thread *thread = GetThreadList().GetThreadAtIndex(i).get(); if (thread) { if (only_threads_with_stop_reason) { StopInfoSP stop_info_sp = thread->GetStopInfo(); if (stop_info_sp.get() == NULL || !stop_info_sp->IsValid()) continue; } thread->GetStatus (strm, start_frame, num_frames, num_frames_with_source); ++num_thread_infos_dumped; } } return num_thread_infos_dumped; } void Process::AddInvalidMemoryRegion (const LoadRange ®ion) { m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); } bool Process::RemoveInvalidMemoryRange (const LoadRange ®ion) { return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), region.GetByteSize()); } void Process::AddPreResumeAction (PreResumeActionCallback callback, void *baton) { m_pre_resume_actions.push_back(PreResumeCallbackAndBaton (callback, baton)); } bool Process::RunPreResumeActions () { bool result = true; while (!m_pre_resume_actions.empty()) { struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); m_pre_resume_actions.pop_back(); bool this_result = action.callback (action.baton); if (result == true) result = this_result; } return result; } void Process::ClearPreResumeActions () { m_pre_resume_actions.clear(); } void Process::Flush () { m_thread_list.Flush(); } void Process::DidExec () { Target &target = GetTarget(); target.CleanupProcess (); ModuleList unloaded_modules (target.GetImages()); target.ModulesDidUnload (unloaded_modules); target.GetSectionLoadList().Clear(); m_dynamic_checkers_ap.reset(); m_abi_sp.reset(); m_os_ap.reset(); m_dyld_ap.reset(); m_image_tokens.clear(); m_allocated_memory_cache.Clear(); m_language_runtimes.clear(); m_thread_list.DiscardThreadPlans(); m_memory_cache.Clear(true); DoDidExec(); CompleteAttach (); }