//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "lcg" static void findCallees( SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited, SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees, DenseMap<Function *, size_t> &CalleeIndexMap) { while (!Worklist.empty()) { Constant *C = Worklist.pop_back_val(); if (Function *F = dyn_cast<Function>(C)) { // Note that we consider *any* function with a definition to be a viable // edge. Even if the function's definition is subject to replacement by // some other module (say, a weak definition) there may still be // optimizations which essentially speculate based on the definition and // a way to check that the specific definition is in fact the one being // used. For example, this could be done by moving the weak definition to // a strong (internal) definition and making the weak definition be an // alias. Then a test of the address of the weak function against the new // strong definition's address would be an effective way to determine the // safety of optimizing a direct call edge. if (!F->isDeclaration() && CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) { DEBUG(dbgs() << " Added callable function: " << F->getName() << "\n"); Callees.push_back(F); } continue; } for (Value *Op : C->operand_values()) if (Visited.insert(cast<Constant>(Op)).second) Worklist.push_back(cast<Constant>(Op)); } } LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) : G(&G), F(F), DFSNumber(0), LowLink(0) { DEBUG(dbgs() << " Adding functions called by '" << F.getName() << "' to the graph.\n"); SmallVector<Constant *, 16> Worklist; SmallPtrSet<Constant *, 16> Visited; // Find all the potential callees in this function. First walk the // instructions and add every operand which is a constant to the worklist. for (BasicBlock &BB : F) for (Instruction &I : BB) for (Value *Op : I.operand_values()) if (Constant *C = dyn_cast<Constant>(Op)) if (Visited.insert(C).second) Worklist.push_back(C); // We've collected all the constant (and thus potentially function or // function containing) operands to all of the instructions in the function. // Process them (recursively) collecting every function found. findCallees(Worklist, Visited, Callees, CalleeIndexMap); } void LazyCallGraph::Node::insertEdgeInternal(Function &Callee) { if (Node *N = G->lookup(Callee)) return insertEdgeInternal(*N); CalleeIndexMap.insert(std::make_pair(&Callee, Callees.size())); Callees.push_back(&Callee); } void LazyCallGraph::Node::insertEdgeInternal(Node &CalleeN) { CalleeIndexMap.insert(std::make_pair(&CalleeN.getFunction(), Callees.size())); Callees.push_back(&CalleeN); } void LazyCallGraph::Node::removeEdgeInternal(Function &Callee) { auto IndexMapI = CalleeIndexMap.find(&Callee); assert(IndexMapI != CalleeIndexMap.end() && "Callee not in the callee set for this caller?"); Callees[IndexMapI->second] = nullptr; CalleeIndexMap.erase(IndexMapI); } LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() << "\n"); for (Function &F : M) if (!F.isDeclaration() && !F.hasLocalLinkage()) if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) { DEBUG(dbgs() << " Adding '" << F.getName() << "' to entry set of the graph.\n"); EntryNodes.push_back(&F); } // Now add entry nodes for functions reachable via initializers to globals. SmallVector<Constant *, 16> Worklist; SmallPtrSet<Constant *, 16> Visited; for (GlobalVariable &GV : M.globals()) if (GV.hasInitializer()) if (Visited.insert(GV.getInitializer()).second) Worklist.push_back(GV.getInitializer()); DEBUG(dbgs() << " Adding functions referenced by global initializers to the " "entry set.\n"); findCallees(Worklist, Visited, EntryNodes, EntryIndexMap); for (auto &Entry : EntryNodes) { assert(!Entry.isNull() && "We can't have removed edges before we finish the constructor!"); if (Function *F = Entry.dyn_cast<Function *>()) SCCEntryNodes.push_back(F); else SCCEntryNodes.push_back(&Entry.get<Node *>()->getFunction()); } } LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), EntryNodes(std::move(G.EntryNodes)), EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)), DFSStack(std::move(G.DFSStack)), SCCEntryNodes(std::move(G.SCCEntryNodes)), NextDFSNumber(G.NextDFSNumber) { updateGraphPtrs(); } LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { BPA = std::move(G.BPA); NodeMap = std::move(G.NodeMap); EntryNodes = std::move(G.EntryNodes); EntryIndexMap = std::move(G.EntryIndexMap); SCCBPA = std::move(G.SCCBPA); SCCMap = std::move(G.SCCMap); LeafSCCs = std::move(G.LeafSCCs); DFSStack = std::move(G.DFSStack); SCCEntryNodes = std::move(G.SCCEntryNodes); NextDFSNumber = G.NextDFSNumber; updateGraphPtrs(); return *this; } void LazyCallGraph::SCC::insert(Node &N) { N.DFSNumber = N.LowLink = -1; Nodes.push_back(&N); G->SCCMap[&N] = this; } bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const { // Walk up the parents of this SCC and verify that we eventually find C. SmallVector<const SCC *, 4> AncestorWorklist; AncestorWorklist.push_back(this); do { const SCC *AncestorC = AncestorWorklist.pop_back_val(); if (AncestorC->isChildOf(C)) return true; for (const SCC *ParentC : AncestorC->ParentSCCs) AncestorWorklist.push_back(ParentC); } while (!AncestorWorklist.empty()); return false; } void LazyCallGraph::SCC::insertIntraSCCEdge(Node &CallerN, Node &CalleeN) { // First insert it into the caller. CallerN.insertEdgeInternal(CalleeN); assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC."); assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC."); // Nothing changes about this SCC or any other. } void LazyCallGraph::SCC::insertOutgoingEdge(Node &CallerN, Node &CalleeN) { // First insert it into the caller. CallerN.insertEdgeInternal(CalleeN); assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC."); SCC &CalleeC = *G->SCCMap.lookup(&CalleeN); assert(&CalleeC != this && "Callee must not be in this SCC."); assert(CalleeC.isDescendantOf(*this) && "Callee must be a descendant of the Caller."); // The only change required is to add this SCC to the parent set of the callee. CalleeC.ParentSCCs.insert(this); } SmallVector<LazyCallGraph::SCC *, 1> LazyCallGraph::SCC::insertIncomingEdge(Node &CallerN, Node &CalleeN) { // First insert it into the caller. CallerN.insertEdgeInternal(CalleeN); assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC."); SCC &CallerC = *G->SCCMap.lookup(&CallerN); assert(&CallerC != this && "Caller must not be in this SCC."); assert(CallerC.isDescendantOf(*this) && "Caller must be a descendant of the Callee."); // The algorithm we use for merging SCCs based on the cycle introduced here // is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse // graph has the same cycle properties as the actual DAG of the SCCs, and // when forming SCCs lazily by a DFS, the bottom of the graph won't exist in // many cases which should prune the search space. // // FIXME: We can get this pruning behavior even after the incremental SCC // formation by leaving behind (conservative) DFS numberings in the nodes, // and pruning the search with them. These would need to be cleverly updated // during the removal of intra-SCC edges, but could be preserved // conservatively. // The set of SCCs that are connected to the caller, and thus will // participate in the merged connected component. SmallPtrSet<SCC *, 8> ConnectedSCCs; ConnectedSCCs.insert(this); ConnectedSCCs.insert(&CallerC); // We build up a DFS stack of the parents chains. SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs; SmallPtrSet<SCC *, 8> VisitedSCCs; int ConnectedDepth = -1; SCC *C = this; parent_iterator I = parent_begin(), E = parent_end(); for (;;) { while (I != E) { SCC &ParentSCC = *I++; // If we have already processed this parent SCC, skip it, and remember // whether it was connected so we don't have to check the rest of the // stack. This also handles when we reach a child of the 'this' SCC (the // callee) which terminates the search. if (ConnectedSCCs.count(&ParentSCC)) { ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size()); continue; } if (VisitedSCCs.count(&ParentSCC)) continue; // We fully explore the depth-first space, adding nodes to the connected // set only as we pop them off, so "recurse" by rotating to the parent. DFSSCCs.push_back(std::make_pair(C, I)); C = &ParentSCC; I = ParentSCC.parent_begin(); E = ParentSCC.parent_end(); } // If we've found a connection anywhere below this point on the stack (and // thus up the parent graph from the caller), the current node needs to be // added to the connected set now that we've processed all of its parents. if ((int)DFSSCCs.size() == ConnectedDepth) { --ConnectedDepth; // We're finished with this connection. ConnectedSCCs.insert(C); } else { // Otherwise remember that its parents don't ever connect. assert(ConnectedDepth < (int)DFSSCCs.size() && "Cannot have a connected depth greater than the DFS depth!"); VisitedSCCs.insert(C); } if (DFSSCCs.empty()) break; // We've walked all the parents of the caller transitively. // Pop off the prior node and position to unwind the depth first recursion. std::tie(C, I) = DFSSCCs.pop_back_val(); E = C->parent_end(); } // Now that we have identified all of the SCCs which need to be merged into // a connected set with the inserted edge, merge all of them into this SCC. // FIXME: This operation currently creates ordering stability problems // because we don't use stably ordered containers for the parent SCCs or the // connected SCCs. unsigned NewNodeBeginIdx = Nodes.size(); for (SCC *C : ConnectedSCCs) { if (C == this) continue; for (SCC *ParentC : C->ParentSCCs) if (!ConnectedSCCs.count(ParentC)) ParentSCCs.insert(ParentC); C->ParentSCCs.clear(); for (Node *N : *C) { for (Node &ChildN : *N) { SCC &ChildC = *G->SCCMap.lookup(&ChildN); if (&ChildC != C) ChildC.ParentSCCs.erase(C); } G->SCCMap[N] = this; Nodes.push_back(N); } C->Nodes.clear(); } for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I) for (Node &ChildN : **I) { SCC &ChildC = *G->SCCMap.lookup(&ChildN); if (&ChildC != this) ChildC.ParentSCCs.insert(this); } // We return the list of SCCs which were merged so that callers can // invalidate any data they have associated with those SCCs. Note that these // SCCs are no longer in an interesting state (they are totally empty) but // the pointers will remain stable for the life of the graph itself. return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end()); } void LazyCallGraph::SCC::removeInterSCCEdge(Node &CallerN, Node &CalleeN) { // First remove it from the node. CallerN.removeEdgeInternal(CalleeN.getFunction()); assert(G->SCCMap.lookup(&CallerN) == this && "The caller must be a member of this SCC."); SCC &CalleeC = *G->SCCMap.lookup(&CalleeN); assert(&CalleeC != this && "This API only supports the rmoval of inter-SCC edges."); assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) == G->LeafSCCs.end() && "Cannot have a leaf SCC caller with a different SCC callee."); bool HasOtherCallToCalleeC = false; bool HasOtherCallOutsideSCC = false; for (Node *N : *this) { for (Node &OtherCalleeN : *N) { SCC &OtherCalleeC = *G->SCCMap.lookup(&OtherCalleeN); if (&OtherCalleeC == &CalleeC) { HasOtherCallToCalleeC = true; break; } if (&OtherCalleeC != this) HasOtherCallOutsideSCC = true; } if (HasOtherCallToCalleeC) break; } // Because the SCCs form a DAG, deleting such an edge cannot change the set // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making // the caller no longer a parent of the callee. Walk the other call edges // in the caller to tell. if (!HasOtherCallToCalleeC) { bool Removed = CalleeC.ParentSCCs.erase(this); (void)Removed; assert(Removed && "Did not find the caller SCC in the callee SCC's parent list!"); // It may orphan an SCC if it is the last edge reaching it, but that does // not violate any invariants of the graph. if (CalleeC.ParentSCCs.empty()) DEBUG(dbgs() << "LCG: Update removing " << CallerN.getFunction().getName() << " -> " << CalleeN.getFunction().getName() << " edge orphaned the callee's SCC!\n"); } // It may make the Caller SCC a leaf SCC. if (!HasOtherCallOutsideSCC) G->LeafSCCs.push_back(this); } void LazyCallGraph::SCC::internalDFS( SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack, SmallVectorImpl<Node *> &PendingSCCStack, Node *N, SmallVectorImpl<SCC *> &ResultSCCs) { Node::iterator I = N->begin(); N->LowLink = N->DFSNumber = 1; int NextDFSNumber = 2; for (;;) { assert(N->DFSNumber != 0 && "We should always assign a DFS number " "before processing a node."); // We simulate recursion by popping out of the nested loop and continuing. Node::iterator E = N->end(); while (I != E) { Node &ChildN = *I; if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) { // Check if we have reached a node in the new (known connected) set of // this SCC. If so, the entire stack is necessarily in that set and we // can re-start. if (ChildSCC == this) { insert(*N); while (!PendingSCCStack.empty()) insert(*PendingSCCStack.pop_back_val()); while (!DFSStack.empty()) insert(*DFSStack.pop_back_val().first); return; } // If this child isn't currently in this SCC, no need to process it. // However, we do need to remove this SCC from its SCC's parent set. ChildSCC->ParentSCCs.erase(this); ++I; continue; } if (ChildN.DFSNumber == 0) { // Mark that we should start at this child when next this node is the // top of the stack. We don't start at the next child to ensure this // child's lowlink is reflected. DFSStack.push_back(std::make_pair(N, I)); // Continue, resetting to the child node. ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; N = &ChildN; I = ChildN.begin(); E = ChildN.end(); continue; } // Track the lowest link of the children, if any are still in the stack. // Any child not on the stack will have a LowLink of -1. assert(ChildN.LowLink != 0 && "Low-link must not be zero with a non-zero DFS number."); if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) N->LowLink = ChildN.LowLink; ++I; } if (N->LowLink == N->DFSNumber) { ResultSCCs.push_back(G->formSCC(N, PendingSCCStack)); if (DFSStack.empty()) return; } else { // At this point we know that N cannot ever be an SCC root. Its low-link // is not its dfs-number, and we've processed all of its children. It is // just sitting here waiting until some node further down the stack gets // low-link == dfs-number and pops it off as well. Move it to the pending // stack which is pulled into the next SCC to be formed. PendingSCCStack.push_back(N); assert(!DFSStack.empty() && "We shouldn't have an empty stack!"); } N = DFSStack.back().first; I = DFSStack.back().second; DFSStack.pop_back(); } } SmallVector<LazyCallGraph::SCC *, 1> LazyCallGraph::SCC::removeIntraSCCEdge(Node &CallerN, Node &CalleeN) { // First remove it from the node. CallerN.removeEdgeInternal(CalleeN.getFunction()); // We return a list of the resulting *new* SCCs in postorder. SmallVector<SCC *, 1> ResultSCCs; // Direct recursion doesn't impact the SCC graph at all. if (&CallerN == &CalleeN) return ResultSCCs; // The worklist is every node in the original SCC. SmallVector<Node *, 1> Worklist; Worklist.swap(Nodes); for (Node *N : Worklist) { // The nodes formerly in this SCC are no longer in any SCC. N->DFSNumber = 0; N->LowLink = 0; G->SCCMap.erase(N); } assert(Worklist.size() > 1 && "We have to have at least two nodes to have an " "edge between them that is within the SCC."); // The callee can already reach every node in this SCC (by definition). It is // the only node we know will stay inside this SCC. Everything which // transitively reaches Callee will also remain in the SCC. To model this we // incrementally add any chain of nodes which reaches something in the new // node set to the new node set. This short circuits one side of the Tarjan's // walk. insert(CalleeN); // We're going to do a full mini-Tarjan's walk using a local stack here. SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack; SmallVector<Node *, 4> PendingSCCStack; do { Node *N = Worklist.pop_back_val(); if (N->DFSNumber == 0) internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs); assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!"); } while (!Worklist.empty()); // Now we need to reconnect the current SCC to the graph. bool IsLeafSCC = true; for (Node *N : Nodes) { for (Node &ChildN : *N) { SCC &ChildSCC = *G->SCCMap.lookup(&ChildN); if (&ChildSCC == this) continue; ChildSCC.ParentSCCs.insert(this); IsLeafSCC = false; } } #ifndef NDEBUG if (!ResultSCCs.empty()) assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new " "SCCs by removing this edge."); if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(), [&](SCC *C) { return C == this; })) assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child " "SCCs before we removed this edge."); #endif // If this SCC stopped being a leaf through this edge removal, remove it from // the leaf SCC list. if (!IsLeafSCC && !ResultSCCs.empty()) G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this), G->LeafSCCs.end()); // Return the new list of SCCs. return ResultSCCs; } void LazyCallGraph::insertEdge(Node &CallerN, Function &Callee) { assert(SCCMap.empty() && DFSStack.empty() && "This method cannot be called after SCCs have been formed!"); return CallerN.insertEdgeInternal(Callee); } void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) { assert(SCCMap.empty() && DFSStack.empty() && "This method cannot be called after SCCs have been formed!"); return CallerN.removeEdgeInternal(Callee); } LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { return *new (MappedN = BPA.Allocate()) Node(*this, F); } void LazyCallGraph::updateGraphPtrs() { // Process all nodes updating the graph pointers. { SmallVector<Node *, 16> Worklist; for (auto &Entry : EntryNodes) if (Node *EntryN = Entry.dyn_cast<Node *>()) Worklist.push_back(EntryN); while (!Worklist.empty()) { Node *N = Worklist.pop_back_val(); N->G = this; for (auto &Callee : N->Callees) if (!Callee.isNull()) if (Node *CalleeN = Callee.dyn_cast<Node *>()) Worklist.push_back(CalleeN); } } // Process all SCCs updating the graph pointers. { SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end()); while (!Worklist.empty()) { SCC *C = Worklist.pop_back_val(); C->G = this; Worklist.insert(Worklist.end(), C->ParentSCCs.begin(), C->ParentSCCs.end()); } } } LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN, SmallVectorImpl<Node *> &NodeStack) { // The tail of the stack is the new SCC. Allocate the SCC and pop the stack // into it. SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this); while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) { assert(NodeStack.back()->LowLink >= RootN->LowLink && "We cannot have a low link in an SCC lower than its root on the " "stack!"); NewSCC->insert(*NodeStack.pop_back_val()); } NewSCC->insert(*RootN); // A final pass over all edges in the SCC (this remains linear as we only // do this once when we build the SCC) to connect it to the parent sets of // its children. bool IsLeafSCC = true; for (Node *SCCN : NewSCC->Nodes) for (Node &SCCChildN : *SCCN) { SCC &ChildSCC = *SCCMap.lookup(&SCCChildN); if (&ChildSCC == NewSCC) continue; ChildSCC.ParentSCCs.insert(NewSCC); IsLeafSCC = false; } // For the SCCs where we fine no child SCCs, add them to the leaf list. if (IsLeafSCC) LeafSCCs.push_back(NewSCC); return NewSCC; } LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() { Node *N; Node::iterator I; if (!DFSStack.empty()) { N = DFSStack.back().first; I = DFSStack.back().second; DFSStack.pop_back(); } else { // If we've handled all candidate entry nodes to the SCC forest, we're done. do { if (SCCEntryNodes.empty()) return nullptr; N = &get(*SCCEntryNodes.pop_back_val()); } while (N->DFSNumber != 0); I = N->begin(); N->LowLink = N->DFSNumber = 1; NextDFSNumber = 2; } for (;;) { assert(N->DFSNumber != 0 && "We should always assign a DFS number " "before placing a node onto the stack."); Node::iterator E = N->end(); while (I != E) { Node &ChildN = *I; if (ChildN.DFSNumber == 0) { // Mark that we should start at this child when next this node is the // top of the stack. We don't start at the next child to ensure this // child's lowlink is reflected. DFSStack.push_back(std::make_pair(N, N->begin())); // Recurse onto this node via a tail call. assert(!SCCMap.count(&ChildN) && "Found a node with 0 DFS number but already in an SCC!"); ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; N = &ChildN; I = ChildN.begin(); E = ChildN.end(); continue; } // Track the lowest link of the children, if any are still in the stack. assert(ChildN.LowLink != 0 && "Low-link must not be zero with a non-zero DFS number."); if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) N->LowLink = ChildN.LowLink; ++I; } if (N->LowLink == N->DFSNumber) // Form the new SCC out of the top of the DFS stack. return formSCC(N, PendingSCCStack); // At this point we know that N cannot ever be an SCC root. Its low-link // is not its dfs-number, and we've processed all of its children. It is // just sitting here waiting until some node further down the stack gets // low-link == dfs-number and pops it off as well. Move it to the pending // stack which is pulled into the next SCC to be formed. PendingSCCStack.push_back(N); assert(!DFSStack.empty() && "We never found a viable root!"); N = DFSStack.back().first; I = DFSStack.back().second; DFSStack.pop_back(); } } char LazyCallGraphAnalysis::PassID; LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N, SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) { // Recurse depth first through the nodes. for (LazyCallGraph::Node &ChildN : N) if (Printed.insert(&ChildN).second) printNodes(OS, ChildN, Printed); OS << " Call edges in function: " << N.getFunction().getName() << "\n"; for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I) OS << " -> " << I->getFunction().getName() << "\n"; OS << "\n"; } static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) { ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end()); OS << " SCC with " << SCCSize << " functions:\n"; for (LazyCallGraph::Node *N : SCC) OS << " " << N->getFunction().getName() << "\n"; OS << "\n"; } PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, ModuleAnalysisManager *AM) { LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M); OS << "Printing the call graph for module: " << M.getModuleIdentifier() << "\n\n"; SmallPtrSet<LazyCallGraph::Node *, 16> Printed; for (LazyCallGraph::Node &N : G) if (Printed.insert(&N).second) printNodes(OS, N, Printed); for (LazyCallGraph::SCC &SCC : G.postorder_sccs()) printSCC(OS, SCC); return PreservedAnalyses::all(); }