//===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RABasic function pass, which provides a minimal // implementation of the basic register allocator. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "AllocationOrder.h" #include "LiveDebugVariables.h" #include "RegAllocBase.h" #include "Spiller.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/CodeGen/LiveRegMatrix.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/PassAnalysisSupport.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetRegisterInfo.h" #include <cstdlib> #include <queue> using namespace llvm; #define DEBUG_TYPE "regalloc" static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", createBasicRegisterAllocator); namespace { struct CompSpillWeight { bool operator()(LiveInterval *A, LiveInterval *B) const { return A->weight < B->weight; } }; } namespace { /// RABasic provides a minimal implementation of the basic register allocation /// algorithm. It prioritizes live virtual registers by spill weight and spills /// whenever a register is unavailable. This is not practical in production but /// provides a useful baseline both for measuring other allocators and comparing /// the speed of the basic algorithm against other styles of allocators. class RABasic : public MachineFunctionPass, public RegAllocBase { // context MachineFunction *MF; // state std::unique_ptr<Spiller> SpillerInstance; std::priority_queue<LiveInterval*, std::vector<LiveInterval*>, CompSpillWeight> Queue; // Scratch space. Allocated here to avoid repeated malloc calls in // selectOrSplit(). BitVector UsableRegs; public: RABasic(); /// Return the pass name. const char* getPassName() const override { return "Basic Register Allocator"; } /// RABasic analysis usage. void getAnalysisUsage(AnalysisUsage &AU) const override; void releaseMemory() override; Spiller &spiller() override { return *SpillerInstance; } void enqueue(LiveInterval *LI) override { Queue.push(LI); } LiveInterval *dequeue() override { if (Queue.empty()) return nullptr; LiveInterval *LI = Queue.top(); Queue.pop(); return LI; } unsigned selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl<unsigned> &SplitVRegs) override; /// Perform register allocation. bool runOnMachineFunction(MachineFunction &mf) override; // Helper for spilling all live virtual registers currently unified under preg // that interfere with the most recently queried lvr. Return true if spilling // was successful, and append any new spilled/split intervals to splitLVRs. bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, SmallVectorImpl<unsigned> &SplitVRegs); static char ID; }; char RABasic::ID = 0; } // end anonymous namespace RABasic::RABasic(): MachineFunctionPass(ID) { initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry()); } void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<AliasAnalysis>(); AU.addPreserved<AliasAnalysis>(); AU.addRequired<LiveIntervals>(); AU.addPreserved<LiveIntervals>(); AU.addPreserved<SlotIndexes>(); AU.addRequired<LiveDebugVariables>(); AU.addPreserved<LiveDebugVariables>(); AU.addRequired<LiveStacks>(); AU.addPreserved<LiveStacks>(); AU.addRequired<MachineBlockFrequencyInfo>(); AU.addPreserved<MachineBlockFrequencyInfo>(); AU.addRequiredID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); AU.addRequired<MachineLoopInfo>(); AU.addPreserved<MachineLoopInfo>(); AU.addRequired<VirtRegMap>(); AU.addPreserved<VirtRegMap>(); AU.addRequired<LiveRegMatrix>(); AU.addPreserved<LiveRegMatrix>(); MachineFunctionPass::getAnalysisUsage(AU); } void RABasic::releaseMemory() { SpillerInstance.reset(); } // Spill or split all live virtual registers currently unified under PhysReg // that interfere with VirtReg. The newly spilled or split live intervals are // returned by appending them to SplitVRegs. bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, SmallVectorImpl<unsigned> &SplitVRegs) { // Record each interference and determine if all are spillable before mutating // either the union or live intervals. SmallVector<LiveInterval*, 8> Intfs; // Collect interferences assigned to any alias of the physical register. for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); Q.collectInterferingVRegs(); if (Q.seenUnspillableVReg()) return false; for (unsigned i = Q.interferingVRegs().size(); i; --i) { LiveInterval *Intf = Q.interferingVRegs()[i - 1]; if (!Intf->isSpillable() || Intf->weight > VirtReg.weight) return false; Intfs.push_back(Intf); } } DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) << " interferences with " << VirtReg << "\n"); assert(!Intfs.empty() && "expected interference"); // Spill each interfering vreg allocated to PhysReg or an alias. for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { LiveInterval &Spill = *Intfs[i]; // Skip duplicates. if (!VRM->hasPhys(Spill.reg)) continue; // Deallocate the interfering vreg by removing it from the union. // A LiveInterval instance may not be in a union during modification! Matrix->unassign(Spill); // Spill the extracted interval. LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM); spiller().spill(LRE); } return true; } // Driver for the register assignment and splitting heuristics. // Manages iteration over the LiveIntervalUnions. // // This is a minimal implementation of register assignment and splitting that // spills whenever we run out of registers. // // selectOrSplit can only be called once per live virtual register. We then do a // single interference test for each register the correct class until we find an // available register. So, the number of interference tests in the worst case is // |vregs| * |machineregs|. And since the number of interference tests is // minimal, there is no value in caching them outside the scope of // selectOrSplit(). unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl<unsigned> &SplitVRegs) { // Populate a list of physical register spill candidates. SmallVector<unsigned, 8> PhysRegSpillCands; // Check for an available register in this class. AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); while (unsigned PhysReg = Order.next()) { // Check for interference in PhysReg switch (Matrix->checkInterference(VirtReg, PhysReg)) { case LiveRegMatrix::IK_Free: // PhysReg is available, allocate it. return PhysReg; case LiveRegMatrix::IK_VirtReg: // Only virtual registers in the way, we may be able to spill them. PhysRegSpillCands.push_back(PhysReg); continue; default: // RegMask or RegUnit interference. continue; } } // Try to spill another interfering reg with less spill weight. for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(), PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue; assert(!Matrix->checkInterference(VirtReg, *PhysRegI) && "Interference after spill."); // Tell the caller to allocate to this newly freed physical register. return *PhysRegI; } // No other spill candidates were found, so spill the current VirtReg. DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); if (!VirtReg.isSpillable()) return ~0u; LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM); spiller().spill(LRE); // The live virtual register requesting allocation was spilled, so tell // the caller not to allocate anything during this round. return 0; } bool RABasic::runOnMachineFunction(MachineFunction &mf) { DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" << "********** Function: " << mf.getName() << '\n'); MF = &mf; RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>(), getAnalysis<LiveRegMatrix>()); calculateSpillWeightsAndHints(*LIS, *MF, getAnalysis<MachineLoopInfo>(), getAnalysis<MachineBlockFrequencyInfo>()); SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); allocatePhysRegs(); // Diagnostic output before rewriting DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); releaseMemory(); return true; } FunctionPass* llvm::createBasicRegisterAllocator() { return new RABasic(); }