//=-- CoverageMappingReader.cpp - Code coverage mapping reader ----*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for reading coverage mapping data for // instrumentation based coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/CoverageMappingReader.h" #include "llvm/ADT/DenseSet.h" #include "llvm/Object/MachOUniversal.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace coverage; using namespace object; #define DEBUG_TYPE "coverage-mapping" void CoverageMappingIterator::increment() { // Check if all the records were read or if an error occurred while reading // the next record. if (Reader->readNextRecord(Record)) *this = CoverageMappingIterator(); } std::error_code RawCoverageReader::readULEB128(uint64_t &Result) { if (Data.size() < 1) return error(instrprof_error::truncated); unsigned N = 0; Result = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N); if (N > Data.size()) return error(instrprof_error::malformed); Data = Data.substr(N); return success(); } std::error_code RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) { if (auto Err = readULEB128(Result)) return Err; if (Result >= MaxPlus1) return error(instrprof_error::malformed); return success(); } std::error_code RawCoverageReader::readSize(uint64_t &Result) { if (auto Err = readULEB128(Result)) return Err; // Sanity check the number. if (Result > Data.size()) return error(instrprof_error::malformed); return success(); } std::error_code RawCoverageReader::readString(StringRef &Result) { uint64_t Length; if (auto Err = readSize(Length)) return Err; Result = Data.substr(0, Length); Data = Data.substr(Length); return success(); } std::error_code RawCoverageFilenamesReader::read() { uint64_t NumFilenames; if (auto Err = readSize(NumFilenames)) return Err; for (size_t I = 0; I < NumFilenames; ++I) { StringRef Filename; if (auto Err = readString(Filename)) return Err; Filenames.push_back(Filename); } return success(); } std::error_code RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) { auto Tag = Value & Counter::EncodingTagMask; switch (Tag) { case Counter::Zero: C = Counter::getZero(); return success(); case Counter::CounterValueReference: C = Counter::getCounter(Value >> Counter::EncodingTagBits); return success(); default: break; } Tag -= Counter::Expression; switch (Tag) { case CounterExpression::Subtract: case CounterExpression::Add: { auto ID = Value >> Counter::EncodingTagBits; if (ID >= Expressions.size()) return error(instrprof_error::malformed); Expressions[ID].Kind = CounterExpression::ExprKind(Tag); C = Counter::getExpression(ID); break; } default: return error(instrprof_error::malformed); } return success(); } std::error_code RawCoverageMappingReader::readCounter(Counter &C) { uint64_t EncodedCounter; if (auto Err = readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max())) return Err; if (auto Err = decodeCounter(EncodedCounter, C)) return Err; return success(); } static const unsigned EncodingExpansionRegionBit = 1 << Counter::EncodingTagBits; /// \brief Read the sub-array of regions for the given inferred file id. /// \param NumFileIDs the number of file ids that are defined for this /// function. std::error_code RawCoverageMappingReader::readMappingRegionsSubArray( std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID, size_t NumFileIDs) { uint64_t NumRegions; if (auto Err = readSize(NumRegions)) return Err; unsigned LineStart = 0; for (size_t I = 0; I < NumRegions; ++I) { Counter C; CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion; // Read the combined counter + region kind. uint64_t EncodedCounterAndRegion; if (auto Err = readIntMax(EncodedCounterAndRegion, std::numeric_limits<unsigned>::max())) return Err; unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; uint64_t ExpandedFileID = 0; if (Tag != Counter::Zero) { if (auto Err = decodeCounter(EncodedCounterAndRegion, C)) return Err; } else { // Is it an expansion region? if (EncodedCounterAndRegion & EncodingExpansionRegionBit) { Kind = CounterMappingRegion::ExpansionRegion; ExpandedFileID = EncodedCounterAndRegion >> Counter::EncodingCounterTagAndExpansionRegionTagBits; if (ExpandedFileID >= NumFileIDs) return error(instrprof_error::malformed); } else { switch (EncodedCounterAndRegion >> Counter::EncodingCounterTagAndExpansionRegionTagBits) { case CounterMappingRegion::CodeRegion: // Don't do anything when we have a code region with a zero counter. break; case CounterMappingRegion::SkippedRegion: Kind = CounterMappingRegion::SkippedRegion; break; default: return error(instrprof_error::malformed); } } } // Read the source range. uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd; if (auto Err = readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max())) return Err; if (auto Err = readULEB128(ColumnStart)) return Err; if (ColumnStart > std::numeric_limits<unsigned>::max()) return error(instrprof_error::malformed); if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max())) return Err; if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max())) return Err; LineStart += LineStartDelta; // Adjust the column locations for the empty regions that are supposed to // cover whole lines. Those regions should be encoded with the // column range (1 -> std::numeric_limits<unsigned>::max()), but because // the encoded std::numeric_limits<unsigned>::max() is several bytes long, // we set the column range to (0 -> 0) to ensure that the column start and // column end take up one byte each. // The std::numeric_limits<unsigned>::max() is used to represent a column // position at the end of the line without knowing the length of that line. if (ColumnStart == 0 && ColumnEnd == 0) { ColumnStart = 1; ColumnEnd = std::numeric_limits<unsigned>::max(); } DEBUG({ dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":" << ColumnStart << " -> " << (LineStart + NumLines) << ":" << ColumnEnd << ", "; if (Kind == CounterMappingRegion::ExpansionRegion) dbgs() << "Expands to file " << ExpandedFileID; else CounterMappingContext(Expressions).dump(C, dbgs()); dbgs() << "\n"; }); MappingRegions.push_back(CounterMappingRegion( C, InferredFileID, ExpandedFileID, LineStart, ColumnStart, LineStart + NumLines, ColumnEnd, Kind)); } return success(); } std::error_code RawCoverageMappingReader::read() { // Read the virtual file mapping. llvm::SmallVector<unsigned, 8> VirtualFileMapping; uint64_t NumFileMappings; if (auto Err = readSize(NumFileMappings)) return Err; for (size_t I = 0; I < NumFileMappings; ++I) { uint64_t FilenameIndex; if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size())) return Err; VirtualFileMapping.push_back(FilenameIndex); } // Construct the files using unique filenames and virtual file mapping. for (auto I : VirtualFileMapping) { Filenames.push_back(TranslationUnitFilenames[I]); } // Read the expressions. uint64_t NumExpressions; if (auto Err = readSize(NumExpressions)) return Err; // Create an array of dummy expressions that get the proper counters // when the expressions are read, and the proper kinds when the counters // are decoded. Expressions.resize( NumExpressions, CounterExpression(CounterExpression::Subtract, Counter(), Counter())); for (size_t I = 0; I < NumExpressions; ++I) { if (auto Err = readCounter(Expressions[I].LHS)) return Err; if (auto Err = readCounter(Expressions[I].RHS)) return Err; } // Read the mapping regions sub-arrays. for (unsigned InferredFileID = 0, S = VirtualFileMapping.size(); InferredFileID < S; ++InferredFileID) { if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID, VirtualFileMapping.size())) return Err; } // Set the counters for the expansion regions. // i.e. Counter of expansion region = counter of the first region // from the expanded file. // Perform multiple passes to correctly propagate the counters through // all the nested expansion regions. SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping; FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr); for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) { for (auto &R : MappingRegions) { if (R.Kind != CounterMappingRegion::ExpansionRegion) continue; assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]); FileIDExpansionRegionMapping[R.ExpandedFileID] = &R; } for (auto &R : MappingRegions) { if (FileIDExpansionRegionMapping[R.FileID]) { FileIDExpansionRegionMapping[R.FileID]->Count = R.Count; FileIDExpansionRegionMapping[R.FileID] = nullptr; } } } return success(); } namespace { /// \brief A helper structure to access the data from a section /// in an object file. struct SectionData { StringRef Data; uint64_t Address; std::error_code load(SectionRef &Section) { if (auto Err = Section.getContents(Data)) return Err; Address = Section.getAddress(); return instrprof_error::success; } std::error_code get(uint64_t Pointer, size_t Size, StringRef &Result) { if (Pointer < Address) return instrprof_error::malformed; auto Offset = Pointer - Address; if (Offset + Size > Data.size()) return instrprof_error::malformed; Result = Data.substr(Pointer - Address, Size); return instrprof_error::success; } }; } template <typename T, support::endianness Endian> std::error_code readCoverageMappingData( SectionData &ProfileNames, StringRef Data, std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records, std::vector<StringRef> &Filenames) { using namespace support; llvm::DenseSet<T> UniqueFunctionMappingData; // Read the records in the coverage data section. for (const char *Buf = Data.data(), *End = Buf + Data.size(); Buf < End;) { if (Buf + 4 * sizeof(uint32_t) > End) return instrprof_error::malformed; uint32_t NRecords = endian::readNext<uint32_t, Endian, unaligned>(Buf); uint32_t FilenamesSize = endian::readNext<uint32_t, Endian, unaligned>(Buf); uint32_t CoverageSize = endian::readNext<uint32_t, Endian, unaligned>(Buf); uint32_t Version = endian::readNext<uint32_t, Endian, unaligned>(Buf); switch (Version) { case CoverageMappingVersion1: break; default: return instrprof_error::unsupported_version; } // Skip past the function records, saving the start and end for later. const char *FunBuf = Buf; Buf += NRecords * (sizeof(T) + 2 * sizeof(uint32_t) + sizeof(uint64_t)); const char *FunEnd = Buf; // Get the filenames. if (Buf + FilenamesSize > End) return instrprof_error::malformed; size_t FilenamesBegin = Filenames.size(); RawCoverageFilenamesReader Reader(StringRef(Buf, FilenamesSize), Filenames); if (auto Err = Reader.read()) return Err; Buf += FilenamesSize; // We'll read the coverage mapping records in the loop below. const char *CovBuf = Buf; Buf += CoverageSize; const char *CovEnd = Buf; if (Buf > End) return instrprof_error::malformed; while (FunBuf < FunEnd) { // Read the function information T NamePtr = endian::readNext<T, Endian, unaligned>(FunBuf); uint32_t NameSize = endian::readNext<uint32_t, Endian, unaligned>(FunBuf); uint32_t DataSize = endian::readNext<uint32_t, Endian, unaligned>(FunBuf); uint64_t FuncHash = endian::readNext<uint64_t, Endian, unaligned>(FunBuf); // Now use that to read the coverage data. if (CovBuf + DataSize > CovEnd) return instrprof_error::malformed; auto Mapping = StringRef(CovBuf, DataSize); CovBuf += DataSize; // Ignore this record if we already have a record that points to the same // function name. This is useful to ignore the redundant records for the // functions with ODR linkage. if (!UniqueFunctionMappingData.insert(NamePtr).second) continue; // Finally, grab the name and create a record. StringRef FuncName; if (std::error_code EC = ProfileNames.get(NamePtr, NameSize, FuncName)) return EC; Records.push_back(BinaryCoverageReader::ProfileMappingRecord( CoverageMappingVersion(Version), FuncName, FuncHash, Mapping, FilenamesBegin, Filenames.size() - FilenamesBegin)); } } return instrprof_error::success; } static const char *TestingFormatMagic = "llvmcovmtestdata"; static std::error_code loadTestingFormat(StringRef Data, SectionData &ProfileNames, StringRef &CoverageMapping, uint8_t &BytesInAddress, support::endianness &Endian) { BytesInAddress = 8; Endian = support::endianness::little; Data = Data.substr(StringRef(TestingFormatMagic).size()); if (Data.size() < 1) return instrprof_error::truncated; unsigned N = 0; auto ProfileNamesSize = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N); if (N > Data.size()) return instrprof_error::malformed; Data = Data.substr(N); if (Data.size() < 1) return instrprof_error::truncated; N = 0; ProfileNames.Address = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N); if (N > Data.size()) return instrprof_error::malformed; Data = Data.substr(N); if (Data.size() < ProfileNamesSize) return instrprof_error::malformed; ProfileNames.Data = Data.substr(0, ProfileNamesSize); CoverageMapping = Data.substr(ProfileNamesSize); return instrprof_error::success; } static std::error_code loadBinaryFormat(MemoryBufferRef ObjectBuffer, SectionData &ProfileNames, StringRef &CoverageMapping, uint8_t &BytesInAddress, support::endianness &Endian, Triple::ArchType Arch) { auto BinOrErr = object::createBinary(ObjectBuffer); if (std::error_code EC = BinOrErr.getError()) return EC; auto Bin = std::move(BinOrErr.get()); std::unique_ptr<ObjectFile> OF; if (auto *Universal = dyn_cast<object::MachOUniversalBinary>(Bin.get())) { // If we have a universal binary, try to look up the object for the // appropriate architecture. auto ObjectFileOrErr = Universal->getObjectForArch(Arch); if (std::error_code EC = ObjectFileOrErr.getError()) return EC; OF = std::move(ObjectFileOrErr.get()); } else if (isa<object::ObjectFile>(Bin.get())) { // For any other object file, upcast and take ownership. OF.reset(cast<object::ObjectFile>(Bin.release())); // If we've asked for a particular arch, make sure they match. if (Arch != Triple::ArchType::UnknownArch && OF->getArch() != Arch) return object_error::arch_not_found; } else // We can only handle object files. return instrprof_error::malformed; // The coverage uses native pointer sizes for the object it's written in. BytesInAddress = OF->getBytesInAddress(); Endian = OF->isLittleEndian() ? support::endianness::little : support::endianness::big; // Look for the sections that we are interested in. int FoundSectionCount = 0; SectionRef NamesSection, CoverageSection; for (const auto &Section : OF->sections()) { StringRef Name; if (auto Err = Section.getName(Name)) return Err; if (Name == "__llvm_prf_names") { NamesSection = Section; } else if (Name == "__llvm_covmap") { CoverageSection = Section; } else continue; ++FoundSectionCount; } if (FoundSectionCount != 2) return instrprof_error::bad_header; // Get the contents of the given sections. if (std::error_code EC = CoverageSection.getContents(CoverageMapping)) return EC; if (std::error_code EC = ProfileNames.load(NamesSection)) return EC; return std::error_code(); } ErrorOr<std::unique_ptr<BinaryCoverageReader>> BinaryCoverageReader::create(std::unique_ptr<MemoryBuffer> &ObjectBuffer, Triple::ArchType Arch) { std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader()); SectionData Profile; StringRef Coverage; uint8_t BytesInAddress; support::endianness Endian; std::error_code EC; if (ObjectBuffer->getBuffer().startswith(TestingFormatMagic)) // This is a special format used for testing. EC = loadTestingFormat(ObjectBuffer->getBuffer(), Profile, Coverage, BytesInAddress, Endian); else EC = loadBinaryFormat(ObjectBuffer->getMemBufferRef(), Profile, Coverage, BytesInAddress, Endian, Arch); if (EC) return EC; if (BytesInAddress == 4 && Endian == support::endianness::little) EC = readCoverageMappingData<uint32_t, support::endianness::little>( Profile, Coverage, Reader->MappingRecords, Reader->Filenames); else if (BytesInAddress == 4 && Endian == support::endianness::big) EC = readCoverageMappingData<uint32_t, support::endianness::big>( Profile, Coverage, Reader->MappingRecords, Reader->Filenames); else if (BytesInAddress == 8 && Endian == support::endianness::little) EC = readCoverageMappingData<uint64_t, support::endianness::little>( Profile, Coverage, Reader->MappingRecords, Reader->Filenames); else if (BytesInAddress == 8 && Endian == support::endianness::big) EC = readCoverageMappingData<uint64_t, support::endianness::big>( Profile, Coverage, Reader->MappingRecords, Reader->Filenames); else return instrprof_error::malformed; if (EC) return EC; return std::move(Reader); } std::error_code BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) { if (CurrentRecord >= MappingRecords.size()) return instrprof_error::eof; FunctionsFilenames.clear(); Expressions.clear(); MappingRegions.clear(); auto &R = MappingRecords[CurrentRecord]; RawCoverageMappingReader Reader( R.CoverageMapping, makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize), FunctionsFilenames, Expressions, MappingRegions); if (auto Err = Reader.read()) return Err; Record.FunctionName = R.FunctionName; Record.FunctionHash = R.FunctionHash; Record.Filenames = FunctionsFilenames; Record.Expressions = Expressions; Record.MappingRegions = MappingRegions; ++CurrentRecord; return std::error_code(); }